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ON PARALLEL SURFACES IN MINKOWSKI 3-SPACE

YASİN ÜNLÜTÜRK1, ERDAL ÖZÜSAĞLAM2

Abstract. In this paper, we study on some properties of parallel surfaces in Minkowski
3-space. The results given in this paper were given in Euclidean space by [7, 8]. By
using these two former studies, we show these properties in Minkowski 3-space. Also we
give the relation among the fundamental forms of parallel surfaces in Minkowski 3-space.
Finally we show that how a curve which is geodesic on M become again a geodesic on
parallel surface Mr by the normal map in Minkowski 3-space.
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1. Introduction

Parallel surfaces as a subject of differential geometry have been intriguing for mathe-
maticians throughout history and so it has been a research field. In theory of surfaces,
there are some special surfaces such as ruled surfaces, minimal surfaces and surfaces of
constant curvature in which differential geometers are interested. Among these surfaces,
parallel surfaces are also studied in many papers [1, 2, 3, 4, 5, 11, 13]. Craig had studied to
find parallel of ellipsoid [2]. Eisenhart gave a chapter for parallel surfaces in his famous A
Treatise On the Differential Geometry of Curves and Surfaces [3]. Nizamoğlu had stated
parallel ruled surface as a curve depending on one-parameter and gave some geometric
properties of such a surface [11].

We can explain a parallel surface something like that a surface M r whose points are at
a constant distance along the normal from another surface M is said to be parallel to M .
So, there are infinite number of surfaces because we choose the constant distance along the
normal arbitrarily. From the definition it follows that a parallel surface can be regarded
as the locus of point which are on the normals to M at a non-zero constant distance r
from M .

In this paper, we study on some properties of parallel surfaces in Minkowski 3-space.
The results given in this paper were given in Euclidean space by [7, 8]. By using these two
former studies, we show these properties in Minkowski 3-space. Also we give the relation
among the fundamental forms of parallel surfaces in Minkowski 3-space. Finally we show
that how a curve which is geodesic on M become again a geodesic on parallel surface Mr

by the normal map in Minkowski 3-space.
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2. Preliminaries

Let E3
1 be the three-dimensional Minkowski space, that is, the three-dimensional real

vector space R3 with the metric

< dx,dx >=dx21 + dx22 − dx23

where (x1, x2, x3) denotes the canonical coordinates in R3. An arbitrary vector x of E3
1 is

said to be spacelike if < x,x >>0 or x = 0, timelike if < x,x ><0 and lightlike or null if
< x,x >=0 and x ̸= 0. A timelike or light-like vector in E3

1 is said to be causal. For x ∈E3
1,

the norm is defined by ∥x∥ =
√

|< x,x >|, then the vector x is called a spacelike unit vector
if < x,x >=1 and a timelike unit vector if < x,x >= −1. Similarly, a regular curve in E3

1

can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors are spacelike,
timelike or null (lightlike), respectively [12]. For any two vectors x = (x1, x2, x3) and
y = (y1, y2, y3) of E3

1, the inner product is the real number< x,y >= x1y1+x2y2−x3y3 and
the vector product is defined by x× y = ((x2y3 − x3y2), (x3y1 − x1y3),−(x1y2 − x2y1))
[10].

Let X = X(u, v) be a local parametrization. Let {Xu, Xv} be a local base of the tangent
plane at each point. Let us recall that the first fundamental form I is the metric on TpM ,
i.e.,

Ip = ⟨, ⟩p : TpM × TpM → R

Ip(u, v) = ⟨u, v⟩p .
(2.1)

Let

(
E F
F G

)
be the matricial expression of I with respect to B = {Xu, Xv},

E = ⟨Xu, Xu⟩ , F = ⟨Xu, Xv⟩ , G = ⟨Xv, Xv⟩ . (2.2)

So the first fundamental form I is explained as

II = edu2 + 2fdudv + gdv2. (2.3)

We take the normal vector field given by

N =
Xu ×Xv

∥Xu ×Xv∥
. (2.4)

The second fundamental form II at the point p is

II : TpM × TpM → R

II(u, v) = ⟨S(u), v⟩
(2.5)

where S(u) is shape operator of the surface in Minkowski 3-space. Let

(
e f
f g

)
be the

matricial expression of II with respect to B, that is,

e = −⟨Xu, Nu⟩ = ⟨N,Xuu⟩

f = −⟨Xu, Nv⟩ = −⟨Xv, Nu⟩ = ⟨N,Xuv⟩

g = −⟨Xv, Nv⟩ = ⟨N,Xvv⟩ .

(2.6)

So, the second fundamental form II is written as follows:

II = edu2 + 2fdudv + gdv2 (2.7)

[10]. The third fundamental form III of the surface is

III(u, v) = −
⟨
S2(u), v

⟩
= ⟨S(u), S(v)⟩ (2.8)
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where S(X) is shape operator of the surface in Minkowski 3-space [9].
Let a semi-Riemannian hypersurface of M be M . Gauss equation for semi-Riemannian

hypersurfaces for ∀ V, W ∈ χ(M) is

DV W = DV W + εg(S(V ),W )N (2.9)

where D is the Levi-Civita connection of M and D is so closely related to the Levi-Civita
connection of M we have used the same notation for both [12].

Let φ be the position vector of a point P on M and φr be the position vector of a point
f(P ) on the parallel surface M r. Then f(P ) is at a constant distance r from P along the
normal to the surface M . Therefore the parametrization for M r is given by

φr(u, v) = φ(u, v) + rN(u, v) (2.10)

where r is a constant scalar and N is the unit normal vector field on M [6].
Definition 2.1. Let M and M r be two surfaces in Minkowski 3-space. The function

f : M −→ M r

p −→ f(p) = p+ rNp
(2.11)

is called the parallellization function between M and M r and furthermore M r is called
parallel surface to M in E3

1 where r is a given positive real number and N is the unit
normal vector field on M [4].

Theorem 2.1. Let M be a surface and M r be a parallel surface of M in Minkowski
3-space. Let f : M → M r be the parallellization function. Then for X ∈ χ(M),

1) f∗(X) = X + rS(X)

2) Sr(f∗(X)) = S(X)

3) f preserves principal directions of curvature, that is

Sr(f∗(X)) =
k

1 + rk
f∗(X) (2.12)

where Sr is the shape operator on M r, and k is a principal curvature of M at p in direction
X [4].

3. Parallel Surfaces in E3
1

Let M be a surface of E3
1 with unit normal N = (a1, a2, a3) where each ai is a C∞

function on M and −a21 + a22 + a23 = ±1. For any constant r in R, let M r = {p+ rNp : p ∈
M}. Thus if p = (p1, p2, p3) is on M , then f(p) = p+ rNp = (p1+ ra1(p), p2+ ra2(p), p3+
ra3(p)) defines a new surface M r. The map f is called the natural map on M into M r, and
if f is univalent, then M r is a parallel surface of M with unit normal N , i.e., Nf(p) = Np

for all p in M .
Let M be a surface and M r be its parallel surface in E3

1. The fundamental forms Ir,
IIr, IIIr of the surfaces M r given by (2.10) are as follows:

Ir = ⟨dφr, dφr⟩

=

⟨
∂φr

∂u
,
∂φr

∂u

⟩
(du)2 + 2

⟨
∂φr

∂u
,
∂φr

∂v

⟩
dudv +

⟨
∂φr

∂v
,
∂φr

∂v

⟩
(dv)2

= Er (du)2 + 2F rdudv +Gr (dv)2

(3.1)
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and

IIr = ⟨−dφr, dN⟩

= −
⟨
∂φr

∂u
,
∂N r

∂u

⟩
(du)2 − 2

⟨
∂φr

∂u
,
∂N r

∂v

⟩
dudv −

⟨
∂φr

∂v
,
∂N r

∂v

⟩
(dv)2

= er (du)2 + 2f rdudv + gr (dv)2

(3.2)

and

IIIr = ⟨dN r, dN r⟩

=

⟨
∂N r

∂u
,
∂N r

∂u

⟩
(du)2 + 2

⟨
∂N r

∂u
,
∂N r

∂v

⟩
dudv +

⟨
∂N r

∂v
,
∂N r

∂v

⟩
(dv)2

=

⟨
∂N

∂u
,
∂N

∂u

⟩
(du)2 + 2

⟨
∂N

∂u
,
∂N

∂v

⟩
dudv +

⟨
∂N

∂v
,
∂N

∂v

⟩
(dv)2

= ⟨dN, dN⟩

= III.

(3.3)

The equation IIIr = III obtained in (3.3) means that the third fundamental form is
preserved for parallel surfaces in Minkowski 3-space. Let’s give the coefficients of the first
and second fundamental forms of parallel surface M r in terms of the coefficients of surface
M . The coefficient Er is found as follows:

Er =

⟨
∂φr

∂u
,
∂φr

∂u

⟩
=

⟨
∂(φ+ rN)

∂u
,
∂(φ+ rN)

∂u

⟩
= ⟨φu + rNu, φu + rNu⟩

= ⟨φu, φu⟩+ 2r ⟨φu, Nu⟩+ r2 ⟨Nu, Nu⟩
or

Er = E − 2re+ r2 ⟨Nu, Nu⟩ . (3.4)

The coefficient F r is obtained as follows:

F r =

⟨
∂φr

∂u
,
∂φr

∂v

⟩
=

⟨
∂(φ+ rN)

∂u
,
∂(φ+ rN)

∂v

⟩
= ⟨φu + rNu, φv + rNv⟩

= ⟨φu, φv⟩+ r ⟨φu, Nv⟩+ r ⟨Nu, φv⟩+ r2 ⟨Nu, Nv⟩

= F − 2rf + r2 ⟨Nu, Nv⟩ .

(3.5)

The coefficient Gr is

Gr =

⟨
∂φr

∂v
,
∂φr

∂v

⟩
=

⟨
∂(φ+ rN)

∂v
,
∂(φ+ rN)

∂v

⟩
= ⟨φv + rNv, φv + rNv⟩

= ⟨φv, φv⟩+ 2r ⟨φv, Nv⟩+ r2 ⟨Nv, Nv⟩

= G− 2rg + r2 ⟨Nv, Nv⟩ .

(3.6)

The coefficient er is

er = −
⟨
∂φr

∂u
,
∂N

∂u

⟩
= −⟨φu+rNu,Nu⟩ = −⟨φu,Nu⟩ − ⟨Nu, Nu⟩ = e− r ⟨Nu,Nu⟩ . (3.7)

The coefficient f r is
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f r = −
⟨
∂φr

∂u
,
∂N

∂v

⟩
= −⟨φu + rNu, Nv⟩ = −⟨φu, Nv⟩−⟨Nu, Nv⟩ = f−r ⟨Nu,Nv⟩ . (3.8)

The coefficient gr is

gr = −
⟨
∂φr

∂v
,
∂N

∂v

⟩
= −⟨φv + rNv, Nv⟩ = −⟨φv, Nv⟩−⟨Nv, Nv⟩ = g− r ⟨Nv, Nv⟩ . (3.9)

Theorem 3.1. LetM be a surface in E3
1. The fundamental forms ofM are, respectively,

denoted by I, II, III and Gaussian and mean curvatures of M denoted by K and H,
respectively. Hence

III − 2HII + εKI = 0 (3.10)

where ⟨N,N⟩ = ε.
Proof. dimTpM = 2 since dimM = 2 for n = 3. Therefore the shape operator

S = TM (P ) → TM (P )

has characteristic polynomial of the second order. Furthermore, since the principal cur-
vatures k1 and k2 are zeros of the polynomial, the characteristic polynomial of S is

PS(λ) = det(S − λI2) = λ2 − (k1 + k2)λ+ k1.k2

By Hamilton-Cayley theorem, the shape operator S is zero of the polynomial as follows:

S2 − (k1 + k2)S + k1.k2I2 = 0. (3.11)

On the other hand,

0 = [S2 − (k1 + k2)S + k1.k2I2](XP )

= S2(XP )− (k1 + k2)S(XP ) + (k1.k2)XP

for ∀ XP ∈ TM (P ). Also for ∀ YP ∈ TM (P ), we get the followings

0 =
⟨
S2(XP )− (k1 + k2)S(XP ) + (k1.k2)XP , YP

⟩
=

⟨
S2(XP ), YP

⟩
− (k1 + k2) ⟨S(XP ), YP ⟩+ k1.k2 ⟨XP , YP ⟩ .

From the definitions, we have

III − 2HII + εKI = 0.

Theorem 3.2. Let M be a surface and M r be its parallel surface in E3
1. The funda-

mental forms of M r are, respectively, denoted by Ir, IIr, IIIr and Gaussian and mean
curvatures of M r denoted by Kr and Hr, respectively. Hence

IIIr − 2HrIIr + εKrIr = 0 (3.12)

where ⟨N,N⟩ = ε.
Proof. dimTMr(f(P )) = 2 since dimM r = 2 for n = 3. Therefore the shape operator

Sr = TMr(f(P )) → TMr(f(P ))

has characteristic polynomial of the second order. Furthermore, since the principal curva-

tures
k1

1 + rk1
and

k2
1 + rk2

are zeros of the polynomial, the characteristic polynomial of

Sr is
PS(λ) = det(Sr − λI2)

= λ2 −
(

k1
1 + rk1

+
k2

1 + rk2

)
λ+

k1
1 + rk1

k2
1 + rk2

(3.13)
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By Hamilton-Cayley theorem, the shape operator Sr is zero of the polynomial as follows:

Sr2 −
(

k1
1 + rk1

+
k2

1 + rk2

)
Sr +

(
k1

1 + rk1

)(
k2

1 + rk2

)
I2 = 0. (3.14)

On the other hand,

0 =

[
Sr2 −

(
k1

1 + rk1
+

k2
1 + rk2

)
Sr +

k1
1 + rk1

k2
1 + rk2

I2

]
(f∗(Xp))

= Sr2 (f∗(Xp))−
(

k1
1+rk1

+
k2

1+rk2

)
Sr(f∗(Xp))+

(
k1

1+rk1

k2
1+rk2

)
f∗(Xp)

(3.15)

for ∀ f∗(Xp) ∈ TMr(f(p)).

0 = ⟨Sr2(f∗(Xp))−
(

k1
1+rk1

+
k2

1+rk2

)
Sr(f∗(Xp)) +

(
k1

1+rk1

k2
1+rk2

)
f∗(Xp),f∗(Yp)⟩

=
⟨
Sr2(f∗(Xp)),f∗(Yp)

⟩
-

(
k1

1 + rk1
+

k2
1 + rk2

)
⟨Sr(f∗(Xp)),f∗(Yp)⟩

+

(
k1

1 + rk1

)(
k2

1 + rk2

)
⟨f∗(Xp),f∗(Yp)⟩

=
⟨
Sr2(f∗(Xp)),f∗(Yp)

⟩
− TrSr ⟨Sr(f∗(Xp)),f∗(Yp)⟩+ detSr ⟨f∗(Xp),f∗(Yp)⟩

(3.16)
From Definitions,⟨

Sr2(f∗(Xp)),f∗(Yp)
⟩
-εHr ⟨Sr(f∗(Xp)),f∗(Yp)⟩+εKr ⟨f∗(Xp),YP ⟩ = 0

IIIr − 2HrIIr + εKrIr = 0

Lemma 3.1. Let M be a surface and M r be its parallel surface in E3
1. The fundamental

forms of M and M r are, respectively, denoted by I, II and Ir, IIr, and also Gaussian and
mean curvatures of M denoted by K and H, respectively. Hence

Ir = (1− εr2K)I − 2r(1− rH)II and IIr = εrKI + (1− 2rH)II.

Proof. Let the parallel surface M r be given with the following parametrization:

φr(u, v) = φ(u, v) + rN(u, v).

The first fundamental form of M r is obtained as follows:

Ir = ⟨dφr, dφr⟩

= ⟨d(φ+ rN), d(φ+ rN)⟩

= ⟨φudu+ rNudu+ φvdv + rNvdv, φudu+ rNudu+ φvdv + rNvdv⟩

= ⟨φu, φu⟩ du2 + 2r ⟨φu, Nu⟩ du2 + 2 ⟨φu, φv⟩ dudv + 2r ⟨φu, Nv⟩ dudv

+2r ⟨φv, Nu⟩ dudv + r2 ⟨Nu, Nu⟩ du2 + 2r2 ⟨Nu, Nv⟩ dudv + ⟨φv, φv⟩ dv2

+2r ⟨φv, Nv⟩ dv2 + r2 ⟨Nv, Nv⟩ dv2.

(3.17)
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By using (2.6) and (2.7) in (3.18) with keeping the expression III = ⟨dN, dN⟩ and
Theorem 3.1 in mind, we get

Ir = I − 2rII + r2III

= I − 2rII + r2(2HII − εKI)

= (1− r2εK)I − 2r(1− rH)II.

Let’s look at the second fundamental form of the parallel surfaces, that is,

IIr = −⟨dφr, dN⟩

= −⟨φudu+ rNudu+ φvdv + rNvdv,Nudu+Nvdv⟩

= −⟨φu, Nu⟩ du2 − ⟨φu, Nv⟩ dudv − r ⟨Nu, Nu⟩ du2 − r ⟨Nu, Nv⟩ dudv

−⟨φv, Nu⟩ dudv- ⟨φv, Nv⟩ dv2 − r ⟨Nu, Nv⟩ dudv − r ⟨Nv, Nv⟩ dv2.

(3.18)

By using (2.6) and (2.7) in (3.18) with keeping the expression III = ⟨dN, dN⟩ and Theo-
rem 3.1 in mind, we get

IIr = II − rIII

= II − r(2HII − εKI)

= εrKI + (1− 2rH)II.

Theorem 3.3. Let M be a surface and M r be a parallel surface of M in Minkowski
3-space. Let f : M → M r be the parallellization function. Then for X ∈ χ(M),

1) f preserves the third fundamental form

2) f preserves umbilical point

3) There is the relation

Ir(f∗(Xp), f∗(Yp)) = I(Xp, Yp) + II(Xp, Yp) + III(Xp, Yp)

for ∀ X,Y ∈ χ(M), ∀ p ∈ M.
Proof. 1) The expression (3.1) is the proof. But we can give another proof as follows:

Let the third fundamental forms of M and M r be III and IIIr, then

IIIr(f∗(Xp), f∗(Yp)) = ⟨Sr(f∗(Xp)), S
r(f∗(Yp))⟩ = ⟨S(X), S(Y )⟩p = III(Xp, Yp).

2) Let p ∈ M be an umbilical point of M , then

S(Xp) = λXp

for ∀ Xp ∈ TpM and only one λ ∈ R. On the other hand, we have

f∗(Xp) = X + rS(X) = (1 + rλ)X.

Accordingly, we obtain

Sr(f∗(Xp)) = S(X) = λX =
λ

1 + rλ
f∗(Xp) (3.19)

for ∀ f∗(Xp) ∈ Tf(p)M
r. The expression means that Sr is one time of the identity mapping

of M r at the point f(p) ∈ M r. Thus if p ∈ M be an umbilical point of M, then the point
f(p) ∈ M r is also an umbilical point of M r.
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3)

⟨f∗(X), f∗(Y )⟩f(p) = ⟨X + rS(X), Y + rS(Y )⟩f(p)
= ⟨X,Y ⟩p + 2r ⟨S(X), Y ⟩p + r2 ⟨S(X), S(Y )⟩p
= I(Xp, Yp) + 2rII(Xp, Yp) + r2III(Xp, Yp)

for ∀ X,Y ∈ χ(M), ∀ p ∈ M.
Theorem 3.4. If f preserves the second fundamental form, then M is a Lorentzian

plane.
Proof. From the definition of the second fundamental form, we can write

IIr(f∗(X), f∗(Y )) = ⟨Sr(f∗(X)), f∗(Y )⟩

= ⟨S(X), Y + rS(Y )⟩

= ⟨S(X), Y ⟩+ r ⟨S(X), s(Y )⟩ ;
(3.20)

thus ⟨S(X), rS(Y )⟩ =
⟨
X, rS2(Y )

⟩
= 0 for all X and Y , and hence

S2(Y ) = 0.

Thus the principal curvatures are zero, S = 0, and M is a Lorentzian plane.
Theorem 3.5. Let α be a geodesic curve on M , then f ◦ α is also a geodesic curve on

M r if and only if ▽̃α′(u)S(α
′(u)) = 0, where ▽̃ is a Riemannian connection on M .

Proof. Let the parametrization of M r be given as follows:

φr(u, v) = φ(u, v) + rN(u, v)

where φ(u, v) is the parametrization of M and N is differentiable normal vector field of
M . Thus we can write

φr
u = α′(u) + rS(α′(u)) (3.21)

where α is a curve such that u → α′(u) = φ(u, v), v = const.

Let Riemannian connection on M be denoted by ▽̃, the tangent component of φr
uu be

denoted by φrT
uu, and the normal component be denoted by φ̃r

uu, then Gauss equation can
be written as follows:

φ̃r
uu+φrT

uu=▽̃α′(u)α
′(u) + r▽̃α′(u)S(α

′(u)) + ε ⟨S(α′(u)),α′(u)⟩N
+rε

⟨
S2(α′(u)),α′(u)

⟩
N.

(3.22)

Thus, we get
φrT
uu = 0 ⇔ ▽̃α′(u)α

′(u) + r▽̃α′(u)S(α
′(u)) = 0. (3.23)

While the curve α is geodesic on M, if the curve α(u) + rNu is also geodesic on M r, then

▽̃α′(u)S(α
′(u)) = 0.

Conversely, let’s take ▽̃α′(u)S(α
′(u))=0, then

▽̃α′(u)α
′(u) = 0

since
φrT
uu = ▽̃α′(u)α

′(u) + r▽̃α′(u)S(α
′(u)) = 0

and α geodesic on M. In that case, φrT
uu=0, that is, the curve α(u) + rNu is also geodesic

on M r.
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