ON A CRITERION FOR MULTIVALENT HARMONIC FUNCTIONS

T. HAYAMI ${ }^{1}$ §

Abstract

For normalized harmonic functions $f(z)=h(z)+\overline{g(z)}$ in the open unit disk, a criterion on the analytic part $h(z)$ for $f(z)$ to be p-valent and sense-preserving is discussed. Furthermore, several illustrative examples and images of $f(z)$ satisfying the obtained condition are enumerated.

Keywords: Harmonic function, Multivalent function, Univalent function.
AMS Subject Classification: 30C45, 58E20.

1. Introduction and Definitions

For a fixed $p(p=1,2,3, \cdots)$, a meromorphic function $f(z)$ in a domain \mathbb{D} is said to be p-valent (or multivalent of order p) in \mathbb{D} if for each w_{0} the equation $f(z)=w_{0}$ has at most p roots in \mathbb{D} where the roots are counted in accordance with their multiplicity and if there is some w_{1} such that the equation $f(z)=w_{1}$ has exactly p roots in \mathbb{D}. In particular, $f(z)$ is said to be univalent in \mathbb{D} when $p=1$. A complex-valued harmonic function $f(z)$ in \mathbb{D} is given by

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)} \tag{1.1}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic in \mathbb{D}. We call $h(z)$ and $g(z)$ the analytic part and coanalytic part of $f(z)$, respectively. A necessary and sufficient condition for $f(z)$ to be locally univalent and sense-preserving in \mathbb{D} is $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ for all $z \in \mathbb{D}$ (see [2] or [8]). Let $\mathcal{H}(p)$ denote the class of functions $f(z)$ of the from

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}+\overline{\sum_{n=p}^{\infty} b_{n} z^{n}} \tag{1.2}
\end{equation*}
$$

which are harmonic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. We next denote by $\mathcal{S}_{\mathcal{H}}(p)$ the class of functions $f(z) \in \mathcal{H}(p)$ which are p-valent and sense-preserving in \mathbb{U}. Then, we say that $f(z) \in \mathcal{S}_{\mathcal{H}}(p)$ is a p-valently harmonic function in \mathbb{U}.

In the present paper, we discuss a sufficient condition about $h(z)$ for $f(z) \in \mathcal{H}(p)$ given by (1.2), satisfying

$$
\begin{equation*}
g^{\prime}(z)=z^{m-1} h^{\prime}(z) \tag{1.3}
\end{equation*}
$$

for some $m(m=2,3,4, \cdots)$, to be in the class $\mathcal{S}_{\mathcal{H}}(p)$.

[^0]
2. Main Result

Our result is contained in
Theorem 2.1. Let $h(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be analytic in the closed unit disk $\overline{\mathbb{U}}=$ $\{z \in \mathbb{C}:|z| \leq 1\}$ with $H(z)=h^{\prime}(z) / z^{p-1} \neq 0 \quad(z \in \overline{\mathbb{U}})$ and let

$$
\begin{equation*}
F(t)=(2 p+m-1) t+2 \arg \left(H\left(e^{i t}\right)\right) \quad(-\pi \leq t<\pi) \tag{2.1}
\end{equation*}
$$

for some $m(m=2,3,4, \cdots)$. If for each $k \in K=\left\{0, \pm 1, \pm 2, \cdots, \pm\left\lfloor\frac{2 p+m+1}{2}\right\rfloor\right\}$ where \rfloor is the floor function, the equation

$$
\begin{equation*}
F(t)=2 k \pi \tag{2.2}
\end{equation*}
$$

has at most a single root in $[-\pi, \pi)$ and for all $k \in K$ there exist exactly $2 p+m-1$ such roots in $[-\pi, \pi)$, then the harmonic function $f(z)=h(z)+\overline{g(z)}$ with $g^{\prime}(z)=z^{m-1} h^{\prime}(z)$ belongs to the class $\mathcal{S}_{\mathcal{H}}(p)$ and maps \mathbb{U} onto a domain surrounded by $2 p+m-1$ concave curves with $2 p+m-1$ cusps.

Remark 2.1. If we take $p=1$ in Theorem 2.1, then we readily arrive at the univalence criterion for harmonic functions due to Hayami and Owa [5, Theorem 2.1] (see also [10]).

3. Some Illustrative Examples and Image Domains

We discuss harmonic functions $f(z)=h(z)+\overline{g(z)}$ which satisfy the conditions of Theorem 2.1 and their image domains.

Example 3.1. Let $h(z)=z^{p}$. Then we easily see that the equation (2.2) becomes

$$
\begin{equation*}
(2 p+m-1) t=2 k \pi \quad\left(k=0, \pm 1, \pm 2, \cdots, \pm\left\lfloor\frac{2 p+m+1}{2}\right\rfloor\right) \tag{3.1}
\end{equation*}
$$

which satisfies the conditions of Theorem 2.1. Hence, the function

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=z^{p}+\frac{p}{p+m-1} z^{p+m-1} \quad\left(g^{\prime}(z)=z^{m-1} h^{\prime}(z)\right) \tag{3.2}
\end{equation*}
$$

belongs to the class $\mathcal{S}_{\mathcal{H}}(p)$ and it maps \mathbb{U} onto a domain surrounded by $2 p+m-1$ concave curves with $2 p+m-1$ cusps. Taking $p=2$ and $m=4$ for example, we know that the function

$$
\begin{equation*}
f(z)=z^{2}+\frac{2}{5} \bar{z}^{5} \tag{3.3}
\end{equation*}
$$

is a 2-valently harmonic function in \mathbb{U} and it maps \mathbb{U} onto the domain surrounded by 7 concave curves with 7 cusps as shown in Figure 1.

Remark 3.1. Since it follows that

$$
\begin{equation*}
F(t)=(2 p+m-1) t+2 \operatorname{Im}\left(\log H\left(e^{i t}\right)\right) \tag{3.4}
\end{equation*}
$$

where $F(t)$ is given by (2.1), we obtain that

$$
\begin{equation*}
F^{\prime}(t)=m+1+2 \operatorname{Re}\left(\frac{e^{i t} h^{\prime \prime}\left(e^{i t}\right)}{h^{\prime}\left(e^{i t}\right)}\right) \tag{3.5}
\end{equation*}
$$

Figure 1. The image of $f(z)=z^{2}+\frac{2}{5} \bar{z}^{5}$.
which implies that $F(t)$ is increasing if

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>-\frac{m-1}{2} \quad(z \in \mathbb{U}) \tag{3.6}
\end{equation*}
$$

By the above remark, we derive the following exapmle.
Example 3.2. Let $h(z)=z^{p}+\frac{c}{p+1} z^{p+1}\left(|c| \leq p-\frac{2 p}{2 p+m+1}\right)$. Then the equation (2.2) becomes

$$
\begin{equation*}
F(t)=(2 p+m-1) t+2 \arg \left(p+c e^{i t}\right) \tag{3.7}
\end{equation*}
$$

Noting

$$
\begin{gather*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>p+1-\frac{p}{p-|c|} \geq-\frac{m-1}{2} \quad(z \in \mathbb{U}) \tag{3.8}\\
F(-\pi)=-(2 p+m-1) \pi-2 \arctan \left(\frac{|c| \sin \theta}{p-|c| \cos \theta}\right) \tag{3.9}
\end{gather*}
$$

and

$$
\begin{equation*}
F(\pi)=(2 p+m-1) \pi-2 \arctan \left(\frac{|c| \sin \theta}{p-|c| \cos \theta}\right) \tag{3.10}
\end{equation*}
$$

where $0 \leq \theta=\arg (c)<2 \pi$, we see that $F(t)$ satisfies the conditions of Theorem 2.1. Hence, the function

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=z^{p}+\frac{c}{p+1} z^{p+1}+\overline{\frac{p}{p+m-1} z^{p+m-1}+\frac{c}{p+m} z^{p+m}} \tag{3.11}
\end{equation*}
$$

belongs to the class $\mathcal{S}_{\mathcal{H}}(p)$ and it maps \mathbb{U} onto a domain surrounded by $2 p+m-1$ concave curves with $2 p+m-1$ cusps. Putting $p=2, \quad m=4$ and $c=\frac{2}{3} i \quad\left(|c| \leq \frac{14}{9}\right)$, we know that the function

$$
\begin{equation*}
f(z)=z^{2}+\frac{2 i}{9} z^{3}+\frac{2}{5} \bar{z}^{5}+\frac{i}{9} \bar{z}^{6} \tag{3.12}
\end{equation*}
$$

is a 2-valently harmonic function in \mathbb{U} and it maps \mathbb{U} onto the domain surrounded by 7 concave curves with 7 cusps as shown in Figure 2.

Figure 2. The image of $f(z)=z^{2}+\frac{2 i}{9} z^{3}+\frac{2}{5} \bar{z}^{5}+\frac{i}{9} \bar{z}^{6}$.

In consideration of the process of proving Theorem 2.1, we obtain the following interesting example.

Example 3.3. If we consider special functions $h(z)$ and $g(z)$ given by

$$
\begin{equation*}
h^{\prime}(z)=\frac{p z^{p-1}}{1+z^{2 p+m-1}} \quad \text { and } \quad g^{\prime}(z)=\frac{p z^{p+m-2}}{1+z^{2 p+m-1}} \quad\left(g^{\prime}(z)=z^{m-1} h^{\prime}(z)\right) \tag{3.13}
\end{equation*}
$$

then the function

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=\int_{0}^{z} \frac{p \zeta^{p-1}}{1+\zeta^{2 p+m-1}} d \zeta+\overline{\int_{0}^{z} \frac{p \zeta^{p+m-2}}{1+\zeta^{2 p+m-1}} d \zeta} \tag{3.14}
\end{equation*}
$$

is a member of the class $\mathcal{S}_{\mathcal{H}}(p)$ and it maps \mathbb{U} onto a domain surrounded by $2 p+m-1$ straight lines with $2 p+m-1$ cusps. Indeed, setting $p=2$ and $m=2$, we know that

$$
\begin{equation*}
f(z)=\int_{0}^{z} \frac{2 \zeta}{1+\zeta^{5}} d \zeta+\overline{\int_{0}^{z} \frac{2 \zeta^{2}}{1+\zeta^{5}} d \zeta} \tag{3.15}
\end{equation*}
$$

is a 2-valently harmonic function and it maps \mathbb{U} onto a star as shown in Figure 3. Furthermore, if we take $p=1$ in (3.14), then we see that the function

$$
\begin{equation*}
f_{m+1}(z)=h(z)+\overline{g(z)}=\int_{0}^{z} \frac{1}{1+\zeta^{m+1}} d \zeta+\overline{\int_{0}^{z} \frac{\zeta^{m-1}}{1+\zeta^{m+1}} d \zeta} \tag{3.16}
\end{equation*}
$$

is univalent in \mathbb{U} and it maps \mathbb{U} onto a $(m+1)$-sided polygon.

Figure 3. The image of $f(z)=\int_{0}^{z} \frac{2 \zeta}{1+\zeta^{5}} d \zeta+\overline{\int_{0}^{z} \frac{2 \zeta^{2}}{1+\zeta^{5}} d \zeta}$

4. Appendix

Finally, we recall here the following theorem due to Mocanu [9].
Theorem 4.1. Let $h(z)$ and $g(z)$ be analytic functions in a domain \mathbb{D}. If $h(z)$ is convex in \mathbb{D} and $\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|$ for $z \in \mathbb{D}$, then the harmonic function $f(z)=h(z)+\overline{g(z)}$ is univalent and sense-preserving in \mathbb{D}.

In other words, if $h(z)$ and $g(z)$ satisfy

$$
\begin{equation*}
g^{\prime}(z)=w(z) h^{\prime}(z) \quad(z \in \mathbb{D}) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>0 \quad(z \in \mathbb{D}) \tag{4.2}
\end{equation*}
$$

for some analytic function $w(z)$ in \mathbb{D} satisfying $|w(z)|<1(z \in \mathbb{D})$, then $f(z)$ is univalent and sense-preserving in \mathbb{D}.

Bshouty and Lyzzaik [1] have shown the next theorem which is closely related to Theorem 2.1 and Remark 3.1 with $p=1$ and $m=2$ as the stronger result of the conjecture of Mocanu [10].

Theorem 4.2. If $h(z)$ and $g(z)$ are analytic in \mathbb{U}, with $h^{\prime}(0) \neq 0$, which satisfy

$$
\begin{equation*}
g^{\prime}(z)=z h^{\prime}(z) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>-\frac{1}{2} \tag{4.4}
\end{equation*}
$$

for all $z \in \mathbb{U}$, then the harmonic function $f(z)=h(z)+\overline{g(z)}$ is univalent close-to-convex in \mathbb{U}.

These theorems motivate us to state

Conjecture 4.1. If the function $f(z)$ given by (1.2) is harmonic in \mathbb{U} which satisfies

$$
\begin{equation*}
g^{\prime}(z)=z^{m-1} h^{\prime}(z) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>-\frac{m-1}{2} \quad(z \in \mathbb{U}) \tag{4.6}
\end{equation*}
$$

for some $m(m=2,3,4, \cdots)$, then $f(z)$ is p-valent in \mathbb{U}.

The details of this article can be found in the paper [7].

References

[1] Bshouty, D. and Lyzzaik, A., (2011), Close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory, 5, 767-774.
[2] Clunie, J. and Sheil-Small, T., (1984), Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9, 3-25.
[3] Duren, P. L., (2004), Harmonic Mappings in the Plane, Cambridge University Press, Cambridge.
[4] Goodman, A. W., (1983), Univalent Functions, Vol. I and Vol. II, Mariner Publishing Company, Tampa, Florida.
[5] Hayami, T. and Owa, S., (2011), Hypocycloid of $n+1$ cusps harmonic function, Bull. Math. Anal. Appl., 3, 239-246.
[6] Hayami, T., (2012), Coefficient conditions for harmonic close-to-convex functions, Abstr. Appl. Anal., 2012, Article ID 413965, 12 pp.
[7] Hayami, T., (2013), A sufficient condition for p-valently harmonic functions, Complex Var. Elliptic Equ., Published online. DOI : 10.1080/17476933.2013.826656.
[8] Lewy, H., (1936), On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42, 689-692.
[9] Mocanu, P. T., (1981), Sufficient conditions of univalency for complex functions in the class C^{1}, Rev. d'Anal. Numeér. et de Théorie Approx., 10, 75-81.
[10] Mocanu, P. T., (2009), Three-cornered hat harmonic functions, Complex Var. Elliptic Equ., 54, 10791084.
[11] Mocanu, P. T., (2011), Injectively conditions in the complex plane, Complex Anal. Oper. Theory, 5, 759-766.

[^0]: ${ }^{1}$ Department of Mathematics, Kinki Universiy, Higashi-Osaka, Osaka 577-8502, Japan, e-mail: ha_ya_to112@hotmail.com
 § Submitted for GFTA'13, held in Işık University on October 12, 2013.
 TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

