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ON A NEW SUBCLASS OF HARMONIC MEROMORPHIC
FUNCTIONS WITH FIXED RESIDUE ¢

F. MUGE SAKAR ! AND H. OZLEM GUNEY? §

ABSTRACT. We use the differential operator D}’§'  to introduce a new class SH;gff (w, k, o)
of meromorphic harmonic functions with fixed residue £ in U,,. Then we give the coeffi-
cient estimates, distortion theorem and extreme points of classes .S’H"‘W’B'g(w7 k,a) and

A0,
n,7,8,§
SHY o [w ko] .
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1. INTRODUCTION

f = u+ iv is a complex harmonic function in a domain D if both v and v are real
continuous harmonic functions in D. In any simply connected domain D C C, f is written
in the form of f = h+7, where both h and g are analytic in D. We call h the analytic part
and g the co-analytic part of f. A necessary and sufficient condition for f to be locally
univalent and orientation preserving in D is that |h/| > |¢’| [3]. There are many papers on
harmonic functions defined on the domain U = {z : |z| < 1} [1,4,5,6].

For 0 < w < 1, we let SH(w) denote the class of functions harmonic univalent, orienta-
tion preserving and meromorphic in U, with lim,_,,, f(z) = oo which are the representation

f(2) = h(z) + g(2) + Aloglz — w| (1)

where . .
h(z) = . _f " + Z cr2® and g(z) = Z dp,2* (2)

k=1 k=1

and £ = Res(f,w) with 0 < £ <1, z € U\ {w} or we may set for z € Uy, = {z: 0 <
|z —w| <1—w}

h(z) = 3 +Y apz—w)f and  g(z) =D bi(z —w)F. (3)
k=1 k=1
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We further remove the logarithmic singularity by letting A = 0 and focus the subclass
S H[w] of all harmonic, orientation preserving, and meromorphic mappings which have the
development

f(z) =h(z) + 9(2) (4)
where
h(z) = . _5 ” + chzk and g(z) = dezk, ek dp > 052 € U\ {w}  (5)
k=1 k=1

or we may set for z € Uy, ={2:0< |z —w| <1 —w}

£

Z—w

h(z) = +Y a(z—w)*  and  g(z2) =D be(z—w)*,  apbp >0 (6)
P k=1

where h(z) has a simple pole at the point w with residue ¢ . For { = 1 and w = 0 the
function f was studied by Bostanci, Yalgin and Oztiirk [2].

For the function f in the class SH(w) , we define the following D;’(’; , operator, for
0<a<Li\de,u>0;A>0¢0>pand 0 <w <1 where £ = Res(f,w) with 0 < £ <1,
z € Uy.

DY f(2) = f(2)

D5 F(2) = Dy5 h(2)+Dy5 g(2), n=1,2,3,..
(7)
where
- . , 26\ =0)(p—
DY h(z) = [1=(A=0)(p—m)|(DY5 S h(2)+(A=0) (p—p) (z—w) (DY 5 ' h(2)) + £( Z_)Ef )

= Y -0 i) k- D ez — )

k=1
and
N9 (2) = (z=w) (D35 9(2)) = Y [1H(A=8)(p—pr) (k=) "be(z—w)".
k=1
So, we can define the class SHf’gf’i(w, k,«) with the help of the differential operator

DYy a8 follows:

A function f in SH(w) is in the class SH;’gf;f(w,k,a) if it satisfies the following
inequality
(z —w)*(DY5,f(2)) +1
2y = D(z —w)2(DY5 f(2)) + (2va — 1)
where 0 < a < 1;% <AL<L0<B<SLANG,e,u>0A> 600> pand 0 < w <1 where
&= Res(f,w) with0<¢<1,ze U\ {w}.

<p (8)

Let us write

SHmf,f[w, k,a] = SHZ’gf,’,f(w, k,a) N SH]w] 9)

where SH[w] is the class of functions of the form (4) and (6) that are meromorphic and
harmonic in U,,.
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In the present paper, we give some important results as coefficient estimates, dis-

tortion bounds, extreme points for the classes SHY ’gfj(w k, ) and SH;gfj[w k, a.

2. COEFFICIENTS ESTIMATES

Now, we obtain coefficient inequalities for a function in the class SH, ’g B, 5(10, k,a) .

Theorem 2.1. A function f(z) = h(z) + g(z) where h(z) and g(z) are defined by (3) is
in the class SHf\l”;fﬁﬁ(w, k,«) if and only if

D K[+ (k=1)(A=38) (¢ —pw)]"(1+287 = B)(Jax| +[be]) < 267(€ =)= (1-€)(1-5) (10)
k=1

f0r0§a<1,0<ﬁgl,%§’y§1.
Proof. Suppose (10) holds. Consider the expression
(= — w2 (D32 1)) +1] = 8|2y — Dz — wP(DREFE) + (270 - 1)] <0

provided

+Zk1+ YA = 8)(p — w)]™(ag + br) (z — w)* T

- ‘—5(27 D+ 2ya =1+ k@Y= DL+ (k= DA = 8)(p — w)]"(ar +bi)(z — w)**| <0
k=1

for |z —w|=r<1—-w

< (1= + Y KL+ (k=1)(A=8)(p—mw)]" (Jar| + b )r" ! =267 +E8+267a -
k=1

+8) k(2y = DL+ (k= (A = 8)( — w)]" (Jax| + b )r*+!
k=1

=D KL+(k=1)(A=8)(p—p)]" (1+287—B)(|ak |+ bk )r**! =267(E—a)+(1-€) (1) < 0.
k=1
(11)

The inequality in (11) holds true for all |z —w| =7 < 1—w < 1. Therefore, letting r — 1
n (11), we obtain

Zk JA =) (@ =] (1+ 28y = B)(lax| + [br]) < 26v(§ — ) = (1 =1 = 5).

Hence f(z) € SH;’gf’lf(w,k,a).

0

Next, we give a necessary and sufficient condition for a function f(z) € SH(w) to be in

the class SHA’gfi[w k, al.



M.SAKAR, H.GUNEY: ON A NEW SUBCLASS OF HARMONIC MEROMORPHIC FUNCTIONS WITH ... 95

Theorem 2.2. Let f(z) € SH(w) be a function defined by (4) and (6). Then f(z) €

SH, ’gfi[w k,alif and only if the inequality

kL + (k= 1)(A =) (¢ — w)]"(L+ 28y — B)(ar + bk) <287(§ —a) — (1 -1 - B)
k=1
1s satisfied.

Proof. In view of Theorem 2.1, we only need to prove the ”only if part” of the theorem.

Assume that f(z) € Hfgff[w,k,a]. Then

(z — w)Z(D/\’M; () +1
(27 = Dz = w)* (D5, f(2)) + (2ya = 1)

- (L =& + 32 B[+ (k= (A = 0)(¢ — )" (ak + bi) (2 — w)** ‘
€@y —1) = S, B@r — DL+ (k= DO = 8) (g — ) (a + be)(z — )1 — (290 — 1)
Using the fact that Re(z) < |z| for all z, we obtain

e (1= &) + Sy KL+ (e — DA = 8)(p — p)]"(ax + by) (= = w)*! bes
B =)+ (1= = 2 K = D+ (= D= ) = G B
12
Now choose the values of z on the real axis. Upon clearing the denominator in (12) and
letting (z — w) — 1~ through positive values, we obtain

<pB

< B, (2 € Uy).

Zk‘ YA =08)(p — w]"(L+ 28y = B)(ak + b) <28v(€ —a) — (1 = &)(1 - p)
So, the proof is completed. O

3. DISTORTION THEOREM

Distortion property for function f to be in the class S H v 7 5 £[w k, o] is given as follows.

Theorem 3.1. Iff be of the form (4) and (6) is in the class, SH)\’Vﬁg[w,k,a] then, for
|z —w|=r<1-

€ _260(€-a) - (18§01 -F) » ~& 269§ —a) — (1 -1~ 5) »
r k(1 + 28y — B) <@l = r E(1+ 28y — ) (13)

Proof. Let SH)\’V'Bg[w,k,oz]. We obtain

#(2)l = 'fw + oz —w) Y bz - w)
k=1 k=1

1

|2 — wl

>

E—lz—w|) (ap+bp)lz - w\k]

k=1

% [5 —r? ;(akz + by)

2§ 2 -a) -1 -9 -P) i K1+ (k= 1A =0)(¢ = pw)]"(1 + 267 = f)
o k(1+ 28y —p) Pt 267§ —a) = (1 =81 - p)

Y

(ag+by)r?
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€ 2(E—0)—(1-O(1-5) ,
r k(14 28~ — pB) )
The other side is similar. The bound (13) is attained for the function f(z) given by

>

(14)

{f<z> =t 2 i (0
& 2870 -(1-9(1-B) 7, 3
1) ==+ T e

for0<a<1,0<B<1,3<y<land0<w<1where{= Res(f,w) with0<¢ <1,
z € Uy.
These bounds are sharp. O

4. EXTREME POINTS

Now, we determine the extreme points of the closed convex hull of SH, b, g[w, k, o

Ab,1
denoted by clcoSH)\’gfi[w, k, .

Theorem 4.1. f € SH"’Vﬁg[w,k,a] if and only if f can be expressed as

Ab,1
F(2) =D [Xihi(2) + Yigr(2)] (15)
k=0

where
ho(z) = —>—, g0(2) =0,

& 267(€ —a) = (1 = &)(1 - B) _
M) = R G- D0 e -l r2m - o kA

_ 267(€§ —a) = (1= §)(1 - B) G wk or _
S v g T e 7 vy R VA AU A b B
X, >0,  Y,>0 and Y (Xp+Y¥) =1

k=0

In particular, the extreme points of SH)\’VﬂS[w, k,a) are {hi} and {gr}, (k=0,1,2,...).

Proof. Note that, for the functions f of the form (15), we can write

f(2) = [Xphp(2)+Yigr(2)]
k=0
R £ & 28v(§ —a) = (1-&(1—B) Y
= 2 Kty +; KL+ (= )= 0)(p— (1 + 257 — )+~ )
25’7 (€ —a) - (1—5)(1—5) o
*Z k(1 DO 0 —pn( + 257 — ) HE e
Then
Zk1+ YA =8) (o — w)]™(1+28y - B) Al

k1+ (k=1 =0)(p—pw)]"1+28y-5)
Yy

and

+Z E[1+(k=1)(A=0) (p—p)]" (14267—5)

P E[14 (k= 1)(A=0)(¢ — w]"(1+ 26y — f)
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[o.¢]
ZZE:(X%-%Y%)—-Xb=:1—-XhfSl

So, f € SH;"Y B, f[w, k,a] and completed the first part of proof. Conversely, suppose that

fe SHA;gf,f[w,k,a]. Set

R+ (= D — ) — wI"(L+ 28y — B) .
A= 257 —a) - (1- &)1 - P) e k21 and
R+ (=D = ) — w]*(1+ 287 - )
o B (s (N =t

0<Xp<1(k>1)and0<Yp<1(k 0) We define
ngl—ZXk—ZYk and  Xo > 0.

Consequently we obtain equality as follows,

o0

f(2) =D [Xph(2) + Yige(2)]
k=0
and hence this completes the proof of Theorem 4.1. ]
REFERENCES

[1] Avci, Y. and Zlotkiewicz, E., (1990), On harmonic univalent mappings, Ann. Univ. Marie Curie-
Skolodowska Sect. A., 44, 1-7.

[2] Bostancy, H., Yalgin, S. and Oztiirk, M., (2007), On meromorphically harmonic starlike functions with
respect to symmetric conjugate points, J. Math. Anal. Appl., 328, 370-379.

[3] Clunie, J. and Sheil-Small, T., (1984), Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. Al.
Math., 9, 3-25.

[4] Jahangiri, J. M. and Silverman, H., (2002), Harmonic close-to-convex mappings, J. Appl. Math.
Stochast. Anal., 15, 23-28.

[5] Jahangiri, J. M., Kim, Y. C. and Srivastava, H. M., (2003), Consturiction of a certain class of harmonic
close-to-convex functions associated with the Alexander integral transform, Spec. Funct., 14, 237-242.

[6] Silverman, H., (1998), Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl.,
220, 283-289.



