SOME RESULTS ON A SUBCLASS OF HARMONIC MAPPINGS OF ORDER ALPHA

D.VAROL ${ }^{1}$, M.AYDOĞAN ${ }^{2}$, S. OWA ${ }^{3} \S$

Abstract. Let S_{H} be the class of harmonic mappings defined by

$$
S_{H}=\left\{f=h(z)+\overline{g(z)} \mid h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, g(z)=b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n}, b_{1}<1\right\}
$$

where $h(z)$ and $g(z)$ are analytic. Additionally

$$
f(z) \in S_{H}(\alpha) \Leftrightarrow\left|\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-\frac{1-\overline{b_{1}}}{1+\overline{b_{1}}}\right|<\left|\frac{1-\overline{b_{1}}}{1+\overline{b_{1}}}\right|-\alpha, \quad z \in \mathcal{U}, \quad 0 \leqslant \alpha<\frac{1-\overline{b_{1}}}{1+\overline{b_{1}}}
$$

In the present work, by considering the analyticity of the functions defined by R. M.
Robinson [7], we discuss the applications to the harmonic mappings.
Keywords: Harmonic Mappings, Subordination principle, Distortion theorem.
AMS Subject Classification: Primary 30C45, Secondary 30C55.

1. Introduction

Let $\mathcal{U}=\{z| | z \mid<1\}$ be the open unit disc in the complex plane \mathbb{C}. A complex-valued harmonic function $f: \mathcal{U} \rightarrow \mathbb{C}$ has the representation

$$
\begin{equation*}
f=h(z)+\overline{g(z)} \tag{1}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic and have the following power series expansion,

$$
\begin{gathered}
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \\
g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, \quad z \in \mathcal{U}
\end{gathered}
$$

where $a_{n}, b_{n} \in \mathbb{C}, n=0,1,2, \ldots$, choose i.e, $b_{0}=0$ so the representation (1) is unique in \mathcal{U} and is called the canonical representation of f.

[^0]For the univalent and sense-preserving harmonic mapping f in \mathcal{U}, it is convenient to make further normalization (without loss of generality), $h(0)=0$ (i.e. , $a_{0}=0$) and $h^{\prime}(0)=1$ (i.e. , $a_{1}=1$). The family of such functions f is denoted by $S_{H}[1]$. The family of all functions $f \in S_{H}$ with the additional property that $g^{\prime}(0)=0$ (i.e. , $b_{1}=0$) is denoted by $S_{H}^{0}[1]$. Observe that the classical family of univalent functions S consists of all functions $f \in S_{H}^{0}$ such that $g(z) \equiv 0$. Thus it is clear that $S \subset S_{H}^{0} \subset S_{H}$ [1] .

Let Ω be the family of functions $\phi(z)$ regular in \mathcal{U} and satisfying the conditions $\phi(0)=0$, $|\phi(z)|<1$ for all $z \in \mathcal{U}$.

Next, for arbitrary fixed real numbers $A, B,-1<A \leq 1,-1 \leq B<A$ denoted by $P(A, B)$, the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ regular in \mathcal{U} and such that $p(z)$ is in $P(A, B)$

$$
\begin{equation*}
p(z)=\frac{1+A \phi(z)}{1+B \phi(z)} \tag{2}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathcal{U}$. This class was introduced by Janowski W. [5].
Next, let $s_{1}(z)=z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ and $s_{2}(z)=z+d_{2} z^{2}+d_{3} z^{3}+\ldots$ be regular in \mathcal{U}. If there exists $\phi(z) \in \omega$ such that $s_{1}(z)=s_{2}(\phi(z))$ for all $z \in \mathcal{U}$, then we say that $s_{1}(z)$ is subordinated to $s_{2}(z)$ and denoted by $s_{1}(z) \prec s_{2}(z)$ and $S_{1}(\mathcal{U}) \subset S_{2}(\mathcal{U})$.

Finally, let $f=h(z)+\overline{g(z)}$ be an element of S_{H}. If f satisfies the condition

$$
\frac{\partial}{\partial \theta}\left(\operatorname{Arg} f\left(r e^{i \theta}\right)\right)=\operatorname{Re} \frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}>0
$$

then f is called harmonic starlike function. The class of such functions is denoted by $S_{H S}^{*}$. Also let $f=h(z)+\overline{g(z)}$ be an element of S_{H}. If f satisfies the condition

$$
\frac{\partial}{\partial \theta}\left(\frac{\partial}{\partial \theta}\left(\operatorname{Arg}\left(r e^{i \theta}\right)\right)\right)=\operatorname{Re}\left(\frac{z\left(z h^{\prime}(z)\right)^{\prime}-\overline{z\left(z g^{\prime}(z)\right)^{\prime}}}{z h^{\prime}(z)+\overline{z g^{\prime}(z)}}\right)>0
$$

then f is called convex harmonic function. The class of convex harmonic function is denoted by $S_{H C}$.
In this paper we will investigate the following subclass of harmonic mappings

$$
\begin{align*}
S_{H}(\alpha)=\{ & f=h(z)+\overline{g(z)}| | \frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-\frac{1-\overline{b_{1}}}{1+\overline{b_{1}}}\left|<\left|\frac{1-\overline{b_{1}}}{1+\overline{b_{1}}}\right|-\alpha,\right. \\
& \left.z \in \mathcal{U}, 0 \leq \alpha<\left|\frac{1-\overline{b_{1}}}{1+\overline{b_{1}}}\right|\right\} \tag{3}
\end{align*}
$$

For this investigation we will use the following lemma.
Lemma 1.1. ([5]) Let $\phi(z)$ be regular in the open unit disc \mathcal{U} with $\phi(0)=0$. Then if $\phi(z)$ attains its maximum value on the circle $|z|=r$ at z_{0}, then we can write $z_{0} . \phi^{\prime}\left(z_{0}\right)=k \phi\left(z_{0}\right)$ where k is real and $k \geq 1$.

2. Main Results

Theorem 2.1. Let $f=h(z)+\overline{g(z)} \in S_{H}(\alpha)$ with

$$
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

and

$$
g(z)=\sum_{n=2}^{\infty} b_{n} z^{n}, \quad\left(b_{1}=0\right)
$$

. If $f(z)$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left((n-\alpha)\left|a_{n}\right|+(n+2-\alpha)\left|b_{n}\right|\right) \leq 1-\alpha \tag{4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, then $f(z) \in S_{H}(\alpha)$.
Proof. Since $f(z) \in S_{H}(\alpha)$ is equivalent to

$$
\left|\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-1\right|<1-\alpha, \quad(z \in \mathcal{U})
$$

we have to show that the inequality (4) implies that

$$
\left|z h^{\prime}(z)-h(z)-\overline{\left(z g^{\prime}(z)+g(z)\right)}\right|<(1-\alpha)|h(z)+\overline{g(z)}| .
$$

It follows that

$$
\begin{aligned}
& (1-\alpha)|h(z)+\overline{g(z)}|-\left|z h^{\prime}(z)-h(z)-\left(\overline{z g^{\prime}(z)+g(z)}\right)\right|=(1-\alpha)\left|z+\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=2}^{\infty} \overline{b_{n}} \bar{z}^{n}\right| \\
& -\left|\sum_{n=2}^{\infty}(n-1) a_{n} z^{n}-\sum_{n=2}^{\infty}(n+1) \overline{b_{n}} \bar{z}^{n}\right| \\
& =(1-\alpha)|z|\left|1+\sum_{n=2}^{\infty} a_{n} z^{n-1}+\sum_{n=2}^{\infty} \overline{b_{n}} \bar{z}^{n-1} \overline{\bar{z}} \bar{z}\right|-|z|\left|\sum_{n=2}^{\infty}(n-1) a_{n} z^{n-1}-\sum_{n=2}^{\infty}(n+1) \overline{b_{n}} \bar{z}^{n-1} \bar{z} \bar{z}\right| \\
& =|z|\left\{(1-\alpha)\left|1+\sum_{n=2}^{\infty} a_{n} z^{n-1}+\sum_{n=2}^{\infty} \overline{b_{n}} \bar{z}^{n-1} \bar{z} \bar{z}\right|-\left|\sum_{n=2}^{\infty}(n-1) a_{n} z^{n-1}-\sum_{n=2}^{\infty}(n+1) \overline{b_{n}} \bar{z}^{n-1} \bar{z}\right|\right\} \\
& \geqslant|z|\left\{(1-\alpha)\left(1-\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n-1}-\sum_{n=2}^{\infty}\left|b_{n}\right||z|^{n-1}\right)\right. \\
& \left.-\left(\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right||z|^{n-1}+\sum_{n=2}^{\infty}(n+1)\left|b_{n}\right||z|^{n-1}\right)\right\} \\
& =|z|\left\{(1-\alpha)-\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right||z|^{n-1}-\sum_{n=2}^{\infty}(n+2-\alpha)\left|b_{n}\right||z|^{n-1}\right\} \\
& >|z|\left\{(1-\alpha)-\sum_{n=2}^{\infty}\left((n-\alpha)\left|a_{n}\right|+(n+2-\alpha)\left|b_{n}\right|\right)\right\} .
\end{aligned}
$$

Therefore, if the inequality (4) holds true, then we have that

$$
\left|z h^{\prime}(z)-h(z)-\overline{\left(z g^{\prime}(z)+g(z)\right)}\right|<(1-\alpha)|h(z)+\overline{g(z)}|
$$

which implies that $f(z) \in S_{H}(\alpha)$

Corollary 2.1. Let $f(z)$ satisfies

$$
\sum_{n=2}^{\infty}\left(n\left|a_{n}\right|+(n+2)\left|b_{n}\right|\right) \leq 1
$$

then $f(z) \in S_{H}(0)$.
Proof. If we take $\alpha=0$ in Theorem 2.1, then we have the result.
Definition 2.1. $f(z) \in C_{H}(\alpha) \Leftrightarrow\left|h^{\prime}(z)-\overline{g^{\prime}(z)}-\left(1-\overline{b_{1}}\right)\right|<\left|1-b_{1}\right|-\alpha$, $z \in \mathcal{U}$ for some $\alpha,\left(0 \leq \alpha<\left|1-\overline{b_{1}}\right|\right)$.

Theorem 2.2. If $f=h(z)+\overline{g(z)}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq\left|1-\overline{b_{1}}\right|-\alpha \tag{5}
\end{equation*}
$$

for some $\alpha,\left(0 \leq \alpha<\left|1-\overline{b_{1}}\right|\right)$, then $f(z) \in C_{H}(\alpha)$.
Proof. We note that

$$
\begin{aligned}
\left|h^{\prime}(z)-\overline{g^{\prime}(z)}-\left(1-\overline{b_{1}}\right)\right| & =\left|1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}-\overline{b_{1}}-\sum_{n=2}^{\infty} n \overline{n_{n}} \bar{z}^{n-1}-1+\overline{b_{1}}\right| \\
& =\left|\sum_{n=2}^{\infty} n a_{n} z^{n-1}-\sum_{n=2}^{\infty} n \overline{b_{n}} \bar{z}^{n-1}\right| \\
& =\left|\sum_{n=2}^{\infty} n z^{n-1}\left(a_{n}-\overline{b_{n}}(\bar{z} \bar{z})^{n-1}\right)\right| \\
& <|z| \sum_{n=2}^{\infty} n\left|a_{n}-\overline{b_{n}}\left(\frac{\bar{z}}{z}\right)^{n-1}\right| \\
& \leq|z| \sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \\
& <\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) .
\end{aligned}
$$

Corollary 2.2. If $f=h(z)+\overline{g(z)}$ satisfies

$$
\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq\left|1-\overline{b_{1}}\right|,
$$

then $f(z) \in C_{H}(0)$.
Proof. If we take $\alpha=0$ in Theorem 2.2, we have the result.
Theorem 2.3. $f=h(z)+\overline{g(z)} \in C_{H}(0)$ with $\operatorname{arga}_{n}=\operatorname{argb}_{n}=-n \pi$ for $n=2,3,4, \ldots$, then

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq 1-R e b_{1}-\alpha \tag{6}
\end{equation*}
$$

Proof. In Definition 2.3, we know that $f(z) \in C_{H}(\alpha)$ satisfies

$$
\operatorname{Re}\left(h^{\prime}(z)-g^{\prime}(z)\right)>\alpha, \quad z \in \mathcal{U}
$$

with $0 \leq \alpha<\left|1-\overline{b_{1}}\right|$.
Since $\arg a_{n}=\arg b_{n}=-n \pi$, we have that

$$
\begin{aligned}
\operatorname{Re}\left(h^{\prime}(z)-g^{\prime}(z)\right) & =\operatorname{Re}\left(1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}-b_{1}-\sum_{n=2}^{\infty} n b_{n} z^{n-1}\right) \\
& =1-\operatorname{Re} b_{1}+\operatorname{Re}\left(\sum_{n=2}^{\infty} n\left(a_{n}-b_{n}\right) z^{n-1}\right) \\
& =1-\operatorname{Re} b_{1}+\operatorname{Re}\left(\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| e^{-i n \pi} z^{n-1}\right) \\
& >\alpha
\end{aligned}
$$

for all $z \in \mathcal{U}$.
Let us consider a point $z=|z| e^{i \pi}$. Then we have that

$$
\begin{aligned}
\operatorname{Re}\left(h^{\prime}(z)-g^{\prime}(z)\right) & =1-\operatorname{Re} b_{1}+\operatorname{Re}\left(\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right||z|^{n-1} e^{-i \pi}\right) \\
& =1-\operatorname{Re} b_{1}-\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right||z|^{n-1} \\
& >\alpha
\end{aligned}
$$

for $|z|>1$. Therefore, letting $|z| \rightarrow 1$, we see that

$$
1-R e b_{1}-\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \geqslant \alpha
$$

for $f(z) \in C_{H}(\alpha)$. This completes the proof of the theorem.
Corollary 2.3. If $f=h(z)+\overline{g(z)} \in C_{H}(0)$ with $\operatorname{arga}_{n}=\operatorname{argb}_{n}=-n \pi$ for $n=2,3,4, \ldots$, then

$$
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq 1-R e b_{1}
$$

Proof. If we take $\alpha=0$ in Theorem 2.3, we have the result.
Corollary 2.4. If $f=h(z)+\overline{g(z)} \in C_{H}(\alpha)$ with $\operatorname{arga}_{n}=\operatorname{argb}_{n}=-n \pi$ for $n=2,3,4, \ldots$, then

$$
\left|a_{n}-b_{n}\right| \leqslant \frac{1}{n}\left(1-R e b_{1}-\alpha\right), \quad n=2,3,4, \ldots
$$

Proof. It is a simple consequence of Theorem 2.3.

References

[1] Clunie and T. Sheil-Small, Harmonic Univalent functions, Annales Academiae Scientiarum Fennicae, Series A, Vol. 9, pp. 3-35, (1984).
[2] Duren, P. , Harmonic Mappings in the Plane, Vol. 156 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge UK, (2004).
[3] Goodman A. W. , Univalent Functions, Volume I and Volume II, Mariner publishing Company INC, Tampa Florida, (1983).
[4] R.J. Libera, Some Radius of Convexity Problem, Duke Math. J.31(1964) 143-157.
[5] W. Janowski, Some extremal problems for certain families of analytic functions I, Annales Polinici Mathematici 27, (1973), 298-326.
[6] M. A. Nasr and M. K. Aouf, Starlike functions of complex order, Jour. of Natural science and Mathematics vol. 25, No.1, (1985), 1-12.
[7] Robinson, R. M . , Univalent majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35.

[^0]: ${ }^{1}$ Department of Mathematics, Işık University, Meşrutiyet Koyu, Şile İstanbul, Turkey e-mail: durdane.varol@isik.edu.tr
 ${ }^{2}$ Department of Mathematics, Işık University, Meşrutiyet Koyu, Şile İstanbul, Turkey e-mail: me like.aydogan@isikun.edu.tr
 ${ }^{3}$ Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan, e-mail: shige21@ican.zaq.ne.jp
 § Submitted for GFTA'13, held in Işık University on October 12, 2013. TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

