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Abstract

Univariate decision tree algorithms are widely used in Data Mining because (i) they
are easy to learn (ii) when trained they can be expressed in rule based manner.
In several applications mainly including Data Mining, the dataset to be learned is
very large. In those cases it is highly desirable to construct univariate decision trees
in reasonable time. This may be accomplished by parallelizing univariate decision
tree algorithms. In this paper, we first present two different univariate decision
tree algorithms C4.5 and univariate Linear Discriminant Tree. We show how to
parallelize these algorithms in three ways: (i) feature based, (ii) node based (iii) data
based manners. Experimental results show that performance of the parallelizations
highly depend on the dataset and the node based parallelization demonstrate good
speedups.

1 Introduction

Univariate Decision trees are one of the most widely used classification model
in Data Mining. First ID3 algorithm based on discrete features appeared then
in C4.5[12] it is expanded to include continuous features. Constructing a uni-
variate decision tree has time complexity of roughly O(dfN logN), where N is
the total sample size, f is the number of features and d is number of nodes in
the tree. In data mining applications, the sample size tends to be very large.
So constructing decision trees in parallel manner became an important fact.

Parallel construction of univariate decision trees can be divided into two
groups. Proposing parallel decision tree algorithms and parallel formulations
of existing algoritms.
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SLIQ[6] is a univariate parallel decision tree classifier that can handle both nu-
meric and continuous attributes. By using a pre-sorting technique in a breadth-
first tree-growing phase, it is able to classify disk-resident datasets. SLIQ also
introduced a new tree-pruning algorithm. Since pruning phase of the decision
trees takes much smaller time than tree growing phase, we will not consider
the time used in tree pruning in our discussions.

SPRINT[13] extends the idea of SLIQ by addressing the problems with it.
Although SLIQ uses the entire dataset to build the tree, it requires data,
which is directly proportional to the number of features in the dataset to stay
in memory all the time. This limits the amount of data that can be classified
by SLIQ. SPRINT is intended to remove these memory restrictions.

Kufrin[5] proposed a data distributed parallel formulation of C4.5 algorithm.
He mentioned that, since we only use sorting to gather the frequency statistics
from data, we can also perform concurrent sorts on each processor. Frequency
statistics for each local candidate split point is evaluated and shared with
other processors to get the best split at each node.

Jin and Agrawal[4] proposed a new decision tree construction algorithm called
SPIES, in which the number of possible split points is limited by taking a sam-
ple from the data set, partitioning the values into intervals and computing the
class histograms for candidate split points. This reduces the space complexity
of the algorithm and the communication cost between processors. They par-
allelized this algorithm using the FREERIDE framework and obtained nearly
linear speedups.

Srivastava et al.[14] described two parallel formulations in their paper. Syn-
chronous Tree Construction Approach and Partitioned Tree Construction Ap-
proach. They discuss the advantages and disadvantages of these two approaches
and propose a hybrid methodology. In syncronous tree construction approach,
all processors construct a decision tree synchronously by sending and receiving
class distribution information of local data. In partitioned tree construction
approach, different processors work on different parts of the classification tree,
whenever feasible. The hybrid approach they proposed, starts and continues
with the first approach as long as the communication cost of the approach is
not high. Once this cost is high they switch to the second approach.

In this paper we give and compare the performances of the three different
formulations of two different univariate decision tree construction algorithms.
C4.5 and the univariate version of Linear Discriminant Trees[15]. In Section
2 we give serial formulations of these two algorithms. Three different parallel
formulations are explained in Section 3. Hardware and software platforms
used in the experiments and the descriptions of the datasets are detailed in
Section 4. Section 5 presents experiments and discussion on the results of these
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experiments. We conclude in Section 6.

2 Serial Formulations

In this section, we explain two univariate decision tree algorithms C4.5 and
LDT. Since each algorithm does the same job at each decision node, we give
the algorithms for a single node n. Each node works on an instance space
of x. Each instance of the space x has f features, which can be discrete or
continuous.

If the best split is found at node n, both algorithms create two or more child
nodes. The instances of node n are also distributed to child nodes according
to the best split. Figure 1 gives the pseudocode of this child node creation.

CREATE CHILDREN(Node n, Instances x, bestfeature)
if bestfeature discrete

Partition instances x into k groups, k is the
number of all possible values of the bestfeature
Split node n into k child nodes

endif

if bestfeature continuous
Partition instances x into 2 groups
Split node n into 2 child nodes

endif

Fig. 1. Creating Child Nodes

2.1 C4.5

Original serial C4.5 algorithm is given in Figure 2. Finding best split differs
in discrete and continuous features. There is one possible split for discrete
feature, whereas in continuous features there are as many split points as the
number of samples in that node. The split points are compared according
to the information gain they provide[11]. Quinlan takes the famous entropy
formula of Information Theory, which is the minimum number of bits to encode
the classification of an arbitrary member of a collection S. The information
gain of node n is

c∑

i=1

−pilog2pi (1)
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C45(Node n, Instances x, Features f)
for each feature i in f

if fi discrete
Calculate information gain gi
if gi < bestgain

bestgain = gi
bestfeature = i

endif

endif

if fi continuous
Sort x
for each different value j of fi

Calculate information gain gij
if gij <bestgain

bestgain = gij
bestfeature = i

endif

endfor

endif

endfor

CREATE CHILDREN(n, x, bestfeature)
Call C45 for each child node

Fig. 2. C4.5 Algorithm

where pi is the occuring probability of class i at node n. The information gain
of a split is then calculated by taking the weighted average of the information
gains of the child nodes.

By sorting with respect to the values of the instances for a feature, we can
evaluate all possible split points using the information gain formula in one
pass. Since sorting values takes O(N logN) by using Quicksort algorithm and
making one pass to evaluate all possible split points takes O(N) time, the
bottleneck of the C4.5 algorithm is the sorting phase.

2.2 LDT

Pseudocode of the LDT algorithm is given in Figure 3. This algorithm works
the same as C4.5 for discrete features. For continuous features, finding the best
split via Fisher’s Linear Discriminant Analysis (LDA)[2] is done as a nested
optimization problem. In the inner optimization problem, Fisher’s linear dis-
criminant finds a good split for the given two distinct groups of classes. In the
outer optimization problem, Exchange Method [15] is used to divide K classes
into two groups.
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LDT(Node n, Instances x, Features f , Classes c)
for each feature i in f

if fi discrete
Calculate information gain gi
if gi < bestgain

bestgain = gi
bestfeature = i

endif

endif

if fi continuous
Find best split point using LDA
and exchange method
Calculate information gain gi
if gi < bestgain

bestgain = gi
bestfeature = i

endif

endif

endfor

CREATE CHILDREN(n, x, bestfeature)
Call LDT for each child node

Fig. 3. LDT Algorithm

Assuming the data is normally distributed, one dimensional LDA reduces to
a second order equation

ax2 + bx+ c = 0 (2)

and the two candidate best split points are the roots of that equation, where

a= s2L − s2R

b=2(mLs
2

R −mRs
2

L)

c=(mRsL)
2
− (mLsR)

2 + 2s2Ls
2

R log
nLsR

nRsL
(3)

mL, mR are the means and sL, sR are the standard deviations of the feature i
of the left and right class groups. nL and nR are the number of data that are
assigned to the left and right class groups respectively.

If the two groups have the same variance, there is only one root. If the variances
are different, there are two roots and the one which is between the two means
is used. If neither of the two roots is between the means nor there are no roots
of the quadratic equation, the middle point of two means is chosen as the split
point.
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Since we need one pass over the data to find the mean and variance of two
groups, complexity of the LDT algorithm is O(N) for inner optimization. If
we make l passes in the outer optimization problem, the complexity of finding
best split for a single feature will be O(lN).

3 Parallel Formulations

3.1 Feature Based Parallelization

For each feature, we do the same operations to find the best split, therefore
we can easily parallelize the job at each node by distributing the features
to the slave processors. Figure 4 gives the pseudocode of this idea. We first
send the features and the data they will process to the slave processors. In
the slave processors part, they find the best splits (si) and the best gains (gi)
for each feature fi. After those calculations, the best splits and information
gains are sent to the host processor, where by taking the smallest of these best
information gains, we can find the overall best split.

FParallel(Node n, Instances x, Features f)
for each feature i in f

Submit fi and n to slave processor
endfor

for each feature i in f

Receive best split si and gain gi
of feature fi from slave processor

endfor

bestfeature = argmini gi
bestsplit = sbestfeature
CREATE CHILDREN(n, x, bestfeature)
Call FParallel for each child node

Fig. 4. Feature Based Parallelization

The advantage of feature based parallelization is its simple implementation.
Since we have the serial codes of LDT and C4.5 for each feature, we can easily
plug that code into the slave processors to find best split for one feature.

According to the dataset we have, the performance of feature based paral-
lelization may change. For example, if we have a dataset that contains only
discrete features, both LDT and C4.5 reduce to the same algorithm. Since
finding the information gain of a discrete feature has a time complexity of
O(N), the load balance will be good.
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If there are two classes in the dataset, we do not need a method to divide
classes into two groups. So l = 1 (number of iterations of exchange method)
and LDT will have a time complexity of O(N) for that feature. In that case,
processing discrete and continuous features will have the same complexity and
slave processors will have same load. In the case of continuous features, C4.5
will have the same load at each continuous feature but has a significantly
large load over discrete features (O(NlogN) instead of O(N)). If there are
more than two classes in the dataset, the time complexity of finding best
split for a continuous feature will be O(lN). Since dividing classes into two
class groups may differ from one feature to another feature, the load of slave
processors will be imbalanced.

3.2 Node Based Parallelization

As explained above, decision tree construction is done recursively at each
decision node. So why not distribute decision node’s to processors? Figure 5
shows the pseudocode for node parallelization. We use a queue for handling
current unexpanded nodes. If there are nodes in the queue, we dequeue them
from the queue and send to the slave processor(s) to find the best split for
that node. Since LDT and C4.5 algorithms are defined for a single node, each
slave processor can call those serial codes to find the best split for that node.
After expanding the node(s), produced child nodes are put into the queue
to be processed later. Algorithm terminates, when there are no nodes in the
queue to be expanded.

NParallel(Instances x, Features f)
Queue q = Emptyqueue
Enqueue(q, RootNode)
while (Not Empty(q))

Node = Dequeue(q)
Submit Node with its instances to slave processor
Receive best split and bestfeature
of Node from slave processor
CREATE CHILDREN(Node, Node.instances, bestfeature)
Enqueue(q, Node.child nodes)

endwhile

Fig. 5. Node Based Parallelization

Node based parallelization requires the smallest time for communication be-
tween host and slave processors. For a single node there is only one message
passing, in which host processor sends the instances for that node. Like the fea-
ture based parallelization, its implementation is simple, only queue processing
should be handled.

7



If the decision tree is small, processing time of the root node takes a significant
amount of time, compared to the whole tree generation. In that case, since
we only have one processor job in the starting phase all but one processors
will wait the single processor to complete its process. Second disadvantage
of the node based parallelization is the complexity of finding the best split
significantly drops in the deeper nodes, because small instances sets come
to those nodes. In such cases, the load imbalance may occur between slave
processors.

3.3 Data Based Parallelization

We can also divide data into K parts, where we have K processors. At each
node of the decision tree, for each feature fi, we send divided data to the
corresponding processors. The slave processors handle the data and return
frequency statistics to the host processor. Since the continuous feature phase
of LDT and C4.5 algorithm differs, we need different parallelizations for two
algorithms. The pseuodocodes of these two parallelizations are given in Figures
6 and 7.

DParallelC45(Instances x, Feature fi)
Send x and fi to each slave processor
Sort x in each slave processor
Receive possible split points from slave processor(s)
Determine the minimum of them
Send the minimum to the slave processor(s)
Receive the frequency statistics from slave processor(s)
Slave processor(s) update their iterator(s) if necessary
Calculate information gain gi for that split point
from the gathered frequency statistics
Compare gi with bestgain and update if former is better
Goto above to receive again possible split points

Fig. 6. Data Based Parallelization of C45

In the data parallel version of C4.5, first the instances in the slave processors
are sorted in O(N

k
log(N

k
)) time using Quicksort. After sorting, each slave pro-

cessor sets its iterator to show the first instance. At each step, slave processors
send the values their iterators point to, to the host processor, which selects the
minimum of them as the split point. Host processor sends the split point to
slave processors. After getting the split point, slave processors send frequency
statistics of this split point to the host processor. By frequency statistics, we
mean total number of elements, those have a feature value smaller or equal
to the split point, for each class. By using gathered frequency statistics, host
processor can now determine the goodness of the split. Before continuing with
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the next step, each slave processor updates such that its iterator points to the
next feature value.

DParallelLDT(Instances x, Feature fi)
Send x and fi to each slave processor
for each possible class partition CL, CR

Send class partition to the slave processor(s)
Receive frequency statistics of that partition
Determine the performance of the partition

endfor

Find the best split point using best class partition
Send the split point to slave processor(s)
Receive frequency statistics from slave processor(s)
Find information gain of the feature fi using

gathered frequency statistics

Fig. 7. Data Based Parallelization of LDT

Figure 8 shows a sample execution of parallel version of LDT using 3 slave
processors. One important point is that we do not have to sort instances in
slave processors in LDT. In step I, each slave processor sends the sum of its
feature values of each class to the host processor. In step II, using these sums,
host processor easily finds the means of the left and right class groups. The
means are sent to the slave processors. In step III, using group means, slave
processors find the sum of squares of the differences between the feature values
and means. The sums are sent to host processor. In step IV, using the sums,
host processor first calculate the standard deviations, coefficients of the second
order equation, and roots of that equation. With the roots of the quation, LDT
finds the best split point and sends it to the slave processors. In step V, slave
processors calculate the frequency statistics for the best split point and send
them to host processor. In step VI, host processor finds the goodness of the
split using gathered frequency statistics.

The advantage of data based parallelization is its potential for scalability. The
datasets in Data Mining usually have large number of instances. Distributing
these instances to slave processor(s) equally, makes data base parallelization
scalable. Feature based parallelization needs large number of features in a
dataset to scale well, which does not occur frequently in Data Mining Appli-
cations. Node based parallelization needs a large tree to scale well.

The communication cost of data parallelization is much higher compared to
both feature based parallelization and node based parallelization.

Second disadvantage of data based parallelization is load imbalance between
slave processor(s). Even though each processor started with the same number
of training instances at the root node, in deeper nodes the number of training
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Fig. 8. Sample execution of Data Parallelization of LDT

instances belonging to the nodes can vary substantially among processors. For
example, processor 1 might have all training instances of a node A, whereas
none of node B; processor 2 might have all training instances of the node B,
whereas none of node A. When A is selected to expand, processor 1 will do
all the job and processor 2 will do nothing and similarly when B is selected to
expand, processor 2 will do all the job and processor 1 will do nothing.

4 Experimental Details

4.1 Specifications

In our experiments we use a Beowulf cluster with 24 processors[3]. Each node
of the cluster has a Pentium II 400 Mhz processor with 512 KB Cache, 128
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Table 1
Descriptions of the datasets

Set Class Size Discrete Continuous Missing

Aibocolor[1] 8 250000 0 3 No

Census[8] 2 100000 33 6 Yes

Face[9] 40 400 0 4096 No

MB RAM and an Intel EtherExpress Pro/100+ Network Adapter. All the
nodes are connected on HP Procurve 4000M Fast Ethernet Switch. We have
Linux 2.2.12 Kernel and Redhat 6.1 distribution on each node. The parallel
programs are coded using MPI parallel programming library[7] and compiled
using GNU C compiler.

4.2 Datasets

Since the datasets in UCI Machine Learning Repository are small either in
sample size or feature size, we get three different datasets from different re-
sources. Attributes of the datasets are given in Table 1. To test all three types
of parallelizations, for feature based, we get a dataset with a large number
of attributes (Face), for node based, we get a dataset with a large tree size
(Aibo), for data based we get datasets with large number of data (Aibo, Cen-
sus). Since LDT behaves differently according to the number of classes, we
take one dataset with two classes (Census) and two others with large number
of classes (Aibo, Face). The performance difference between continuous and
discrete features will be tested on the (Census) dataset, which has continuous
and discrete features.

5 Results

In our experiments, we want to check the speedup of the three types of par-
allelizations of LDT and C4.5. A linear speedup curve is the best possible
output, meaning the computational load is perfectly distributed among the
processors and adding new processors to the system results in the expected
gain. LDT and C4.5 algorithms are parallelized as node based, feature based
and data based manner. We expect that on a data set with high dimensional-
ity, feature based parallelization would have the highest speedup because the
load would be balanced among slave processors. Similarly, data based paral-
lelization would give the best results on a data set with too many instances,
and node based parallelization, on a data set which has the largest decision
tree. The ideal case of linear speedup curve mentioned above is obtained when
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Fig. 9. The speedup curves on Aibocolor dataset for Feature Based, Node Based and
Data Based parallelizations of LDT and Feature Based parallelization of C4.5

the load balancing is perfect and the communication burden between the pro-
cessors is minimum.

For each of these six types of parallelizations, we performed simulations using
1 master processor and a range of slave processors from 1 to 7. The master
processor distributes the jobs and collects the statistics, i.e. does no actual
data processing. Every processor has its own copy of the data set and the
master processor only sends the indices of the instances when it needs to
distribute data to the slaves. We record the time to create a decision tree.
Since one run will not be appropriate, we made 10 fold cross-validations for
each experiment and took the average time. For feature based parallelization,
since Aibo dataset has only 3 features, we used maximum 3 slave processors
for that dataset.

Figure 9 shows the speedup curves of different parallelizations on Aibocolor

dataset. Since Aibocolor dataset has 3 features, Feature Based parallelizations
can be done at max for three slave processors. Here C4.5 has larger speedup
than LDT. Since Aibocolor dataset has more than 2 classes, at different features
LDT may work differently (l values may differ because of Exchange Method).
On the other hand, C4.5 will behave similarly at each feature. NodeBased
Parallelization of LDT has the largest speedup on this dataset.

Figure 10 shows the speedup curves of different parallelizations on Face dataset.
Face dataset has many features and the tree generated is not so large, because
of this, Feature Based parallelizations have better speedups than Node Based
parallelizations. Like above, the number of classes are more than 2, so LDT
needs exchange method in separating those classes into two optimal subgroups.
For each feature, the exchange method is done separately. Therefore the num-
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Fig. 11. The speedup curves on Census dataset for for Feature Based and Node
Based parallelizations of LDT

ber of exchanges so the load will be different than the other features. Because of
this load imbalance, Feature Based parallelization of LDT has worse speedup
than Feature Based parallelization of C4.5.

Figure 11 shows the speedup curves of different parallelizations on Census

dataset. Census dataset is a mixed type of dataset, 33 of the features are
discrete and 6 of the features are numeric. In LDT, finding the best split for
a discrete feature is very different from finding the best split for a numeric
feature in terms of cost and adding to this, in Feature Based paralelization,
the features are distributed among the processors (some of them may get a
discrete feature, some of them may get a numeric feature). Therefore, the
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load is imbalanced among processors and Feature Based parallelization shows
bad speedups in Census dataset. On the other hand, the number of nodes
generated in Census dataset is very large, so NodeBased Parallelization of
LDT has larger speedup on this dataset.

6 Conclusion

Recently, as the Data Mining applications became more widespread and the
processing power of computers increased significantly, the expectations from
Data Mining algorithms grew high accordingly. The algorithms require to pro-
cess large data sets very quickly, mostly in real-time. For example, biometric
systems, with the high attention they draw in recent years, have to be fast
and robust. They need to be trained on large data sets containing diverse and
noisy conditions. These data sets also have very high dimensionality.

In this paper, we proposed parallel implementations of two univariate decision
tree algorithms (C4.5 and Linear Discriminant Tree). The algorithms are par-
allelized by distributing the features, the data or the nodes among the slave
processors. We presented detailed complexity analyses for these implementa-
tions. Theoretically, feature based parallelization would have a high speedup
on a data set with high dimensionality, data based parallelization on a data set
with too many instances and node based parallelization on a data set which
has a tree with a high number of nodes when discriminated by the serial de-
cision tree. But, this requires perfect load balancing. In our simulations, we
roughly observed this tendency, but which parallelization performs the best
on a data set and how much speedup it demonstrates depend on how well the
load is distributed among slave processors. That depends on the data set.
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