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STOCHASTIC COST EFFICIENCY EVALUATION OF A SUPPLY

CHAIN

M. MIRBOLOUKI1, §

Abstract. The main goal of the paper is a consideration of cost efficiency evaluation
models related to some supply chain when dealing with imprecise data. Data envelopment
analysis (DEA) method is a non-parametric mathematical programming approach to
assess the performance. This method is proposed for deterministic data and it can
be generalized to inaccurate data, while considering real world applications. Here we
consider data as random variables and after reviewing and introducing new models to
evaluate cost efficiencies related to the special circumstances of the supply chain using
DEA, these models are developed to probabilistic form. Also, deterministic and linear
equivalents are proposed using the symmetric error structure of normal distributions. At
final, by a numerical example, the proposed models are examined to show relationships
of results.
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1. Introduction

Farrell (1957) laid the foundation to measure efficiency and productivity studies at
the micro level. His contribution highlighted new insights on two issues: how to define
efficiency and productivity, and how to calculate the benchmark technology and efficiency
measures. Using Farrell idea, Charnes et al. (1978) by introducing the CCR model,
suggested a mathematical technique for evaluating the relative technical efficiency of a
set of Decision Making Units (DMUs) with the common set of inputs and outputs. This
technique is well known to Data Envelopment Analysis (DEA). Besides technical efficiency,
cost efficiency is the other measure of DEA that evaluates the ability of a DMU to produce
the current outputs at minimal cost when the prices of inputs are at hand. Cost efficiency
was first introduced by Farrell (1957), and then developed by Fre et al. (1985). Tone
(2002) pointed out the shortcomings of the cost efficiency measures in the presence of
price differences between the DMUs. To overcome this limitation, he relaxed the fixed
price assumption and proposed the assessment of the DMUs in the cost space. The
assumption of DEA was based on the exact data, but in the real word, because of some
conditions such as the financial crisis and social conditions, usually data are imprecise
and performance evaluation by usual methods in the presence of inaccurate data may
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lead to errors in decision making process and conventional DEA cannot easily measure
the performance. Considering the necessity to use random data in practical applications,
several researchers have extended ordinal DEA models to stochastic concepts. Thore
(1987) initiated a series of efforts directed to chance-constrained programming with DEA
as a method for dealing with random data in DEA. Cooper et al. (1996) extended DEA
models with inputs and outputs as normal random variables. Also, they defined stochastic
efficient DMU. Li (1998) and Huang and Li (2001) defined the efficiency dominance of
a DMU via probabilistic comparisons of inputs and outputs with other DMUs which
are assessed by solving a chance constrained programming problem. After that Olesen
(2002), Cooper et al. (2004), Khodabakhshi and Asgarian (2008) and Hosseinzadeh Lotfi
et al. (2012) have provided some DEA models with random data. In conventional
Data Envelopment Analysis, DMUs are generally treated as a black-box in the sense
that internal structures are ignored, and the performance of a DMU is assumed to be
a function of a set of chosen inputs and outputs. A significant body of work has been
directed at problem settings where the DMU is characterized by a multistage process;
supply chains and many manufacturing processes take this form. Recent DEA literature
on serial processes has tended to concentrate on closed systems, that is, where the outputs
from one stage become the inputs to the next stage, and where no other inputs enter
the process at any intermediate stage. To estimate the efficiency of such systems, several
authors proposed network DEA models Fre and Grosskopf (2000) proposed a Network
DEA model for measuring efficiency for DMUs with multiple production stage. Seiford
and Zhu (1999) and Chen and Zhu (2004), provide two approaches in modeling efficiency
as a two-stage process. Liang et al. (2006) identified the efficiency of supply chain and
its members through one DEA model. Chen and Yan (2011) proposed the Network DEA
models for measuring efficiency of supply chain, which is based on a radial network DEA
model under three mechanisms: centralized, decentralized and mixed.

The main goal of this paper is a consideration of cost efficiency evaluation models
related to centralized and decentralized supply chain models when dealing with imprecise
data. Here we consider data as random variables and after reviewing and introducing
new models to evaluate cost efficiency related to the special circumstances of the supply
chain using DEA, these models are developed to probabilistic form. Also, deterministic and
linear equivalents are proposed using the symmetric error structure of normal distributions.
At final, by a numerical example, the proposed models are examined to show relationships
of results.

The remainder of the paper is organized as follows. The next section briefly introduces
the method of DEA and efficiency evaluation of supply chain. Then proposed models in
stochastic area are presented in section3. The model is then illustrated by an example in
this section. Also, Conclusions are provided in the last section.

2. Preliminaries

In this section, first, CCR model in evaluating the technical efficiency and the cost
efficiency model is introduced. After that, the centralized and decentralized models of
Chen and Yan (2011) in technical supply chain efficiency evaluation are presented.

2.1. cost efficiency. Data Envelopment Analysis (DEA) was introduced by Charnes et
al. (1978), CCR henceforth for short. They developed the piece-wise-linear convex hull
approach to frontier estimation proposed by Farrell (1957) in a model which has an input
orientation and assumes constant returns to scale, in the following CCR model. Subse-
quent papers have considered alternative sets of assumptions, such as variable return to
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scale (VRS) and output orientation (Banker et al., 1984). The originally suggested input
oriented CCR is formulated as:

min θ
s.t.

∑n
j=1 λjxij ≤ θ xio, i = 1, ...,m,∑n
j=1 λjyrj ≥ yro, r = 1, ..., s,

λj ≥ 0, j = 1, ..., n.

(1)

where θ is a scalar, λ = (λ1, λ2, ..., λn)is a n×1 vector of constants, yrj is the rth output for
a DMUj , r = 1, ..., s, j = 1, ..., n. Also, xij is the ith input for the DMUj , i = 1, ...,m. The
value of θobtained will be the technical efficiency score for the oth DMU where 0 ≤ θ ≤ 1.
A DMU is called efficient if the related optimal θ equals 1.
Besides technical efficiency, cost efficiency is the other measure of DEA that evaluates
the ability of a DMU to produce the current outputs at minimal cost when the prices
of inputs are at hand. Farrell first introduced the concept of cost efficiency underlying a
DEA assessment (1957). Fare et al. (1985) operationalized cost efficiency measures based
on the Farrell concept in the DEA literature. Their model is the following linear problem:

min
∑m

i=1 cixi
s.t.

∑n
j=1 λjxij ≤ xi, i = 1, ...,m,∑n
j=1 λjyrj ≥ yro r = 1, ..., s,

λj ≥ 0, j = 1, . . . , n.

(2)

where ci is the unit cost of the input iwhich is the benchmark projection that can be
different from one DMU to another. The minimization problem is calculated for each
DMU of the sample, thus identifying for each a benchmark combination of inputs and
cost.
Based on an optimal solution (x∗, λ∗) of model (2), the cost efficiency of DMUo is defined
as

CEo =
cx∗

cxo
(3)

where CEo is the ratio of minimum cost to observed cost to the oth firm.

2.2. Supply chain efficiency evaluation. A supply chain is in the form of a network
with multiple divisions and relationships. The supply chain performance measurement
that only considers the initial inputs and the final outputs is generally inadequate since
it ignores the interactions among the divisions. To measure the supply chain performance
properly, it is necessary to explore the complex internal structure and emphasize the
interrelated nature in a supply chain. Here the centralized and decentralized models
of Chen and Yan (2011) are introduced. They incorporated the interactions in supply
chain and developed different DEA models under the concept of centralized, decentralized
and mixed organization mechanism respectively for supply chain performance evaluation.
Supply chain efficiency is referring to technical efficiency.
Now consider a set of two stage supply chain with one supplier and two manufacturers, as
DMUs. The structure of DMUo is portrayed in Fig. 1.

If all divisions are controlled by a single decision maker with access to available in-
formation, this refers to a centralized supply chain control. If each division has its own
incentive and strategy, and there does not exist such a ”super decision maker” to control
all divisions, this is characterized as decentralized control supply chain. Then by Chen
and Yan (2011), the technical efficiency evaluation models in centralized and decentralized



M. MIRBOLOUKI: STOCHASTIC COST EFFICIENCY EVALUATION OF A SUPPLY ... 129

Figure 1. Supply chain

mechanisms are as follows:
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and
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3. Stochastic cost efficiency of the supply chain

In this section we first review the chance constrained stochastic CCR model and its
deterministic and linear programming equivalent. Next, the stochastic cost efficiency of
the multiple stage supply chain in centralized and decentralized mechanisms is presented.

3.1. Stochastic CCR model. Let us assume that x̃j = (x̃1j , ..., x̃mj) and ỹj = (ỹ1j , ..., ỹsj)
are the stochastic input and output vectors for DMUj , in a way that each element of these
vectors is a random variable with normal distribution and the following specified or esti-
mated parameters:

x̃ij = xij + aij ε̃ij , i = 1, ...,m,

ỹrj = yrj + brj ξ̃rj , r = 1, ..., s.
(6)

where aijand brjare nonnegative real values. Also, ε̃ij and ξ̃rj are the error terms which
are random variables with standard normal distributions. Since normal distribution is
symmetric, then the structure in expression (6) is named symmetric error structure.



130 TWMS J. APP. ENG. MATH. V.6, N.1, 2016

Assume that the ith input of every DMUs is interrelated. Similarly, assume rth output of
every DMUs is interrelated, too. i.e. for every j 6= k,

Cov(x̃ij , x̃ik) = 0, i = 1, ...,m,
Cov(ỹrj , ỹrk) = 0, r = 1, ..., s.

(7)

Now consider the chance constraint CCR model as:

min θ

s.t. P
(∑n

j=1 λj x̃ij ≤ θx̃io
)
≥ 1− α, i = 1, ...,m,

P
(∑n

j=1 λj ỹrj ≥ ỹro
)
≥ 1− α, r = 1, ..., s,

λj ≥ 0, j = 1, ..., n.

(8)

where in the above model, P means “probability” and α is a level of error between 0
and 1. Model (8) can be converted to a deterministic and linear programming applying
symmetric error structure and independent properties (6) and (7) as the following model
(refer to Behzadi and Mirbolouki, 2012):

min θ
s.t.

∑n
j=1 λjxij − Φ−1(α)σ̄(p+i + p−i ) ≤ θxio i = 1, ...,m,∑n
j=1 λjyrj + Φ−1(α)σ̄(q+r + q−r ) ≥ yro, r = 1, ..., s,∑n
j=1 λjaij − θaio = p+i − p

−
i , i = 1, ...,m,∑n

j=1 λjbrj − bro = q+r − q−r , r = 1, ..., s,

λj , p
+
i , p

−
i , q

+
r , q

−
r ≥ 0, ∀j,∀i,∀r

(9)

In the above model, Φ is the cumulative distribution function of the standard normal
distribution.

3.2. Stochastic cost efficiency of supply chain. First, using symmetric error struc-
ture, the stochastic cost efficiency model related to the stochastic version of the model (2)
is presented to compare with the efficiency of the supply chain. This model is:

min
∑m

i=1 cixi
s.t.

∑n
j=1 λjxij − Φ−1(α)(p+i + p−i ) ≤ xi, i = 1, ...,m,∑n
j=1 λjyrj + Φ−1(α)(q+i + q−i ) ≥ yro, r = 1, ..., s,

p+i − p
−
i =

∑n
j=1 λjaij , i = 1, ...,m,

q+i − q
−
i =

∑n
j=1 λjbrj − bro, r = 1, ..., s,

λj ≥ 0, j = 1, . . . , n.

(10)

Here, the stochastic cost efficiency is defined by the below formulation:

Ẽo
c =

∑m
i=1 cix

∗
i∑m

i=1 ci(xio + 3aio)
(11)

where (xio+3aio) is the upper bound of 6σ interval and it is used to increase the probability

of Ẽo
c ≤ 1. It must be noted that by this definition, almost always Ẽo

c < 1. Therefore,
there is not any number to show a stochastic efficient DMU, similar in deterministic form.
Now consider a multiple stage supply chain, including one supplier and k manufacturer
with the following stochastic symmetric structure data:

x̃ij = xij + aij ε̃ij , i = 1, ...,m,

ỹtlj = ytlj + btlj ξ̃
t
lj , l = 1, ..., Lk, t = 1, ..., k,

z̃trj = ztrj + fkrj ζ̃
t
rj , r = 1, ..., Sk, t = 1, ..., k.
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Thus, the chance constrained model related to cost efficiency of supply chain within the
centralized mechanism can be obtained by the following model:

min
∑m

i=1 cixi

s.t. P
{∑n

j=1 µj x̃ij ≤ xi
}
≥ 1− α, i = 1, ...,m,

P
{∑n

j=1 µj ỹ
t
lj ≥

∑n
j=1 λ

t
j ỹ

t
lj

}
≥ 1− α, t = 1, ..., k, l = 1, ..., Lk,

P
{∑n

j=1 λ
t
j z̃

t
rj ≥ z̃tro

}
≥ 1− α, t = 1, ..., k, r = 1, ...., Sk,

µj ≥ 0, j = 1, ..., n,
λtj ≥ 0, j = 1, ..., n, t = 1, ..., k.

(12)

The model (12), is transformed to deterministic form using the following model:

min
∑m

i=1 cixi
s.t.

∑n
j=1 µjxij − Φ−1(α)(vi + v̄i) ≤ xi, i = 1, ...,m,∑n
j=1 µjy

t
lj + Φ−1(α)(wt

l + w̄t
l ) ≥

∑n
j=1 λ

t
jy

t
lj , t = 1, ..., k, l = 1, ..., Lk,∑n

j=1 λ
t
jz

t
rj + Φ−1(α)(utr + ūtr) ≥ ztro, t = 1, ..., k, r = 1, ...., Sk,

vi − v̄i =
∑n

j=1 µjaij , i = 1, ...,m,

wt
l − w̄t

l =
∑n

j=1 µjb
t
lj −

∑n
j=1 λ

t
jb

t
lj , t = 1, ..., k, l = 1, ..., Lk

utr − ūtr =
∑n

j=1 λ
t
jf

t
rj − f tro, t = 1, ..., k, r = 1, ...., Sk,

µj ≥ 0, j = 1, ..., n,
λtj ≥ 0, j = 1, ..., n, t = 1, ..., k,

vi, v̄i, w
t
l , w̄

t
l , u

t
r, ū

t
r ≥ 0, ∀i, l, k, r.

(13)

While efficiency can be calculated by the expression (11). If we consider decentralized
mechanism, the following constraints must be added to the model (13):∑n

j=1 µjy
t
lj − Φ−1(α)(gtl + ḡtl ) ≤ ytlo, t = 1, ..., k, l = 1, ..., Lk,

gtl − ḡtl =
∑n

j=1 µjb
t
lj − btlo, t = 1, ..., k, l = 1, ..., Lk,

gtl ≥ 0, ḡtl ≥ 0, t = 1, ..., k, l = 1, ..., Lk.

(14)

The stochastic cost efficiency is a function of the level of error α. Theorem 3.1 shows that
this function is a non-decreasing function.

Theorem 3.1. The optimal objective function of model (3-8) will be decreased by increasingα.

Proof. Let α′ < α. Since Φ−1(α) is an increasing function, the optimal solution of model
(13) in α′ level of error is a feasible solution for α level. Therefore the minimizing objective
function proves the theorem. �

Consider ECcenteral
o and ECdecenteral

o as the stochastic cost efficiency related to centralized
and decentralize mechanisms respectively. Also, ECCCR

o is the stochastic cost efficiency
of considering each DMU as a black-box. Theorem 3.2 shows the relations between these
values.

Theorem 3.2. in every level of error, ECdecenteral
o ≤ ECcenteral

o ≤ ECBlack−Box
o .

Proof. it is obvious by the constraints of the related models. �

3.3. Numerical example. In this subsection, a numerical example of a supply chain,
including one supplier and two manufacturers for every DMU is proposed to show the
obtained results and theorems in the last subsection. The needed data are illustrated in
Table 1. Here, it is assumed that all inputs and outputs of suppliers and manufactures
are random variables while distributed by normal distributions with µ and σ2 parameters.
Also, assume that the first and second input of any suppliers cost 200 and 310 unit price



132 TWMS J. APP. ENG. MATH. V.6, N.1, 2016

respectively. Data in Table 1 relates to 10 DMUs with supply chain structures, which
their suppliers have two inputs (x1 and x2) and two outputs(y1 and y2). Every output
of supplier is as input of a manufacturer. The outputs of each DMU are as outputs of
manufacturers (z1 and z2).

Table 1. Stochastic inputs and outputs.

x1 x2 y1 y2 z1 z2

µ σ µ σ µ σ µ σ µ σ µ σ
DMU1 120 18 40 6 70 21 51 3 18 5 41 9
DMU2 170 16 60 7 54 9 48 8 28 6 56 2
DMU3 90 14 30 3 60 8 39 7 19 3 30 5
DMU4 85 11 50 8 27 2 18 2 14 1 27 7
DMU5 40 6 20 2 24 3 21 4 12 2 12 2
DMU6 270 31 80 10 91 11 57 5 38 1 96 17
DMU7 35 8 25 4 17 1 21 3 8 1 9 3
DMU8 118 19 70 13 62 5 31 2 21 2 68 14
DMU9 65 5 40 9 37 4 18 1 17 3 32 7
DMU10 50 7 27 1 29 3 11 1 10 2 21 4

Table 2. Computationally results of stochastic centralized, decentralized
and black-box cost efficiencies.

ECblack−box
j ECcenteral

j ECdecenteral
j

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1
DMU1 0.75 0.72 0.41 0.39 0.41 0.39
DMU2 0.89 0.87 0.52 0.45 0.54 0.45
DMU3 0.87 0.83 0.53 0.51 0.53 0.51
DMU4 0.65 0.6 0.36 0.34 0.86 0.83
DMU5 0.87 0.84 0.66 0.63 0.66 0.63
DMU6 0.88 0.85 0.47 0.43 0.57 0.46
DMU7 0.58 0.54 0.39 0.37 0.44 0.4
DMU8 0.85 0.8 0.44 0.41 0.54 0.49
DMU9 0.86 0.82 0.5 0.48 0.6 0.57
DMU10 0.88 0.84 0.47 0.45 0.55 0.51

Data in Table 1 are substituted in models (10), (13) and (13) with (14) extended con-
straints. Results that are gathered in Table 2 for two different levels of confidence, 90%
and 95%, confirm Theorems 3.1 and 3.2.

4. Concluding results

The main goal of this paper is a consideration of cost efficiency evaluation models related
to centralized and decentralized supply chain models when dealing with imprecise data.
Here we consider data as random variables and after reviewing and introducing new models
to evaluate cost efficiency related to the special circumstances of the supply chain using
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DEA, these models are developed to probabilistic form. Also, deterministic and linear
equivalents are proposed using the symmetric error structure of normal distributions. At
final, by a numerical example, the results of models are examined.
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