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GENERALIZED WEIGHTED CEBYSEV AND OSTROWSKI TYPE
INEQUALITIES FOR DOUBLE INTEGRALS

H. BUDAK', M. Z. SARIKAYA®, §

ABSTRACT. In this paper, we firstly establish generalized weighted Montgomery identity
for double integrals. Then, some generalized weighted Cebysev and Ostrowski type
inequalities for double integrals are given.
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1. INTRODUCTION

Let f : [a,b] — R be a differentiable mapping on (a, b) whoose derivative [’ : (a,b) — R
is baunded on (a,b), ie. ||f'||,o := sup |f/'(t)| < co. Then we have
te(a,b)

L 1 (v— 2
- _T
_b—aa/f(t)dt 3[4 T-a?

for all z € [a,b]. The constant % is the best possible [10]. This inequality is well known in
the literature as the Ostrowski inequality. For some results which generalize, improve and
extend the inequality (1), see ([2], [5], [18], [19], [21]) and the references therein.

In [4], P. L. Cebysev proved the following important integral inequality

7(£.9)1 < 15 0= @* |1 Il (1

where f,g : [a,b] — R are absolutely continuous functions whose derivatives [, ¢’ €
Ly [a,b] and

(0—a) /']l -

b

x)dx — —a/f ia/g(a:)da: (2)

a

T(f,

which is called the Cebysev functional, provided the integrals in (2) exist. In recent

years many researchers have given the generalization of Cebysev type inequalities, we can
mention the works ([1], [3], [6], [9], [12], [13], [14], [16], [20]).
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b
Let wy : [a,b] — [0,00) be a weight function. We define mq(a,b) = [wi(s)ds and

mi(a,t) = fw1 )ds, so that mi(a,t) =0 for ¢t < a.

In [13], Raﬁq et al. proved the following weighted Montgomery’s indentity:
Let f : [a,b] — R be absolutely continuous, ¢; : Ry — R be a differentiable function
on Ry with ¢1(0) =0, p1(m1(a,b)) # 0 and ¢ is integrable on Ry, then

b

f@) = s [ w0 o )
. b
-i-i(pl (M1 (a,0)) /Pwmpl (z,t)f'(t)dt
for all z € [a, b] , where
v1(m1(a,t)), a<t<zx
P’lUl:(Pl (x7 t) = (4)

p1(ma(a,t)) — pr(ma(a,b)), =<t <b.

Recently, many authors have studied on Cebysev inequality for double integrals, please see
([7], [8], [11] [15]). In [8], Guazene-Lakoud and Aissaoui established a weighted Cebysev
type inequality for double integrals using the probability density function. In this paper, we
obtain a generalized weighted Cebysev type inequality similar to this inequality for double
integrals using the weighted funtions which are not necessarily the probability density
functions. Moreover, we established an Ostrowski type inequality for double integral
which is the generalization of the inequality given in [17].

2. GENERALIZED WEIGHTED MONTGOMERY IDENTITY FOR DOUBLE INTEGRALS
In order to prove our main theorems, we need to prove following identities

Let wy : [¢,d] — [0,00) be a weight function. We define ma(c, d) fwg )du and

ma(c, s) fwg )du, so that ma(c,s) for s < c¢. 2 : Ry — Ry be a differentiable
function on R+ with ¢2(0) = 0, p2(ma(c,d)) # 0 and ¢}, is integrable on R..

Theorem 2.1. Let f: A = [a,b] X [¢,d] — R be a partial differentiable function such that
second derivative ﬁ is integrable on A. Then for all (z,y) € A we have

1
fey) = (@) palmale, d)) )

X

b d
/ / wn (£)wa(s)g (ma (0, £)hy(ma(e, 5)) £ (1, $)dsdt

b d
of(t,
+//w1 01 (ma(a, ) Quy s (Y, s)fa(ss)dsdt
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b d
¥ / / ()b (e, 9)) Pay o ) 2L s

T

where Py, o (x,t) is defined as in (4) and Qu, o, (y, s) defined by

wa(ma(c, s)), c<s<y

Qw2,<,02 (y, 5) = {

p2(ma(c,s)) — pa(ma(c,d)), y<s<d.

Proof. Aplying the identity (3) for the partial derivative W, we have
. b
= — t)¢ ) f(t,y)dt
fa) = ey [ O @)y

S a1 (t,y)
+801(m1(a,b)) /Pw1,¢l(x7t) ot dt

a

for all (z,y) € A. Similarly, applying the identity (3) for the partial derivative
get

d
flty) = / ws(s)gh(male, ) £(t, 5)ds

mgcd

d
o Of(t,5)
+902(7712(c,d)) C/Qw%%(yvs) 99 ds

for all (¢,y) € A. For partial derivative of (8) according to ¢, we have

of(t,s)
ot

ds

wa(s)py(malc, s))

ot mzcd

af(t,y) /d

1 0%f(t,s)
ot | Qe g

(6)

(7)

o)
ds

(8)

(9)

for all (t,y) € A. If we subsitute the equalities (8) and (9) in (7), then we obtain the

required result.

O

Remark 2.1. If we choose ¢1(u) = @a(u) = u in the Theorem 2.1, then the Theorem 2.1

reduces the Lemma 2 in [17].
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Theorem 2.2. Let f: A — R be a partial differentiable function such that second deriv-

ative ayggf) 1s integrable on A. Then we have the following generalized weighted Mont-
gomery’s identity,

b
f(-’ﬁ,y) - M /wl(t)Soll(ml(a,t))f(t,y)dt (10)
1 4 :
_m(fmz(cd))/w(S)sOé(mz(c, $))f(z, s)ds
1C b d
i mia b)) pa(ma(c d) //w1 s)¢h(mi(a, t))ph(ma(c, s)) f (¢, s)dsdt

_ Of(t,s)
N gp(ml(ab 2(ma(c, d)) // Py (2, ) Qs 02 (4 5) =55 = Otds dsdi

for all (x,y) € A.
Proof. Using the integration by parts we have,

/ / P @.0Qun ) (11)
[ o1 (t,5) [ 1t s)
_ /pwl,m(x,t) /wz(mQ(c,s)) Tt g (mg(c,d))/ Lo d}dt
b :C d C
= [ Purtot) |eatmate.) L5 — [n(syepmate s»af;;%s] a
= pa(ma(c,d)) / w11 ( g;’y)dt

- / / () (m(e,9)) Pa o ,) L s

Similarly, we have

b
f(ty
/ Py o0 (T (& )dt (12)

b

- / 1m0, 0) 2Lt — o1 a,0)) [ 2L D

ot

a T

b
= (Pl(ml(a7 b))f(.%',y) - /wl(t)90/1<m1(a7t))f(t7y)dt7
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and

of(t,s)
o dids (13)

b
/wﬁ$%Ww@$ﬂ%wA%0

ot ot

La T

b
wa(s)eh(malc, ) /wﬂmmmmaﬂt”mwummw»/aﬂ“”w]w

I
0\& Q\& Q\&

B b
wa(s)@a(ma(c, s)) | o(ma(a, b)) f(x, s) /wl(t)wi(ml(a,t))f(t,S)dt] ds

a

d

- %Umwﬁb/wﬂﬁﬁwmm$ﬁ@dﬂs

b d

- [ [woi®uaeim @) ma(e )0, 5)dr

If we subsitute the equalities (12) and (13) in (11), then we obtain the required identity
(10). O

Remark 2.2. If we take wy and we as two probability density functions in (10), then the
identity (10) reduces the identity (6) in [8].

3. NEwW GENERALIZED WEIGHTED OSTROWSKI AND CEBYSEV INEQUALITIES

Theorem 3.1. Let f : A — R have continuous partial derivatives ofts) - OflLs) g

ot 0s
823{?(5;8) on A. Then we have the following weighted Ostrowski inequality

b d

: ma(c, d)) / / wi (t)wa(s) @ (ma(a, ) (ma(c, 5)) f(t, s)dsdt

p1(ma(a,b))pa(

f(:c,y) -

1
p1(ma(a, b))pa(ma(c, d))

Of(t,s)
t

af(t,s)
Os

i

11l Ha(y)

+myo (Ca d) ’ ’ B

p of(t,s
el o) + | 252

Hmwmwﬂ

o ’ oo

where

b
lﬂ@%=/U%WALﬂMK

and

d
Ha(y) :/!ngw(y,s)]ds.
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Proof. Taking modulus in Theorem 2.1, we have

1 / ’
@) = s / / ()2 (ma 0, )y (male, ) (1, )l

d
1 : 01(1.5)
< e | 0O @0 Qu 0| 25 asa
b d
+//w2 “/72 m2 ¢, 8) HP'LUl <P1 7t)"afg£8) dsdt
b d
v / / Par 2. Qa1 | D
<

| af(t,5)
p1(mi(a, b))p2(ma(c, d)) H

b d
. / / W1 (1) | Qup i (4, )] st

of(t,s)

+ H 8t //w2 wl , 01 fl? t)‘det
of(t,s

+H ét //Pwlv‘»ol £ t)| |Qw2 gpg(y7 )‘det

Here, we have the equalities

b d
/ / W1 (1) |Quga (31 8)| dsdt = / wnt / (Quas (1 8)] ds | = ma(a,b)Ha(y),

b d d b
/ / W (5) | Py g (,1)] dsclt = (/ ws(s )(/ Pwl,¢1<x,t>dt)m2<c,d>H1<x>

an
b
/ / Py ()] [ Qo (s )] sl
a C
b d
/ Poy o (2, 1)| dt / Quaion(y.9) ds | = Hy () Ha(y)
a C
which complete the proof. ]

Remark 3.1. If we choose ¢1(u) = @a(u) = u in the Theorem 3.1, then the Theorem 3.1
reduces the Theorem 2 in [17].

Theorem 3.2. Let f,g: A — R be partial differentiable functions such that their second

Pf(ts) o7 Oolts)

derivatives =557 and —_ 5= are integrable on A. Then we have the weighted Cebysev
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inequality

|T(w17 P1, W2, P2, f7 g)‘
1

= (@ b)) ma(e d))

b d
x / / wn () () H () 3 (y) dyda

d?g(t, s)
Otos

D*f(t,s)
Otos

where Hy(x) and Ha(y) are defined as in (3.1) and

T(w17 P11, W2, P2, fa g)
1

p1(mi(a, b))pa(ma(c, d))

b d
% [ / / wi (2)ws ()@ (m1 (0, 2) ) (ma (e, ) £ (2, y)g (2, y)dyda

—W//wl w)wa(y) (m(a, ) (ma (e, ) f (2, y)
d

X (/ wa(8)h(ma(c, s))g(x,s)ds) dydz

C

b d
_M//w1(x)w2(y)¢11(m1(a,x))@é(mz(qy))g(x’y)

b
(/ wi(t)) (ma(a,t)) f(t y)dt) dydx

1(a,b) b 2(ma(c, d))

3

@1(

d
/ wn (2)ws ()@ (ma (0, 2)) g (ma(e, 1) £ (&, y)dyda

\@

( wi (x)wa (y) ¢ (ma(a, x))s@’z(mz(c,y))g(x,y)dydx)] :

(E21 1y [
oo
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Proof. From Theorem 2.2, writing again the identity (10) for the function g(x,y), we have

b
1 /
g(z,y) — Ma/wl(t)%(ml(‘%t))g(tay)dt (15)

d

_soz@ml(d))/ wa(5)¢h(ma(c, 5))g(, 5)ds
b d

T oimia, b))1 (ma(c,d)) / / wi (t)wa ()¢ (ma(a, )Py (ma(c, s))g(t, s)dsdt

_ 2g(t, s)
N gpl(ml(ab 2(ma(c, d)) // w“plxthz’w(y’) OtOs dsdt.

After multiplying the identities (10) and (15), multiplying both sides result by
w1 (z)wa(y) ) (m1(a,a))eh(ma2(cy))
p1(m1(a,b))p2(ma(c,d))

and integrating over A, we have

T(wlﬂ(plva?(vaf g) (16)

b d[ b d N
- w ) Quis o2 (Y, dsdt
1 (mi(a, b 5(ma(c,d)) // // 11 (25 8) Quog 05 (Y 8) —5>— D105

b d
9%g(t, s
//Pw17W1(x7t)QWZ74P2(yvs) 8gt(63 )dsdt] dydz.

Taking the modulus in (16), we obtain

|T (w1, p1, w2, 02, f,9)]

< / / wi(e ) () ma (0, ) h0ma(e, )
X _/b/d Py o1 (2, ) Quis 00 (¥, 9)| 62(;;(;;9) dsdt_
x //ypwm ) Qug s (Y, 8 "a 9(t> <) dsdt- dydz

S e ] e aQat%’sS)- o N6l 142

b d b d 2
< [ [ @) [ /] Pwl,%(x,t)@w,@(y,s)dsdt] dydz
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_ 1 82f(ta s) 829(757 s) H(P/ H H‘Pl H
O3 (ma(a,b))pd(ma(c,d)) || 0tds || || otds || "7 oo 72lleo
b d
< [ [wr st @) ) dyd
This completes the proof. ]

Remark 3.2. If we take wy and we as two probability density functions in (14), then the
identity (14) reduces the identity (14) in [8].

4. CONCLUSIONS

In this study, we presented some Cebysev and Ostrowski type inequalities generalized
weighted Montgomery identity. A further study could assess similar inequalities by using
different types of generalized weighted Montgomery identity.
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