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LYAPUNOV-SCHMIDT REDUCTION IN THE STUDY

OF PERIODIC TRAVELLING WAVE SOLUTIONS

OF NONLINEAR DISPERSIVE LONG WAVE EQUATION

MUDHIR A. ABDUL HUSSAIN1, §

Abstract. This article studies the bifurcation of periodic travelling wave solutions of
nonlinear dispersive long wave equation by using Lyapunov-Schmidt reduction. We de-
termined the conditions for the existence of regular solutions for the reduced equation
corresponding to the main problem, also we found the linear approximation of the solu-
tions of the main problem.

Keywords: local bifurcation theory, local Lyapunov-Schmidt method, nonlinear disper-
sive long wave equation.

AMS Subject Classification: 34K18, 93C10.

1. Introduction

Many of the nonlinear problems that appear in Mathematics and Physics can be written
in the operator equation form

F (x, λ) = b, x ∈ O ⊂ X, b ∈ Y, λ ∈ Rn (1)

where F is a smooth Fredholm map of index zero and X, Y are Banach spaces and O
is open subset of X. For these problems, the method of reduction to finite dimensional
equation,

θ(ξ, λ) = β̃, ξ ∈ M̃, β̃ ∈ Ñ . (2)

can be used, where M̃ and Ñ are smooth finite dimensional manifolds. A passage from (1)
into (2) (variant local scheme of Lyapunov -Schmidt) with the conditions that equation (2)
has all the topological and analytical properties of (1) (multiplicity, bifurcation diagram,
etc) can be found in [8]. In the method of finite dimensional reduction (local method
of Lyapunov-Schmidt) the solutions of equations in infinite dimensional spaces are in
one-to-one corresponding with the solutions of equations in finite dimensional spaces [8].
For this reason the method become an important in the study of many problems arising
in nonlinear sciences. In [2] Boiti introduced the following system of nonlinear partial
differential equations

uty + vxx +
1

2
(u2)xy = 0,

vt + (uv + u+ uxy)x = 0. (3)
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which describe the nonlinear dispersive long wave in (2+1)-dimension. System (3) has
interest in fluid dynamics. Also, good understanding of the solutions for system (3) is
very helpful to coastal and civil engineers in applying the nonlinear water model to coastal
harbor design.There are many studies of system (3) by different ways. In [6] Paquin and
Winternitz studied the similarity solutions of system (3) by using symmetry algebra and
the classical theoretical analysis. In [10] Tang and Lou studied the abundant localized
coherent structures of a (2+1)-dimensional dispersive long-wave equation by using the
variable separation approach. Chen and Yong in [3] obtained Several families of analytical
solutions dispersive long-wave equation,their study based upon the extended projective
Riccati equations method. In [5] Fan used the ansatz-based method to obtained some
exact solutions of the dispersive long wave equation. Yomba In [11] obtained some new
soliton-like solutions of the (2 + 1)-dimensional spaces long wave equation by using the
improve extended tanh method. In [7] Rong and Tang studied the bifurcation of solitary
and periodic waves for (2+1)-dimension nonlinear dispersive long wave equation by using
the bifurcation theory of planar dynamical systems. In this paper we investigate the
existence of bifurcation of periodic travelling wave solutions of the (2+1)-dimensional
dispersive long-wave equation in some domain of parameters by using the Lyapunov-
Schmidt method.

Theorem 1.1 (1). Suppose X and Y are real Banach spaces and F (x, λ) is a C1 map
defined in a neighborhood U of a point (x0, λ0) with range in Y such that F (x0, λ0) =
0 and Fx(x0, λ0) is a linear Fredholm operator. Then all solutions (x, λ) of F (u, λ) =
0 near (x0, λ0) (with λ fixed) are in one-to-one correspondence with the solutions of a
finite-dimensional system of N1 real equations in a finite number N0 of real variables.
Furthermore, N0 = dim(kerL) and N1 = dim(cokerL), (L = Fx(x0, λ0)).

Definition 1.1 (8). The Nonlinear operator F : U ⊂ X → Y is called Fredholm if the
first Fréchet derivative dF (x) is a Fredholm for every x ∈ U . The index of the nonlinear
Fredholm operator F is equal to the index of the linear operator dF (x).

To study the bifurcation of periodic travelling wave solutions of system (3) we first
consider the travelling wave solutions in the form of

u(η) = u(x, y, t), v(η) = v(x, y, t), η = px+ qy − ct, pq 6= 0,

to reduce system (3) into following system,

−qcu′′
+ p2v

′′
+ pq(uu

′′
+ (u

′
)2) = 0,

−cv′
+ p(uv + u+ pqu

′′
)
′

= 0. (4)

where c denotes the wave speed and ( ′ = d/dη). From the second equation of system (4)
we have

v
′

=
p

c
(uv + u+ pqu

′′
)
′

(5)

substitute (5) into first equation of (4) we get

−qcu′′
+
p3

c
(uv + u+ pqu

′′
)
′′

+ pq(uu
′′

+ (u
′
)2) = 0. (6)

by using the transformation u = v, equation (6) became

αu
′′′′

+ βu
′′

+ µ(uu
′′

+ (u
′
)2) = 0. (7)

where, α = p4q, β = p3 − c2q, µ = 2p3 + pq.
in our study we assume that u and v are periodic functions,

u(η) = u(η + T ), v(η) = v(η + T ), T = 2π.
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In order to study the bifurcation of periodic travelling wave solutions of system (4) we
shall study the bifurcation solutions of equation (7). In the next section we will apply
the Lyapunov-Schmidt reduction to reduce equation (7) into an equivalent system of four
nonlinear algebraic equations.

2. Reduction to the bifurcation equation corresponding to equation (7)

To apply Lyapunov-Schmidt method for equation (7) we first rewrite equation (7) in
the form of operator equation

F (u, λ) = αu
′′′′

+ βu
′′

+ µ(uu
′′

+ (u
′
)2), (8)

where F : Π4([0, 2π], R) → Π0([0, 2π], R) is a nonlinear Fredholm operator of index zero,
Π4([0, 2π], R) is the space of all periodic continuous functions that have derivative of order
at most four, Π0([0, 2π], R) is the space of all periodic continuous functions, R is the real
space, u = u(η), η ∈ [0, 2π] and λ = (α, β). We note that the bifurcation solutions of
equation (7) is equivalent to the bifurcation solutions of operator equation

F (u, λ) = 0. (9)

The first step in this reduction is determines the linearized equation corresponding to the
equation (9), which is given by the following equation

Lh = 0, h ∈ Π4([0, 2π], R) ,

L = Fu(0, λ) = α
d4

dη4
+β

d2

dη2
.

where Fu(0, λ) is the Fréchet derivative of the operator F at the point (0, λ).The periodic
solutions of the linearized equation is given by

hk(η) = rksin(kη) + tkcos(kη), k = 1, 2, 3, ...

and the characteristic equation corresponding to this solution is

αk4 − βk2 = 0.

This equation gives in the αβ-plane characteristic lines lk. The point of intersection of
two lines is a bifurcation point [8]. In particular, the intersection of the lines l1 and l2 is
the point (0,0).So the point (α, β) = (0, 0) is a bifurcation point of equation (9). Localized
parameters α, β as follows

α = 0 + δ1, β = 0 + δ2, δ1, δ2 are small parameters

lead to bifurcation along the modes

e1(η) = r1sin(η), e2(η) = t1cos(η), e3(η) = r2sin(2η), e4(η) = t2cos(2η)

where ‖ ei ‖H= 1 and ri, ti =
√

2 for i = 1, 2, (H = L2([0, 2π], R) is a Hilbert space).
Let N = ker(L) = span{e1, e2, e3, e4},then the space Π4([0, 2π], R) can be decomposed in
direct sum of two subspaces, N and the orthogonal complement to N ,

Π4([0, 2π], R) = N ⊕N⊥, N⊥ = {ṽ ∈ Π4([0, 2π], R) : ṽ⊥N}.

Similarly, the space Π0([0, 2π], R) can be decomposed in direct sum of two subspaces, N
and the orthogonal complement to N

Π0([0, 2π], R) = N ⊕ Ñ⊥, Ñ⊥ = {g ∈ Π0([0, 2π], R) : g⊥N}.
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Accordingly, there exist projections p : Π4([0, 2π], R)→ N and I−p : Π4([0, 2π], R)→ N⊥

such that pu = w , (I − p)u = ṽ and hence every vector u ∈ Π4([0, 2π], R) can be written
in the form of,

u = w + ṽ, w =
4∑
i=1

xi ei ∈ N, ṽ ∈ N⊥, xi =
〈
u , ei

〉
H .

(〈·, ·〉 is the inner product in Hilbert space H = L2([0, 2π], R)). Similarly, there exists

projections % : Π0([0, 2π], R)→ N and I − % : Π0([0, 2π], R)→ Ñ⊥ such that

F (u, λ) = %F (u, λ) + (I − %)F (u, λ),

%F (u, λ) =

4∑
i=1

vi(u, λ) ei ∈ N, (I − %)F (u, λ) ∈ Ñ⊥,

vi(u, λ) =
〈
F (u, λ) , ei

〉
H .

Hence equation (9) can be written as

%F (u, λ) = 0,

(I − %)F (u, λ) = 0.

or
%F (w + ṽ, λ) = 0,

(I − %)F (w + ṽ, λ) = 0.

By the implicit function theorem, there exists a smooth map Θ : N → N⊥ such that
ṽ = Θ(w, λ) and

(I − %)F (w + Θ(w, λ), λ) = 0

so to find the solutions of equation (9) in the neighborhood of the point u = 0 it is sufficient
to find the solutions of the equation,

%F (w + Θ(w, λ), λ) = 0. (10)

Equation (10) is the bifurcation equation corresponding to equation (7).Since,

%F (u, λ) =
4∑
i=1

vi(u, λ) ei = 0, vi(u, λ) =
〈
F (u, λ) , ei

〉
H

then the bifurcation equation can be written in the form of

Ξ(ξ, λ) =

4∑
i=1

vi(u, λ) ei = 0, ξ = (x1, x2, x3, x4).

Equation (8) can be written as

F (w + ṽ, λ) = L(w + ṽ) + µB(w + ṽ) = Lw + µ(ww
′′

+ (w
′
)2) + ...

where B(w + ṽ) = (w + ṽ)(w + ṽ)
′′

+ ((w + ṽ)
′
)2 and the dots denote the terms consists

the element ṽ and its derivatives. Hence

Ξ(ξ, λ) =

4∑
i=1

〈
Lw + µ(ww

′′
+ (w

′
)2) , ei

〉
ei + ... = 0. (11)

To find equation (11) we expand the summation then substitute w =
∑4

i=1 xiei in (11).
After some calculations we have a system of four nonlinear algebraic equations given below
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x1x4 − x2x3 + q1x1 = 0,

x1x3 + x2x4 + q1x2 = 0,

x1x2 + q3x3 = 0,

x21 − x22 + q3x4 = 0, (12)

where, xi, q1, q3 are real and Lei = κi(λ)ei, i=1,2,3,4.
From theorem (1.1) the solutions of equation (9) are in one-to-one correspondence with
solutions of a system (12).Thus the point

ū =
4∑
i=1

xiei + Θ(
4∑
i=1

xiei, λ),

is a solution of equation (9) if and only if the point (x1, x2, x3, x4) is a solution of system
(12) [8].

3. Analysis of bifurcation of system (12)

In this section we will investigate the existence of the regular solutions of system (12).
From the third and the fourth equation of system (12) we have

x3 =
−x1x2
q3

, and x4 =
1

q3
(x22 − x21)

Simple calculations shows that system (12) has nine solutions given below

(0, 0, 0, 0), (0,±
√
−q1q3, 0,−q1), (±√q1q3, 0, 0,−q1),(

±
√
q1q3

3
,±
√
−q1q3

3
,∓
√
−q21q23
3q3

,−2q1
3

)
where a = 2

q3
.

The determinant of the jacobian matrix of system (12) is given by

| J |= q23x
2
4 + 2x4q

2
3q1 − 3x4x

2
1q3 + 3x4x

2
2q3 + q21q

2
3 − 3q1x

2
1q3

+3q1x
2
2q3 + x23q

2
3 − 6x3x1x2q3 + 2x42 + 4x22x

2
1 + 2x41

All degenerate solutions of system (12) are degenerate on the lines q1 = 0 and q3 = 0,
it follows that the non-degenerate solutions will exist when q1 6= 0 and q3 6= 0. We note

that the component

√
−q21q23
3q3

never to be real for all values of q1 and q3, so the remaining

nonzero solutions of system (12) are

(0,±
√
−q1q3, 0,−q1), (±√q1q3, 0, 0,−q1)

The solutions

(0,±
√
−q1q3, 0,−q1)

exist when q1q3 < 0 and the solutions

(±√q1q3, 0, 0,−q1)

exist when q1q3 > 0. Accordingly, the corresponding linear approximation of the solutions
of equation (7) are

w = ±
√
−2q1q3 cos(η)−

√
2 q1 cos(2η), w = ±

√
2q1q3 sin(η)−

√
2 q1 cos(2η).

From the obtained results we deduce the following theorem,



308 TWMS J. APP. ENG. MATH. V.7, N.2, 2017

Theorem 3.1. The bifurcation equation corresponding to the equation (7) is a nonlinear
system of four nonlinear algebraic equations given in (12). The solutions of equation (7)
are in one-to-one correspondence with solutions of a system (12).

Suppose now

U1 = x1x4 − x2x3 + q1x1,

U2 = x1x3 + x2x4 + q1x2,

U3 = x1x2 + q3x3,

U4 = x21 − x22 + q3x4, (13)

and let z1 = x1 + ix2, z̄1 = x1− ix2, z2 = x3 + ix4, z̄2 = x3− ix4, then in the complex
variables system (13) can be written in the form of G1 = U1 + iU2, G2 = U3 + iU4. It
follows that

G1(z1, z2) = z1z̄2i+ q1z1,

G2(z1, z2) =
i

4
(z21 + 3z̄21) + q3z2.

and system (12) become

z1z̄2i+ q1z1 = 0,

i

4
(z21 + 3z̄21) + q3z2 = 0. (14)

In polar coordinate system let z1 = r1e
iθ1 , z2 = r2e

iθ2 , then

Re(G1(z1, z2)) = r1r2sin(θ2) + q1r1,

Im(G1(z1, z2)) = r1r2cos(θ2),

Re(G2(z1, z2)) =
sin(2θ1)

2
r21 + q3r2cos(θ2),

Im(G2(z1, z2)) = cos(2θ1)r
2
1 + q3r2sin(θ2).

Hence, the real part of equations (14) is given by the following system

r1r2 + λ1r1 = 0,

r21 + λ2r2 = 0. (15)

where, λ1 = q1
sin(θ2)

and λ2 = 2q3cos(θ2)
sin(2θ1)

, (sin(θ2) 6= 0 and sin(2θ1) 6= 0). The solutions

(equilibrium points) of system (15) are

(r1, r2) = (0, 0), (r1, r2) = (±
√
λ1λ2,−λ1).

These solutions are degenerated on the line λ1 = 0 or λ2 = 0. It is clear that the nonzero
real solutions exist when λ1λ2 > 0. The eigenvalues of the jacobian matrix of system (15)
at the point (0,0) are k1 = λ1, k2 = λ2. If λ1 > 0, λ2 > 0 then the point (0,0) is unstable
(source) and if λ1 < 0, λ2 < 0 then the point (0,0) is stable (sink).The eigenvalues of the

jacobian matrix of system (15) at the points (±
√
λ1λ2,−λ1) are k1 = 1

2(λ2+
√
λ22 + 8λ1λ2),

k2 = 1
2(λ2−

√
λ22 + 8λ1λ2). It is clear that λ22 +8λ1λ2 > 0 for all values of λ1 and λ2, so in

the first and third quarter of λ1λ2-plane the eigenvalue k1 is positive and the eigenvalue
k2 is negative. Accordingly, the points (±

√
λ1λ2,−λ1) are unstable (saddle points). The

phase portrait of system (15) in the first and third quarter is given in the following figures
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Figure 1. The phase portrait of system (15) in the first quarter.

Figure 2. The phase portrait of system (15) in the third quarter.
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