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THE PERTURBATION TO NON-MARKOVIAN EQUATION OF
MOTION CORRESPONDING TO COHERENT AND QUADRATURE
NON-MARKOVIAN SSES

N. HASSAN!, A. POURDARVISH?, J. SADEGHI? , §

ABSTRACT. In this paper, we derive the perturbation and post Markovian perturbation
to non-Markovian equation of motion(NMEM) that correspond to coherent and quad-
rature non-Markovian stochastic Schrodinger equations (SSE). In that case, we derive
two perturbation approaches for zero and first orders to the coherent and quadrature
NMEM. In order to explain both approaches, we apply two examples of non-Markovian.

Keywords: perturbation method, post Markovian perturbation method, non-Markovian
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1. INTRODUCTION

Master equations have served as an essential tool in the dynamic systems which is
introduced in quantum mechanical setting [14]. The probability operators are defined as ,

P(t) = [9:()) (=), (1)

where |1, (t)) is the solution for linear coherent and quadrature non Markovian stochastic
Schrodinger equations(SSE). The general linear coherent and quadrature non Markovian
stochastic equations of motion (SEM) that correspond to linear coherent and quadrature
non Markovian SSEs are derived as,

P(t) = —i[H,P(t)]+ (Z*(t)LP(t) + P(t)Z(t)L1) — /ta(t—s)ﬂczo(z,t,s)ﬁ(t)ds
0
— ta*(t—s)P(t)dB(z,t,s)Lds, (2)
0
and,
P(t) = —ilH,P@t)|+ (Z*t)L'P(t)+ P(t)Z(t)L) — Otﬁ(t—s)[Lzmo(z,t,s)fD(t)
+ Pty (2, t, ) L] ds, (3)
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where,
t
Do(at) = [ alt = s)do(z,t,5)ds, (4)
0
and
t
My(z.) = [ 81t = s)ina(z 1, )i, (5)
0
are called functional operators, such that
do(z,t,8) = —, (6)
0z
and
mo(z,t,s) = o (7)
0\<, by - (5275’

are called functional derivative operators (anzats). Some methods are suggested to study
the non Markovian open quantum systems which are given by Ref. [9, 12, 6, 2, 8]. The
Lindblad master equation [5] is solved specifically by the stochastic Schrodinger theory
[3, 10, 4, 7, 15]. The density matrix perturbation theory (PT)is developed in [1], that is ap-
plicable to all eigenstates of the operator L including the steady state. The post Markovian
perturbation theory is derived to non Markovian stochastic Schrodinger equation(SSE)[13].
This derivation is based on the following consistency condition,

0

= *
02}

at|1/~)z(t)>7 (8)

5 -
8t57:\wz(t))

and Taylor expansion for functional derivative operator and it is applied on the non Mar-
kovian master equation for density operator. A perturbation approach is introduced to
non Markovian coherent and quadrature SSEs [11] which is based on the expansion of
the functional operators and above consistency condition and the following consistency
condition,

4]

o

In this paper, we determine the functional operator which it depend on time and noise, by
deriving the perturbation theory and the post Markovian perturbation theory to coherent
and quadrature(NMEM). In this side, we take the combined functional derivative for
probability operator. And we use in derivation, the expansion for functional operator and
Taylor expansion for functional derivative operator in [11] and [13] respectively. We apply
above approaches on two examples. This article can be divided into five sections. In sec.II,
we derive the zero and first orders stochastic perturbation equations for functional operator
f)g(z,t) and Mo(z,t) in coherent and quadrature (NMEM) respectively. In quadrature
unravelling we find two zero order stochastic perturbation equations and four first order
stochastic perturbation equations for Mg(z, t) . In sec.IIl, we derive the post Markovian
perturbation to coherent and quadrature (NMEM). We find the zero and first orders
stochastic perturbation for functional derivative operators do(z, ¢, s) and 7g(z, ¢, s). Here
we can calculate the functional operators Do(z,t) and My(z,t) also we find first order
coherent and quadrature (NMEM). In sec.IV, we apply our approaches on two examples.
Finally the conclusion and suggestion for future work is given in sec.V.

at(fztw?z(t» Oul- (1)), (9)
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2. THE PERTURBATION TO COHERENT AND QUADRATURE (NMEM)

In this section, we derive zero and first orders stochastic perturbation equations to
equation(2) and equation(3). For equation(2), the expansion for memory function and
functional operator are defined as,

alt—s) =) _al(t—s), (10)
j=1
where
. —k; .
oI (t —s) = |G exp 2 1178l exp ¥ (t9) (11)
and
DO(Zat) :Z‘Dé(zat)’ (12)

J

such that functional operatong(z, t) is defined as,
. t . ~
Di(z,t) = /O o (t — 5)do (2,1, 5)ds. (13)
The time derivative of equation (13) is,
. . . k- ) t .
OD}(z,t) = a?(0)do(z,t,t) — [EJ +iQ;]D(z,t) + /0 o (t — 8)Odo(z,t, s)ds. (14)

To find 8tczo(z,t, s), one can obtain the combined functional derivative for probability
operator P(t) as,

i - 5
o) B = s
— G PO+ )G 0D 19
Since linear coherent non-Markovian SSE [13] we get,
ODY(z,t) = |GPPL - [% +i5]Dj(2,t) + (Z* ()L + Z(t) L1 DY(=,t) — D{(z, t) LD}(z,t)
—LVY " DPF(z, ). (16)
k

Equation (16) is zero order stochastic perturbation equation for functional operator
Dy(z,t), where D{’k(z, t) is first order functional operator which can be defined as

. t . A
DIF(z,t) = /0 od (t — s)d¥ (2, t, s)ds. (17)
Such that
O Dh(z,t) = izt ). (18)
02

The time derivative of equation (17) is,

. A t . A t . A
DI (2, 8) = |Gy 25 (2,1, )+ / D0 (1 —5)d (2, 1, s)ds+ / o (1—5)0yd (2, 1, 5)ds. (19)
0 0
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The first order is obtained,

: . k. . , .
ADY (1) = |GifPdi(=,1) =[5 +i) DY (2 0) + |G PDj(2 )L
k . .
- Qk + i) D (2, 8) D (=, 1) + Di(2,0)(Z(t) L + Z(t) L") D (=, )
—D}(z,t)DY(2,t) LD (2, ) — Df(2,1) > DF* (2, 1). (20)
!
Equation (20) is first order stochastic perturbation equation for functional operator
Dy(z,t), where here the operators LT and dy(z,t,s) are commutator. For equation (3),
we find the zero and first orders stochastic perturbation equations in four cases; In case

A, we will use the expansion of the memory function and functional operator which are

defined by,
Bt —5) Zﬂ“"s _ (21)

and .
Mo(z,t) = 3 MG (=, 1), (22)
J
such that
SISt — s) = 2|Gj\2 exp*TJ‘t*S| cos Q;(t — s). (23)

The functional operator M7 (z,t) is defined as,

MG / IOt — s)ring (2, t, )ds. (24)

The time derivative of the equation (24) is,

. ke .
OMP®(2,t) = 2]Gj\2L — EJMS’COS(z,t) — Q;M7* (2,t)
¢
+/ B3 (t — s)Opmo(z, t, s)ds, (25)
0

where M7 (2, 1) = fg BISn(t — s)1ng(z,t, s)ds. In order to find dy1ng(z,t, s), we use the
combined functional derivative of the probability operator as done in coherent case, we
have,

, - ke .
M) (2,t) = 2|G4°L - Eng’COS(z,t) — QM3 (2,t)
+H(ZeL + Z7 LY MG (2,1) — M (2, ) Lo M3 (2, 1)
_l“—/x Z M{',kz,cos,cos (Z, t). (26)
k

Equation (26) is zero order stochastic perturbation equation. The first order perturbation
MHFe0508 (5 1) is defined by,

e . / BI<05(t — sy (2, 1, 5)ds, (27)

where

%Mk (2, 1) = mk(z,t, s). (28)
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Then the functional operator M{’k’cos’cos(z, t) is,

MR (2 0) = G (2, 1) — o MPPN (2, 1)
A . ke
—Q 'MJ7k7Sln7COS(Z, t) + 2|G_’2M87COS(Z’ t)L _ §]M87COS(Z, t)MOk’,COS(Z’ t)

— QU MI (2, ) ME (2, 1) + (Z, L + ZF LYY ME (2, ) ME (2, 1)
_MS,COS(Z’ t)Mg(Z, t)LzMéc,COS(Z’ t) N f/x Z Mg,k,l,COS,COS,COS(z’ t), (29)
l

where 7g(z,t,s) and L, are commutators and equation (29) is first order stochastic
perturbation equation. Now, we back to case B, we will take the expansion of the memory
function and functional operator which are defined by,

B(t —s) Z B (g — (30)
and
Mo(z,t) = > MP™(2,1), (31)
J
where
. . t . .
M) = [ B st ), (32)
0
and
BISN (¢ — 5) = 2|Gy|? exp™ 2 1478l sin Q;(t —s). (33)
The zero order is,
. . k. . .
M (z,t) = 2|G4°L - 5 MG (2, 1) + QM (2, 1)
HZL + Z LM (2, t) — (ZiL + 27 LYY ME™ (2, )
— M (2, ) L MJ™™ (2, 8) — Lo Y M0 (2, ), (34)
k

Equation (34) is zero order stochastic perturbation equation. The first order perturbation
can be defined as,

M{,,k,sin,sin(z ) / ﬂJ Sm( )ml (z t, s)d (35)

where
(2,1, 8) = mo(z, t, s) ME™ (2, 1). (36)

Taking time derivative of equation(35), one can obtain
ath,,k,sm,Sm(Z’ t) _ 2’0 |2m1 (Z ¢ t) Ny M{,,k,sm,sm(z’ t) + QjM{’k’COS’SIH(Z, t)

/ B _ )ik (2.1, )ds. (37)
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The first order is,

8th,,k,sm,sm(Z7 t) — 2|G |2m1 (Z t t) ]Mf,,k:,sm,sm(z7 t)

: : L k
+0 'Mj,k,cos,sm(z’ t) + 2|G"2LM]’SIH(Z, ) k

M] sm( )‘]\4[§f,sin(z7 t)
F QM (2, ) My (2, t) + (ZeL + Z} LT)MJ S0 (2, ) ME™ (2, 1)

_Mg sm(z’ t)Mg(Z, t)LmMg’Sm(Z,t B Lm Z Mg,,k,l,sm ,sin, sm(z’ t), (38)
l

where the functional operator My(z,t) is defined by equation(31). Here, we are going to
study the third case. In this case, we use equation (21) then we get,

MG (2,) = 2AGPL = M7 (2, 1) = QMG™ (2, 1)
H(ZL + Z; LYMP™ (2, 1) — M (2, ) Lo M7 (2, 1)

*Lx Z M{,k,cos,sm(z, t), (39)
k

Equation (39) is zero order stochastic perturbation equation. Using equation (36), one
can find following equation,

8th’k’COS’Sm(Z,t) — Q‘G |2m1 (Z t t) ]M{,k,cos,sm(zjt)

kg

e} 'Mj,k,sin,sin(z7 t) + 2|Gk|2ﬁMj,COS( ) Mj COS( )M(])C’Sin(,% t)

FQMPS (2, ) ME (2,8) + (ZeL + 2} LT)MJ (2, )My (2, 1)

_Mg COS(Z7 t)Mg(Z, t)LmMg’Sin(Z,t _ Lz Z Mg ,k,l,cos,sin, sm(z’ t), (40)
l

Equation (40) is first order stochastic perturbation equation. Now we back to last case.
In this case we use equation (30) and rewrite equation (34), we have,

MG (2,1) = 2|G4°L - 5 My™" (2, ) + QM= (2, 1)
+(ZeL + ZF LNYMP™ (2, 8) — (ZiL + ZF LYY M (2, 1)
—M{ (2, t) La M3 (2, t) — Ly Y MPF0%(5,1), (41)

Equation (41)is zero order stochastic perturbation equation. The first order perturbation
Mfk SILCOS(2 1) can be defined as,

Mt ety = [ ik .. (12)
Then the stochastic equation for the Mf’ksm’cos(z, t) is,
DMIESS () 9|2k (2, 1, 4) — U a1
O, MRS (1) 4 9] 2R M (2, ) — %Mg,sin(zjt)Méc,COS(z7t)

— M (2, ) M (2,8) Lo M (2, 1) — Ly Y MZPISIeo0 (5 4) (43)
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Equation (43) is first order stochastic perturbation equation.

3. POST MARKOVIAN PERTURBATION TO COHERENT AND QUADRATURE (NMEM)

In this section, we derive the first order coherent and quadrature (NMEM) by deriving
post Markovian perturbation to equation (2) and equation(3). For equation (2), we use
combined functional derivative for the probability operator f’(t) and Taylor expansion for
functional derivative operator do(z, ¢, s) in power of (t — s), which is defined as,

do(zrt,5) = E o+ 0oz, 1, 9)lmal(t = 5) + S [08do(, 1 )il — 5 (44)
The first order coherent NMEM is,
P(t) = —ilH, P()] + (Z*(t)LP(t) + P(t)Z()LT) — Li[Lgo(t) + [(Z*(1) L + Z(t)LT)Lgi (¢)
—LTL%g5(t) — L1L2gs(t)] + H( "L +1Z(E)P(LLY + LIL) + (Z(t)L1)?] Lgu(t)

—(Z*(t)L + Z(t)LT)LTL2g5(t) —(Z*(t)L + Z(t)LY) LT L g6(t)]
+5l-LL(Z* (WL + Z()E) Las (1) + L1 LE 005 (1) + L LL' E2gs(1)
5 [FBPENZH (O + 20 10)g5(1) + E2(L1) Lgs(t) + (L1 Lgr (1)
+%[—2ﬁz(z*(t)ﬁ + Z(t)LY) Lge(t) + 2LTLLTL2go (1)

VRETLEN 201 P(1) — P0) Ean(t) + 5[(Z* (0L + Z(1)E) Eaa (1)

BN Ega(t) — D E2gs(0)] + G127 (D) +1Z(0)P(EE + E1E) + (Z()EN)Ega(t

—(Z*(t)L + Z(t)LYLYL?g5(t) — (Z*(t)L + Z(t) LN LT L?g6(t)] + %[—ﬁi(z* (t)L
F2( P Egs(1) + EEE Egr(0) + LLE Pgs(0)] + 5[ E2E (2° ()
20PN g5(0) + L(ENEas(t) + BN Egn(0)] + 5[-2E 12" (OF + 2()E) Lgs(1)
+2LTLLTL2go(t) + 2L LLT L2 g10(1)]] L, (45)
Equation (45) is first order coherent (NMEM). where,
() = /0 “alt — 5)ds. (46)
at) = /0 "ot = 5)(t — )ds, (47)
/ / (t — $)a* (s — u)(t — s)duds, (48)
_ /0 /O ot — $)a(s — u)(t — s)duds, (49)
a(t) = / ot — )(t — 5)2ds, (50)

// (t — s)a* (s — w)(t — s)2duds, (51)
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g6(t) = / /u alt — s)afs — u)(t — s)*duds, (52)

oL L
/ /0 /0 aft — s)a* (s — u)a(u — v)(t — s)*dvduds, (54)
o= L
gio(t) = /0 /0 /0 at — s)a(s — u)a(u — v)(t — s)*dvduds. (56)

Now, for equation (3), also we use functional derivative for probability operator ]S(t) and
Taylor expansion for functional derivative operator mg(z,t,s) in power of (¢t — s), which
is defined as

N - N 1,90
m()(Z, t, S) =L+ [8{(710(2’, t, S)’tzs] (t - S) + §[at2m0(z7 t, S)’tzs] (t - 8)2‘ (57)
The first order quadrature NMEM is,
P(t) = —ilH,Pt)]+ (Z*)LTP(t) + P(t)Z(t)L) — Ly[Lro(t) + [(Z,L + Z; L) Lry
+

~+

alt — s)a* (s — u)a* (u — v)(t — s)*dvduds, (53)

[en]

aft — s)a(s — u)a* (u — v)(t — s)*dvduds, (55)

[e=]

(
$(L Lok 4 Lol2)ra(0)] 4+ 5 [(27 (0L +1ZOPET L+ L) + (2(8)L)2) Era(0)

)]

A A A 1 PN ~ ~
+ LT Lo (LT L, L + L, L?)r5(t)] + 5[—LILLT(ZtL + ZFLN)ry(t)
AAAAA 1

)
1
2
—(ZL + Z7LY) + Lo L*)ra(t

(¢
%[ LYLo(Z,L + Z LY Lry(t)

[—Lo(Z L + ZF LY Lrs(t)

N |

+£x(ﬁfixi + ﬁxﬁ)m(t)]]ﬁ(t) + P(t)[Lro(t) + [(ZL + Z; LY) Ly (t) — (LT L, L
+ L, L?)ro(t)] + %[[(Z*(t)ﬁT)Q +|Z®)2(LTL 4 LLY) 4 (Z(t)L)?|Lrs(t) — (Z:L +

X(LYLyL 4+ Lo L?)ra(t)] + 5[—LTLI(ZtL + ZfLT)Lm(t) + LTLy(LTLyL + Lo L*)rs(t)]

1 . .. . e e .

+Ly(LTLyL + Ly L*)rs(t )]]TL ),
Equation (58) is first order quadrature (NMEM). where,

/m_s (59)

1= /0 Bt — 8)(t — s)ds, (60)
:/ /uﬁ(t—s)ﬁ(s—u)(t—s)dud& (61)
0 JO
:// B(t — s)(t — s)*duds, (62)
0 JO

- / /uﬁ(t—s)ﬁ(s—u)(t—s)QdudS, (63)
0 JO

t)— (L'L,L

N

(58)
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= t ' ’ — S S—Uu u —v —SQUUS
w@—A[;AMt>m B — v)(t — 5)2dvduds, (64)

4. EXAMPLES

In order to have some application for the corresponding approach we need to consider
two systems. One is two level atom and the other is dissipative two level systems. We
describe these models by coherent and quadrature (NMEM) and first order coherent and
quadrature post Markovian (EM) respectively.

4.1. Two-level atom system. In this subsection, the corresponding system is given by,
L=)\o.. (65)

The coherent NMEM for this model is defined as,
Pt) = —i[%% P()]+(Z*(t)Ac. P(t)+ P(t) Z(t)Ao.) — Ao, Doz, t) P(t)— P(t) D} (2, t) Ao
(66)

Assume that J=1, then D%(z, t) = Do(z,t), we can find the zero order stochastic pertur-
bation equation to this system by using equation (16)

oDo(z,t) = |G]* o, — ng(z,t) + (Z*(t)Ao, + Z(t)Aoz)Do(z,t) — Dg(z, t)Ao,Dy(z,t)
—\o.D3(z,1). (67)

Also D{’k(z, t) = Di(z,t), one can obtain, the first order stochastic perturbation equation
by using equation (20)

k
oD1(z,t) = \Glz)\aZDo(t,t)—§D1(z,t)+|G|2Do(z,t))\az

ngg(z, t) + Do(z,t)(Z*(t)\o, + Z(t)Ao2)Do(z, 1)

—Dy(z,t) DT (z,t)Ao.Do(2,t) — D3(2,1) (68)
The quadrature NMEM for this model is defined as,
P(t) = —il5ou PO]+ (2" OAouP(t) + P(OZ(1))02)

—(Ao- + (Ao )Mo (2, t) P(t) + P(t)M] (2, t) (Ao
+((Ao2)) (69)
Assume J=1,then Mg’cos(z,t) = Mg’sm(z,t) = My(z,t), we have, zero order by equa-
tion(26)
k
O Mo(z,t) = 2|G]*No, — 5Mg(z,ze) +(Zihos + Zio,) My (z, t)
—M{(z,1)(Aox + ((A02) Mo(2,1) — (Aow + (A=) M (2,8) - (70)
Also MPFsnsinG 4y — ppiksinsing, 4y — ppikcossing, 4y — My (z,t) The first order by
using equation(29)

k k
oMy (z,t) = 2|G|*Ao.Mo(t,t) — §M1(z,t) + 2|G]2My(z, t) Ao, — §M0(Z, t)Mo(z,t)

H(ZiAo + Zi Ao ) M (2, 1) — Mo(z, )M (2, t)(Z Ao
+ZINo ) Mo(2,t) — (Mo, + ((Ao2)) ME (2, 1) (71)
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4.2. Dissipative two level atom model. In this subsection, we calculate the first order
coherent and quadrature (NMEM) for this model. The Hamiltonian and system operators
are defined as

L=Xo_. (72)
The first order coherent NMEM for two level atom is
P(t) = —i[%az, P(t)] + NZ*()o—P(t) + P(t) Z(t)o+) — Noyo_go(t) (1)
At 2 % A2 > 2 504 o F
F L2000 aro giO)P() + 5 0s Z(1)o—gs(t) P() ~ NP (1)g(Ho o
A4 S
+5 120 P)gi(toro-oro- (73)
The first order quadrature NMEM for this model,
Pt) = —i[%az, P)] 4+ MZ*(t)o s P(t) + P()Z(t)o_) — Noyo_ro(t)P(t) — X3 (0_).Z*(t)
B /\4 B /\5
xoyo_ri(t)P(t) — ?]Z(t)|20'+0,0+0,7"3(t)P(t) + ?0,0+U,Z*(t)o+a,r4(t)
A5 - A4 ~
+?0'_U+0'_J+Z*(t)U_T‘4(t)P<t) + ?U+U_Z*(t)U+J_T3(t)P(t)
~ 4 ~
—AP(t)rgoyo_o4 + %|Z(t)|2P(t)1“3(t)a+J_a+0_
A5 ~
—?TZ(t)P(t)J_FZ*(t)a_a+a_a+. (74)
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