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POSITION VECTOR OF A DEVELOPABLE h-SLANT RULED

SURFACE

O. KAYA1, M. ÖNDER2, §

Abstract. In physics and geometry, the determination of position vector of a moving
point is an important problem, since the trajectory of that point is a curve or a surface
which are important in physics, geometry, and applied sciences. By considering this
importance, in this paper, we give a new characterization for a special ruled surface
called h-slant ruled surface in the Euclidean 3-space E3. Later, using the obtained
result, we study the position vector of a developable h-slant ruled surface in E3. We
obtain the natural representations for the striction curve and ruling of an h-slant ruled
surface. Then, we give general parameterization of a developable h-slant ruled surface.
Finally, we introduce some examples of obtained results.
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1. Introduction

A general helix is a special curve whose tangent line makes a constant angle with a
fixed straight line called the axis of the general helix. This definition allows us to think a
general helix as a curve whose tangent indicatrix is a circle or an arc of a circle on the unit
sphere. The well-known characterization of a general helix is that the function k1/k2 is
constant where k1 and k2 are curvature and torsion of the curve, respectively [6]. Recently,
Izumiya and Takeuchi have introduced another type of special curves. They have called
this new curve as slant helix which is a curve whose principal normal lines make a constant
angle with a fixed direction and they have given a characterization for slant helix in E3

[8]. Moreover, slant helices have been studied by some mathematicians and new types of
these curves have been introduced in higher dimensional spaces. Kula and Yaylı studied
the spherical indicatrix of a slant helix and obtained that the spherical images of a slant
helix are helices lying on unit sphere [13]. Later, Kula et al. obtained some new results

characterizing slant helices in E3 [14]. Moreover, Önder et al. defined a new type of slant
helix called B2-slant helix in Euclidean 4-space E4 and introduced some characterizations
for B2-slant helix [17]. Furthermore, Önder, Zıplar, and Kaya introduced Eikonal slant
helices and Eikonal Darboux helices in 3-dimensional Riemannian manifold and given the
characterizations for these special curves [18].
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Similar to the special curves, there exist some special surfaces in the surface theory.
Ruled surface is a kind of such special surfaces which is generated with a continuous
moving of a line along a curve. Önder generalized the theory of general helix and slant
helix to ruled surfaces and called these ruled surfaces as slant ruled surfaces in E3 [16].
He defined the slant ruled surfaces by the property that the vectors of the Frenet frame of
a ruled surface make constant angles with fixed directions and obtained that the striction
curves of developable slant ruled surfaces are helices or slant helices. Önder and Kaya
defined Darboux slant ruled surfaces in E3 such as the Darboux vector of the ruled surface
makes a constant angle with a fixed direction and they gave characterizations for a ruled
surface to be a Darboux slant ruled surface [15].

One of the most important problems of physics and differential geometry is to determine
the position vector of a moving point. The trajectory of that point is a curve or a surface.
The determination of parametric representation of the position vector of an arbitrary space
curve or an arbitrary surface is still an open problem in the Euclidean space E3 and in
the Minkowski space E3

1 . It is not easy to solve this problem in general case. In ref.
[1, 2, 3, 4, 5, 7, 9, 10] the authors tried to solve this problem in some special cases such
as the curve lies on a special plane, or as the curve is a cylindrical helix, i.e., both the
curvature k1 and the torsion k2 of the curve are non-vanishing constants or the curve is
a general helix, i.e., the function k1/k2 is constant. All these studies are on curves. Of
course, the determination of a parametric representation of a surface is more complicated
and difficult since the surface has two parameters.

In this paper, we determine the parametric representation of an h-slant ruled surface
in the Euclidean 3-space E3. For this purpose, first we give a brief summary of ruled
surfaces and slant ruled surfaces in Section 2. The study of position vector of an h-slant
ruled surface in E3 is given in Section 3. Finally, some examples of the obtained results
are given in Section 4.

2. Ruled Surfaces in the Euclidean 3-space

This section contains a brief summary of the geometry of ruled surfaces and h-slant
ruled surfaces in E3.

A ruled surface S is a special surface generated by a continuous moving of a line along

a curve ~k(u) and has the parameterization

~r(u, v) = ~k(u) + v ~q(u), (1)

where the curve ~k = ~k(u) is called base curve or generating curve of the surface and
~q = ~q(u) is a unit direction vector of an oriented line in E3 whose various positions are
called rulings. The distribution parameter of S is the function d = d(u)defined by

d =

∣∣∣~̇k, ~q, ~̇q∣∣∣〈
~̇q, ~̇q
〉 , (2)

where ~̇k = d~k
du , ~̇q = d~q

du . If
∣∣∣~̇k, ~q, ~̇q∣∣∣ = 0, then the tangent planes are identical at all points

of the same ruling. Such a ruling is called a torsal ruling. If
∣∣∣~̇k, ~q, ~̇q∣∣∣ 6= 0, then the tangent

planes of the surface S are distinct at all points of same ruling. Such rulings are called
nontorsal [11].

Definition 2.1. [11] A ruled surface whose all rulings are torsal is called a developable
ruled surface. The remaining ruled surfaces are called skew ruled surfaces.
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From (2), it is clear that a ruled surface is developable if and only if at all its points
the distribution parameter is zero.

Let ~m be unit normal vector of the ruled surface S given in (1). Then we have

~m =
~ru × ~rv
‖~ru × ~rv‖

=
(~̇k + v~̇q)× ~q√〈

~̇k + v~̇q, ~̇k + v~̇q
〉
−
〈
~̇k, ~q
〉2 , (3)

If v infinitely decreases, then along a ruling u = u1, the unit normal ~m approaches a
limiting direction. This direction is called the asymptotic normal (or central tangent)
direction and from (3) defined by

~a = lim
v→±∞

~m(u1, v) =
~q × ~̇q∥∥∥~̇q∥∥∥ .

The point at which the unit normal of S is perpendicular to ~a is called the striction point
(or central point) C and the set of striction points of all rulings is called striction curve of
the surface.

The vector ~h defined by ~h = ~a×~q is called central normal vector. Then the orthonormal

system
{
C; ~q,~h,~a

}
is called Frenet frame of the ruled surface S where C is the central

point and ~q, ~h, ~a are the unit vectors of ruling, the central normal vector, and the central
tangent vector, respectively [11].

The set of all bounded vectors ~q(u) at the origin O constitutes a cone which is called
directing cone of the ruled surface S [11]. The end points of unit vectors ~q(u) trace a
spherical curve k1 on the unit sphere S2 and this curve is called spherical image of ruled
surface S, whose arc length is denoted by s1 [11]. A ruled surface and its directing cone

have the same Frenet frame
{
~q,~h,~a

}
and the derivative formulae of this frame with respect

to the arc length s1 are given as follows d~q/ds1
d~h/ds1
d~a/ds1

 =

 0 1 0
−1 0 κ
0 −κ 0

 ~q
~h
~a

 , (4)

where κ(s1) = ‖d~a/ds1‖ is called the conical curvature of the directing cone (For details
[11]).

Let us now choose the base curve as a striction curve. Then the parameterization of
ruled surface S is given by

~r (s, v) = ~c(s) + v~q(s), ‖~q(s)‖ = 1, (5)

where s is the arc length parameter of striction curve. If S is a developable ruled surface
then the tangent vectors of striction curve coincide with the rulings, i.e., d~c

ds = ~q. Then,
for the tangent vector of the striction curve we have

d~c

ds1
= f(s1)~q(s1), (6)

where d~c
ds = ~q and f(s1) = ds

ds1
[11].

Definition 2.2. [16] Let S be a ruled surface in E3 given by the parameterization

~r (s, v) = ~c(s) + v~q(s), ‖~q(s)‖ = 1,
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where ~c(s) is striction curve of S and s is arc length parameter of ~c(s). Let the Frenet

frame of S along ~c(s) be
{
~q,~h,~a

}
. Then S is called an h-slant ruled surface if the central

normal vector ~h makes a constant angle θ with a fixed non-zero unit direction ~u in the
space E3, i.e., 〈

~h, ~u
〉

= cos θ = constant, (θ 6= 0) (7)

If S is both an h-slant ruled surface and developable, then it is called a developable h-slant
ruled surface.

Theorem 2.1. [15] A ruled surface Sin E3 with conical curvature κ 6= 0 is an h-slant
ruled surface if and only if the function

κ′

(1 + κ2)3/2

is constant.

3. Position vectors of developable h-slant ruled surfaces

In this section, first we give a characterization for h-slant ruled surfaces. Later, we study
the position vectors of developable h-slant ruled surfaces. Unless mentioned otherwise, we

will assume that S has the Frenet frame {~q,~h,~a} and conical curvature κ 6= 0.

Theorem 3.1. The central normal vector ~h satisfies the following differential equation of
third order,

1

κ

[
1

κ′

(
~h′′ +

(
1 + κ2

)
~h
)]′

+ ~h = 0, (8)

where quotation mark shows the derivative with respect to s1.

Proof. From the Frenet formulae given in (4) we have

~h′ = −~q + κ~a. (9)

By differentiating (9) we obtain

~a =
1

κ′

(
~h′′ +

(
1 + κ2

)
~h
)
.

If we take the derivative of the last equation and use the Frenet formulae, it follows

1

κ

[
1

κ′

(
~h′′ +

(
1 + κ2

)
~h
)]′

+ ~h = 0,

which completes the proof.
�

Theorem 3.2. The ruled surface S is an h-slant ruled surface if and only if

κ = ± cot θs1√
1− cot2 θs21

, (10)

where θ is the constant angle between the fixed unit vector ~u and the central normal vector
~h.
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Proof. Since S is an h-slant ruled surface from (7), we have〈
~h, ~u

〉
= cos θ = constant. (11)

Differentiating (11) and using (4) we have

〈−~q + κ~a, ~u〉 = 0. (12)

By taking 〈~a, ~u〉 = x, we write the unit vector ~u as follows,

~u = κx~q + cos θ~h+ x~a, (13)

and since the vector ~u is a unit vector, we obtain

x = ± sin θ√
1 + κ2

.

Hence, (13) becomes

~u = ± κ sin θ√
1 + κ2

~q + cos θ~h± sin θ√
1 + κ2

~a. (14)

On the other hand, differentiating (12) gives us〈
κ′~a− (1 + κ2)~h, ~u

〉
= 0. (15)

Now, substituting (14) in (15) we get

κ′

(1 + κ2)3/2
= ± cot θ.

By integrating the last equation, it follows
κ√

1 + κ2
= ± cot θ (s1 +m) . (16)

Thanks to a parameter change s1 → s1 −m which makes m disappear and (16) becomes
κ√

1 + κ2
= ±(cot θ)s1.

Finally, from the last equation we obtain the desired result.
Conversely, let (10) holds. We define

~u = cos θ

(
s1~q + ~h±

√
1− (cot2 θ) s21

cot θ
~a

)
. (17)

From (17), it is clear that
〈
~h, ~u

〉
= cos θ = constant. By differentiating (17) and using (4)

and (10) we get ~u′ = 0, which means that ~u is a constant vector. Therefore, the surface S
is an h-slant ruled surface. �

Theorem 3.3. If S is a developable h slant ruled surface, then the position vector of the
striction curve ~c = (c1, c2, c3) of Sis given by: c1 = sin θ

∫
f
[∫

cos [sec θ arccos ((cot θ)s1)] ds1
]
ds1,

c2 = sin θ
∫
f
[∫

sin [sec θ arccos ((cot θ)s1)] ds1
]
ds1,

c3 =
∫
f [(cos θ)s1 + n] ds1,

or in the useful parametric form c1 = − sin2 θ
∫
γ
[∫

cos t sin (t cos θ) dt
]
dt,

c2 = − sin2 θ
∫
γ
[∫

sin t sin (t cos θ) dt
]
dt,

c3 = sin θ
∫
γ [cos (t cos θ) + n] dt,
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where f = ds/ds1, γ = ds/dt, n is a real constant and θ is the constant angle between the

fixed unit vector ~u and the central normal vector ~h.

Proof. Since S is an h-slant ruled surface, from Theorem 3.2 we have

κ = ± (cot θ)s1√
1− (cot2 θ) s21

. (18)

If we substitute (18) in (8), it becomes(
1−

(
cot2 θ

)
s21
)
~h′′′ − 3

(
cot2 θ

)
s1~h
′′ + ~h′ = 0. (19)

We write the central normal vector ~h as

~h = h1~e1 + h2~e2 + h3~e3, (20)

where h1 = h1(s1), h2 = h2(s1), h3 = h3(s1) are smooth functions of s1 and {~e1, ~e2, ~e3} is
the standard base of E3. Now, let the surface S be an h-slant ruled surface. Without loss
of generality we choose the fixed unit vector ~u as ~e3. Then, we get h3 = cos θ is constant.

Since ~h is a unit vector it follows

h21 + h22 = 1− cos2 θ = sin2 θ. (21)

For the general solution of (21) we can write

h1 = sin θ cos t, h2 = sin θ sin t,

where t = t(s1) is a smooth function of s1. Then, (20) becomes

~h = (sin θ cos t, sin θ sin t, cos θ) , (22)

and since the vector ~h satisfies (19), we get the following differential equations{ ((
cot2 θ

)
s1
)
t′ −

(
1−

(
cot2 θ

)
s21
)
t′′ = 0,

t′ −
(
1−

(
cot2 θ

)
s21
) [

(t′)3 − t′′′
]
−
(
3
(
cot2 θ

)
s1
)
t′′ = 0.

(23)

The general solution of the first equation of (23) is

t(s1) = n1 arccos ((cot θ)s1) + n2, (24)

or

t(s1) = n1 arcsin ((cot θ)s1) + n2, (25)

where n1, n2 are real constants. The constant n2 will disappear thanks to a parameter
change t→ t+ n2. By substituting (24) or (25) in the second equation of (23) we obtain

n1 cot θ
(
1 + cot2 θ

(
1− n21

))
= 0. (26)

Since cot θ 6= 0 and n1 6= 0, from (26) we get n1 = sec θ. Therefore, (24) and (25) becomes

t(s1) = sec θ arccos ((cot θ)s1) , (27)

and

t(s1) = sec θ arcsin ((cot θ)s1) , (28)

respectively. Thus, if we use (27), the components of the normal vector ~h become h1 = sin θ cos [sec θ arccos ((cot θ)s1)] ,
h2 = sin θ sin [sec θ arccos ((cot θ)s1)] ,
h3 = cos θ,

(29)



328 TWMS J. APP. ENG. MATH. V.7, N.2, 2017

and similarly from (28) they become h1 = sin θ cos [sec θ arcsin ((cot θ)s1)] ,
h2 = sin θ sin [sec θ arcsin ((cot θ)s1)] ,
h3 = cos θ.

(30)

From the Frenet formulae we have ~q′ = ~h. Therefore, if we integrate (29) we get q1 = sin θ
∫

cos [sec θ arccos ((cot θ)s1)] ds1,
q2 = sin θ

∫
sin [sec θ arccos ((cot θ)s1)] ds1,

q3 = (cos θ)s1 + n,
(31)

where n is an integration constant. Now, since the surface S is developable, we have
c′ = f~q. Then from (31), we have c1 = sin θ

∫
f
[∫

cos [sec θ arccos ((cot θ)s1)] ds1
]
ds1,

c2 = sin θ
∫
f
[∫

sin [sec θ arccos ((cot θ)s1)] ds1
]
ds1,

c3 =
∫
f [(cos θ)s1 + n] ds1,

and if we take the parameter t(s1) = sec θ arccos ((cot θ)s1), we achieve the parametric
form that completes the proof. �

From Theorem 3.3, we have the following corollaries:

Corollary 3.1. If S is a developable h-slant ruled surface, then the parameterization of S
with respect to the arc length parameter s1 of the spherical image curve of the ruled surface
is given by

~r(s1, v) = ~c(s1) + v~q(s1), (32)

where ~c = (c1, c2, c3) , ~q = (q1, q2, q3) and c1 = sin θ
∫
f
[∫

cos [sec θ arccos ((cot θ)s1)] ds1
]
ds1,

c2 = sin θ
∫
f
[∫

sin [sec θ arccos ((cot θ)s1)] ds1
]
ds1,

c3 =
∫
f [(cos θ)s1 + n] ds1, q1 = sin θ
∫

cos [sec θ arccos ((cot θ)s1)] ds1,
q2 = sin θ

∫
sin [sec θ arccos ((cot θ)s1)] ds1,

q3 = (cos θ)s1 + n.

Corollary 3.2. If S is a developable h-slant ruled surface, then the parameterization of
S with respect to the arbitrary parameter t is given by

~r(t, v) = ~c(t) + v~q(t), (33)

where ~c = (c1, c2, c3) , ~q = (q1, q2, q3) and c1 = − sin2 θ
∫
γ
[∫

cos t sin (t cos θ) dt
]
dt,

c2 = − sin2 θ
∫
γ
[∫

sin t sin (t cos θ) dt
]
dt,

c3 = sin θ
∫
γ [cos (t cos θ) + n] dt, q1 = − sin2 θ

∫
cos t sin (t cos θ) dt,

q2 = − sin2 θ
∫

sin t sin (t cos θ) dt,
q3 = sin θ cos (t cos θ) + n.

On the other hand, from equation (30) we give the following corollary:
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Corollary 3.3. If S is a developable h-slant ruled surface, then the position vector of the
striction curve c = (c1, c2, c3) of Sis given by: c1 = sin θ

∫
f
[∫

cos [sec θ arcsin ((cot θ)s1)] ds1
]
ds1,

c2 = sin θ
∫
f
[∫

sin [sec θ arcsin ((cot θ)s1)] ds1
]
ds1,

c3 =
∫
f [(cos θ)s1 + n] ds1,

or in the useful parametric form c1 = sin2 θ
∫
γ
[∫

cos t cos (t cos θ) dt
]
dt,

c2 = sin2 θ
∫
γ
[∫

sin t cos (t cos θ) dt
]
dt,

c3 = sin θ
∫
γ [sin (t cos θ) + n] dt,

where f = ds/ds1, γ = ds/dt, s1 is the arc length parameter of the spherical image curve
of the ruled surface, t is an arbitrary parameter, n is a real constant, and θ is the constant

angle between the fixed unit vector ~u and the central normal vector ~h.

4. Examples

In this section, we take some special chosen of conical curvature κ and function γ and
obtain some examples of developable h-slant ruled surfaces.

Example 4.1. Let us consider the ruled surface S with conical curvature κ = s1√
1−s21

and

function γ = 1. Then the parameterization of developable h-slant ruled surface S with axis
~e3 is obtained as follows

~r(t, v) = (r1, r2, r3),

where

r1 =
1

4

(
sin
((

1 + 1
2

√
2
)
t
)(

1 + 1
2

√
2
)2 +

sin
((
−1 + 1

2

√
2
)
t
)(

−1 + 1
2

√
2
)2 + v

(
−

cos
((

1 + 1
2

√
2
)
t
)(

1 + 1
2

√
2
) −

cos
((
−1 + 1

2

√
2
)
t
)(

−1 + 1
2

√
2
) ))

,

r2 =
1

4

(
cos
((
−1 + 1

2

√
2
)
t
)(

−1 + 1
2

√
2
)2 −

cos
((

1 + 1
2

√
2
)
t
)(

1 + 1
2

√
2
)2 + v

(
sin
((
−1 + 1

2

√
2
)
t
)(

−1 + 1
2

√
2
) −

sin
((

1 + 1
2

√
2
)
t
)(

1 + 1
2

√
2
) ))

,

r3 = sin

(
1

2

√
2t

)
+ v sin (t) cos

(
1

2

√
2t

)
,

and t(s1) = sec θ arccos (cot θs1) (See Fig. A).

Example 4.2. If we take κ =
√
3s1√

9−3s21
and γ = t, the parameterization of developable

h-slant ruled surface S with axis ~e3 is obtained as follows

~r(t, v) = (r1, r2, r3),

where

r1 = 2t
(
1
3

(
cos
(
1
2 t
))2

sin
(
1
2 t
)

+ 2
3 sin

(
1
2 t
))

+ 4
9

(
cos
(
1
2 t
))3

−10
3 cos

(
1
2 t
)
− 3t sin

(
1
2 t
)

+ v
(
−1

4 cos
(
3
2 t
)

+ 3
4 cos

(
1
2 t
))
− t+ 3− 4v,

r2 = −2t
(
−1

3

(
sin
(
1
2 t
))2

cos
(
1
2 t
)
− 2

3 cos
(
1
2 t
))
− 4

9

(
sin
(
1
2 t
))3

−8
3 sin

(
1
2 t
)

+ v
(
3
4 sin

(
1
2 t
)
− 1

4 sin
(
3
2 t
))
− 2t+ 1,

r3 =
1

2

√
3

(
4 cos

(
1

2
t

)
+ 2t sin

(
1

2
t

))
+ v sin (t) cos

(
1

2
t

)
+ 2t− 2− 2v,

and t(s1) = sec θ arccos (cot θs1)(See Fig. B).
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(a) h-slant ruled surface (b) h-slant ruled surface
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