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SOLUTION TO TIME FRACTIONAL COUETTE FLOW

A. AGHILI1, §

Abstract. In this study, the Couette flow of a second grade fluid is discussed in a
porous layer when the bottom plate moves suddenly. The Laplace transform method
is implemented to derive the analytical solution.The main object of this paper is to
demonstrate how we can make significant progress in treating a variety of problems
in the theory of partial fractional differential equations by combining theory of special
functions and operational methods. In this article, it has been shown that the combined
use of integral transforms and exponential operators methods provides a powerful tool
to solve certain system of KdV. Constructive examples are also provided.

Keywords: Fractional partial differential equations, Riemann Liouville fractional deriva-
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1. Introduction

In this work, we present a general method of operational nature to obtain solutions for
several types of partial fractional differential equations.
Definition 1.1: The Laplace transform of function f(t) is defined as follows

L{f(t)} =

∫ ∞
0

e−stf(t)dt = F (s). (1.1)

If L{f(t)} = F (s), then L−1{F (s)} is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, (1.2)

where F (s) is analytic in the region Re(s) > c.
Definition 1.2: The Fourier transform of function f(t) is defined as follows

F{f(t)} = ( 1√
2π

)
∫ +∞
−∞ eiωtf(t)dt := F (ω). (1.3)

If F{f(t)} = F (ω), then F−1{F (ω)} is given by

F−1{F (ω)} = ( 1√
2π

)
∫ +∞
−∞ e−itωF (ω)dω = f(t). (1.4)

Definition 1.3: If the function Φ(t) belongs to C[a, b] and a < t < b,
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then the left Riemann-Liouville fractional integral of order 0 < α < 1 is defined as [11]

IRL,αa {Φ(t)} =
1

Γ(α)

∫ t

a

Φ(ξ)

(t− ξ)1−αdξ. (1.5)

The left Riemann-Liouville fractional derivative of order 0 < α < 1 is defined as follows
[11]

DRL,α
a φ(t) = 1

Γ(1−α)
d
dt

∫ t
a

Φ(ξ)
(t−ξ)αdξ. (1.6)

It follows that DRL,α
a φ(x) exists for all Φ(t) belongs to C[a, b] and a < t < b .

Note: A very useful fact about the R - L operators is that they satisfy semi group properties
of fractional integrals.The special case of fractional derivative when α = 0.5 is called semi
- derivative.
Definition 1.4: The left Caputo fractional derivative of order α (0 < α < 1) of φ(t) is as
follows[9]

Dc,α
a φ(t) = 1

Γ(1−α)

∫ t
a

1
(t−ξ)αφ

′(ξ)dξ. (1.7)

Lemma 1.1. Let L{f(t)} = F (s) then the following identities hold true.

(1) L−1(e−k
√
s) = k

(2
√
π)

∫∞
0 e

−tξ− k
2

4ξ dξ,

(2) e−ωs
β

= 1
π

∫∞
0 e−r

β(ωcosβπ)sin(ωrβsinβπ)(
∫∞

0 e−sτ−rτdτ)dr,

(3) L−1(F (sα)) = 1
π

∫∞
0 f(u)

∫∞
0 e−tr−ur

αcosαπsin(urαsinαπ)drdu,

(4) L−1(F (
√
s) = 1

2t
√
πt

∫∞
0 ue−

u2

4t f(u)du,

(5) L−1( 1√
s(
√
s+a)

) = ea
2tErfc(a

√
t),

(6) L−1( a
s(
√
s+a)

) = 1− ea2tErfc(a
√
t).

Proof. See [1][3].
Lemma 1.2. The following exponential identities hold true.

(1) exp(±λ d
dt)Φ(t) = Φ(t±λ),

(2) exp(±λt ddt)Φ(t) = Φ(te±λ),

(3) exp(λq(t) ddt)Φ(t) = Φ(Q(F (t) + λ)),

where F (t) is the primitive function of (q(t))−1 and Q(t) is the inverse function of F (t).
Proof. See[2] [5][6].
Lemma 1.3. The following exponential identity holds true.

(1) exp(λ d3

dt3
)Φ(t) =

∫∞
−∞Φ(t+ ξ 3

√
3λ)Ai(ξ)dξ. (1.8)

Proof. It is well known that F{Ai(t)} = 1√
2π
exp(i (ω)3

3 ), (1.9)

in other words, we have the following relation

F{Ai(t)} = ( 1√
2π

)
∫ +∞
−∞ eiωtAi(t)dt := 1√

2π
exp(i (ω)3

3 ). (1.10)

Let us introduce a change of parameter as follows

( 3
√

3λ)β = iw, (1.11)
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after substitution of (1.11) in (1.10) and simplifying, we obtain

F{Ai(t)} = ( 1√
2π

)
∫ +∞
−∞ e

3√
3λβtAi(t)dt := 1√

2π
exp(λβ3), (1.12)

in relation (1.12), if we set β = d
dt , we get the following operational identity,

exp(λ d3

dt3
)Φ(t) =

∫ +∞
−∞ (e

3√
3λξ d

dtΦ(t))Ai(ξ)dξ. (1.13)

In view of the first part of the Lemma 1.1, we obtain

exp(λ d3

dt3
)Φ(t) =

∫ +∞
−∞ Φ(t+ ξ 3

√
3λ))Ai(ξ)dξ. (1.14)

Note: In the above identity, Ai(.) stands for the Airy function (see[12]for details).
The Laplace transform is useful tool in applied mathematics, for instance for solving sin-
gular integral equations, partial differential equations, and in automatic control, where it
defines a transfer function.

Example 1.1. Let us consider the following nonlinear impulsive differential equation

(
√
Dt − a)y(t) = (t− λ)kδ(k)(t− λ). (1.15)

Solution. Direct use of part 3 of the Lemma 1.1, the above differential equation can be
written as below

y(t) = 1
(
√
Dt−a)

(t− λ)kδ(k)(t− λ),

from which we deduce

y(t) =
∫∞

0 dξ e
−aξ
√
a+ξ

e−ξDt(t− λ)kδ(k)(t− λ),

finally, using elementary properties of Dirac delta function leads to the following solution

y(t) =
∫∞

0 dξ e
−aξ
√
a+ξ

(−1)kk!δ(t− ξ − λ) = (−1)kk!e−a(t−λ)√
π(a+t−λ)

.

Example 1.2. Show that the following exponential identities hold true.

(1) exp(± km

mtm−1
d
dt)Φ(t) = Φ( m

√
tm ± km),

(2) exp(−kt2 ddt)Φ(t) = Φ( t
k+t).

Solution.(part1).
Let us take ±km

m = λ and q(t) = 1
tm−1 , then we get 1

q(t) = tm−1 and F (t) = tm

m where F (t)

is the primitive function of 1
q(t) . Q(t) the inverse function of F (t) is Q(t) = m

√
mt. Now,

direct application of part 4 of the Lemma 1.2 leads to the following

exp(± km

mtm−1
d
dt)Φ(t) = Φ( m

√
tm +mλ) = Φ( m

√
tm ± km).

Solution.(part2).Let us take −t2 = q(t) then 1
q(t) = − 1

t2
from which we get F (t) = 1

t where

F (t) is the primitive function of 1
q(t) . Q(t) the inverse function of F (t) , therefore, we get

Q(t) = 1
t .In view of part 4 of the Lemma 1.2, we have

exp(−kt2 ddt)Φ(t) = Φ( t
k+t).
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Example 1.3. Let us solve the following fractional Volterra integral equation of convo-
lution type. The Laplace transform provides a useful technique for the solution of such
fractional singular integro- differential equations.

λ
∫ t

0 exp(β(t− ξ))Dαφ(ξ)dξ = ( ta)
µ
2 Jµ(2

√
at), φ(0) = 0.

Solution. Upon taking the Laplace transform of the given integral equation, yields

sαΦ(s) λ
(s−β) = e−

a
s

s1+µ
,

solving the above equation, leads to

Φ(s) = (s−β)e−
a
s

(λ)s1+α+µ
,

or equivalently

Φ(s) = (se−
a
s−βe−

a
s )

(λ)s1+α+µ
,

at this stage, taking the inverse Laplace transform term wise, after simplifing we obtain

φ(t) = 1
λ( ta)

α+µ
2 Jα+µ(2

√
at)− β

λ ( ta)
(α+µ+1)

2 Jα+µ+1(2
√
at).

Note: Jη(.), stands for the Bessel’s function of the first kind of order η[12].
Lemma1.4. The following second order exponential operator relation holds true.

1. exp(r( ∂
∂x)2)Φ(x) = 1

(2r
√
π)

∫∞
0 e−

u2

4r (Φ(x+ iu) + Φ(x− iu))du. (1.16)

Proof. Let us consider the following elementary integral

r
√
π exp(−r(b2 − a2)) =

∫∞
0 e−

u2

4r cos(au) cosh(bu)du. (1.17)

By integration by parts, we can easily find the value of the integral and after some algebra,
we obtain

exp(−r(b2 − a2)) = 1
(2r
√
π)

∫∞
0 e−

u2

4r (exp(iau) + exp(−iau)) cosh(bu)du. (1.18)

1 . In the above integral relation, we set a = ( ∂
∂x), b = 0 to obtain

exp(r( ∂
∂x)2)Φ(x) = 1

(2r
√
π)

∫∞
0 du(e−

u2

4r (exp(iu)( ∂
∂x) + exp(−iu)( ∂

∂x))Φ(x), (1.19)

in view of the Lemma 1.1, we get finally

exp(r( ∂
∂x)2)Φ(x) = 1

(2r
√
π)

∫∞
0 e−

u2

4r (Φ(x+ iu) + Φ(x− iu))du.

Lemma 1.5. Let us assume that

L{Jµ(λt)

t
} =

∫ ∞
0

e−st
Jµ(λt)

t
dt :=

((
√
s2 + λ2)− s)µ

µλµ
, (1.20)

then, we have the following integral identities

∫ ∞
0

J∗µ(λt)

t
dt := − 1

µ2
, (1.21)

∫ ∞
0

J 1
3
(λt)− J− 1

3
(λt

t
dt =

∫ ∞
0

−
√

3Bi(−λ(1.5t)
2
3 )

t(1.5t)
1
3

dt = 9, (1.22)
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and ∫ ∞
0

J 2
3
(λt) + J− 2

3
(λt

t
dt =

∫ ∞
0

√
3Bi′(−λ(1.5t)

2
3 )

t(1.5t)
2
3

dt = 3. (1.23)

WhereJν(.) stands for the Bessel’s function of the first kind of order ν and Ai(.), Bi(.) are
the Airy functions of first and secon kind (see[11] for details).
Proof. By definition of the Laplace transform, we have

L{Jµ(λt)

t
} =

∫ ∞
0

Jµ(λt)e−st

t
dt =

((
√
s2 + λ2)− s)µ

µλµ
. (1.24)

Let us introduce a change of parameter s = λ sinhφ, after simplifying in the above integral,
we obtain ∫ ∞

0

Jµ(λt)e−(λ sinhφ)t

t
dt :=

e−φµ

µ
. (1.25)

In relation (1.25), let us first choose φ = 0 after simplifying, we have∫ ∞
0

Jµ(λt)

t
dt =

1

µ
, (1.26)

at this point, if we differentiate with respect to order µ, we get∫ ∞
0

J∗µ(λt)

t
dt = − 1

µ2
. (1.27)

In relation (1.26), let us first choose µ = 1
3 , µ = −1

3 and µ = 2
3 , µ = −2

3 after subtracting
and adding the relations respectively, we obtain

∫ ∞
0

J 1
3
(λt)− J− 1

3
(λt

t
dt =

∫ ∞
0

−
√

3Bi(−λ(1.5t)
2
3 )

t(1.5t)
1
3

dt = 9, (1.28)

and ∫ ∞
0

J 2
3
(λt) + J− 2

3
(λt

t
dt =

∫ ∞
0

√
3Bi′(−λ(1.5t)

2
3 )

t(1.5t)
2
3

dt = 3. (1.29)

2. Linearized Korteweg. de - vries

Solution to Time Fractional Non- Homogeneous Linearized KdV

The KdV equations are attracting many researchers, and a great deal of works has already
been done in some of these equations. In this section, we will implement the operational
method to construct exact solution for a variant of the KdV equation.
Problem 2.1. Let us consider the following linearized KdV.We implement integral trans-
form method to obtain a formal solution to the above mentioned linearized KdV.

(∂)0.5u(x, t)

∂t0.5
+
∂3u(x, t)

∂x3
= k, (1)

where −∞ < x <∞ , t > 0 and subject to the initial condition

u(x, 0) = φ(x),−∞ < x <∞.

Note: Fractional derivative is in the Caputo sense.The constant k is the source term.Though
much simplified compared with the nonlinear KdV, the above equation itself has many



88 SOLUTION TO TIME FRACTIONAL COUETTE FLOW

applications. As an example, it is used to study the propagation of fairly long waves in the
shallow water. Linearty property makes possible to use many effective analytical methods
such as the Laplace transform.
Solution: Let us define the joint Laplace - Fourier transform as follows

F{L{u(x, t)} = ( 1√
2π

)
∫ +∞
−∞ eiωx

∫∞
0 e−stu(x, t)dt)dx := U(ω, s),

taking the joint Laplace - Fourier transform of PDE term wise and Fourier transform of
boundary condition leads to the following relationship

U(ω, s) = s−0.5Φ(ω)
s0.5+(iω)3

+ ks−1δ(ω)
s0.5+(iω)3

,

upon inverting the joint Laplace - Fourier transform leads to

F−1{L−1{u(x, t)} = ( 1√
2π

)
∫ +∞
−∞ e−iωx(

∫ c+i∞
c−i∞

s−0.5Φ(ω)est+ks−1δ(ω)est

s0.5+(iω)3
ds)dω := u(x, t),

or, equivalently

u(x, t) = ( 1√
2π

)(
∫ +∞
−∞ e−iωxΦ(ω)(

∫ c+i∞
c−i∞

estds√
s(
√
s+(iω)3)

)dω + ......

.........+ k
∫ +∞
−∞ e−iωxδ(ω)(

∫ c+i∞
c−i∞ ( estds

s(
√
s+(iω)3)

)dω)

in view of the Lemma 1.1 and after calculation of the inner integrals we obtain

u(x, t) = 1√
2π

(
∫ +∞
−∞ e−iωx−ω

6tΦ(ω)(Erfc((iω)3
√
t)dω + ....

...........+
∫ +∞
−∞ e−iωx−ω

6t δ(ω)
(iω)3

(1− Erfc((iω)3
√
t))dω,

finally,

u(x, t) = 1√
2π

(
∫ +∞
−∞ e−iωx−ω

6tΦ(ω)Erfc((iω)3
√
t)dω − k

√
t),

obviously, we have

u(x, 0) = ( 1√
2π

)
∫ +∞
−∞ e−iωxΦ(ω)dω = φ(x).

Problem 2.2. Let us consider the following system of linear KdV. We implement the
exponential operator scheme to obtain a formal solution to the system.

∂u(x, t)

∂t
− βv(x, t) +

∂3u(x, t)

∂x3
= 0, (2)

∂v(x, t)

∂t
+ βu(x, t) +

∂3v(x, t)

∂x3
= 0, (3)

where −∞ < x < ∞ , t > 0 and subject to the boundary conditions and the initial
condition

u(x, 0) = Φ(x), v(x, 0) = Ψ(x),−∞ < x <∞.
Solution: Let us define the function w(x, t) = u(x, t) + iv(x, t) and the initial condition
w(x, 0) = Ω(x) we get the following KdV equation

∂w(x, t)

∂t
+ iβw(x, t) +

∂3w(x, t)

∂x3
= 0, (4)

with the initial condition w(x, 0) = Ω(x). At this point, in order to solve the above linear
KdV, we may rewrite the equation in the following form

∂w(x, t)

∂t
= −(iβ +

∂3

∂x3
)w(x, t). (5)
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In order to obtain a solution for equation (4), first by solving the first order PDE with
respect to t, and applying the initial condition, we get the following

w(x, t) = exp(−iβt) exp(−t ∂3
∂x3

)Ω(x),

by virtue of the Lemma 1.2, we have

w(x, t) = exp(−iβt)
∫∞
−∞Ω(x− ξ 3

√
3t)Ai(ξ)dξ,

finally, we obtain the solution to the system of KdV as below

u(x, t) = cos(βt)
∫∞
−∞Φ(x− ξ 3

√
3t)Ai(ξ)dξ + sin(βt)

∫∞
−∞Ψ(x− ξ 3

√
3t)Ai(ξ)dξ,

and

v(x, t) = cos(βt)
∫∞
−∞Ψ(x− ξ 3

√
3t)Ai(ξ)dξ − sin(βt)

∫∞
−∞Φ(x− ξ 3

√
3t)Ai(ξ)dξ.

Note: It is easy to verify that u(x, 0) = Φ(x) , v(x, 0) = Ψ(x).

3. Evaluation of Certain Integrals and Solution to
Singular Integral Equation

The main purpose of this section is to introduce the use of exponential differential op-
erator technique for evaluation of certain integrals.
where Eα,β(. : .) stands for the Mittag-Leffler function with parameters α, β.
Note:The special function of the form defined by the following series representation
Eα;β,γ(x) =

∑∞
n=0

xn

Γα+1(nβ+γ)

is known as α- Mittag - Leffler function with three papameters. It has a wide applica-
tion in the problem of physics, chemistry, engineering, applied mathematical sciences. An
extension of Mittag - Leffler function of two parameters has given by H.M.Srivastava(see
[13] for details).
Lemma 3.1. Considering the integral

I0 = I(x, α;β, γ) =
∫∞

0 Eα;β,γ( x
(k2+t2)µ

)dt, (3.1)

as a function with parameters α ;β,γ, show thatI(x, α;β, γ) satisfies the following rela-
tionship

I0 =
∫∞

0 Eα;β,γ( x
(k2+t2)µ

)dt =
∑∞

n=0
k
√
π

2Γα+1(nβ+γ)
Γ(µ(n+ν)−0.5)

Γ(µ(n+ν)) (k−2µx)n.(3.2)

Proof. By making a change of variable t = ky and letting x = k2µr , we get

I0 = k
∫∞

0 Eα;β,γ( r
(1+y2)µ

)dy, (3.3)

The above integral can be written in the following operational form

I0 = k
∫∞

0 Eα;β,γ( r
(1+y2)µ

)dy = k(
∫∞

0 ( 1
1+y2

)µrDrdy)Eα;β,γ(r), (3.4)

after evaluation and simplifying the right hand side integral, this last result leads to

I0 = k
∫∞

0 Eα;β,γ( r
(1+y2)µ

)dy = k
√
π

2
Γ(µrDr−0.5)

Γ(µrDr)
Eα;β,γ(r). (3.5)

By using Taylor expansion of the α - Mittag-Leffler function with parameters α,β,γ ,
we have

I0 = k
√
π

2

∑∞
n=0

1
Γα+1(nβ+γ)

Γ(µrDr−0.5)
Γ(µrDr)

(r)n, (3.6)

finally,

I0 = k
√
π

2

∑∞
n=0

1
Γα+1(nβ+γ)

Γ(µ(n+ν)−0.5)
Γ(µ(n+ν)) (k−2µx)n. (3.7)
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Corollary 3.1. Let us consider the following Fredholm singular integral equation∫∞
−∞ e

−ξ2φ(x+ 2ξ
√
λ)dξ = k

x+ω , (3.8)

the above integral equation has the following formal solution

Φ(x) = k
2λe

(x+ω)2

4λ . (3.9)

Proof. Let us rewrite the right hand side of the above equation as below∫∞
−∞ dξe

−ξ2e−2
√
λξDxΦ(x) = k

x+ω , (3.10)

and treating the derivative operator as a constant, the evaluation of the integral yields

Φ(x) = 1√
π
eλD

2
x k
x+ω , (3.11)

at this point, using relation (1.23) , leads to

Φ(x) = 1√
π

1
(2λ
√
π)

∫∞
0 e−

u2

4λ ( k
x+iu+ω + k

x−iu+ω )du, (3.12)

from which and after some easy calculations, we arrive at

Φ(x) = k(x+ω)
2λπ

∫∞
−∞

e−
u2

4λ

u2+(x+ω)2
du, (3.13)

in order to evaluate the above integral, we may use calculus of residues to obtain

Φ(x) = k
2λe

(x+ω)2

4λ . (3.14)

4. Time Fractional Couette Flow

Fractional calculus has been used to model physical and engineering processes which
are found to be best described by fractional differential equations. It is worth noting that
the standard mathematical models of integer order derivatives, including nonlinear mod-
els do not work adequately in many cases. In this section, the author implemented the
operational method for solving certain time fractional partial differential equations. The
study of non-Newtonian fluids has generated much interest in recent years in view of their
numerous industrial applications [7], especially in polymer and chemical industries. The
examples of such fluids includes various suspensions such as coal-water or coal-oil slur-
ries, molten plastics, polymer solutions, food products, glues, paints, printing inks, soaps,
shampoos, toothpastes, clay coating, grease, cosmetic products, custard, blood, etc. Cou-
ette flow is an important type of flow in the history of fluid mechanics. Researchers have
deep interest in this flow and they study it in many ways. Some important studies about
this flow are as follows: Fang [8] studied Couette flow problem for unsteady incompress-
ible viscous fluid bounded by porous walls. Khaled and Vafai [10] considered Stokes and
Couette flows due to an oscillating wall. Consequently, considerable attention has been
given to the solution of fractional partial differential equations of physical interest. In
fluid dynamics Couette flow is the laminar flow of a viscous fluid in the space between two
parallel plates, one of which is moving relative to the other. The flow is driven by virtue
of viscous drag force acting on the fluid and the applied pressure gradient parallel to the
plates. This type of flow is named in honor of Maurice Marie Alfred Couette. Couette flow
is frequently used in physics and engineering to illustrate shear driven fluid motion[4].
The simplest conceptual configuration finds two infinite, parallel plates separated by a
distance h. One plate, say the bottom one, translates with a constant velocity u0 in its
own plane. This equation reflects the assumption that the flow is uni-directional. That is,
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only one of the three velocity components is non-trivial.

Problem 4.1: Solving the Couette Flow with sudden motion of bottom plate

(1 + l2β2)Dα
t u(y, t) = ∂2u

∂y2
+ l2 ∂2

∂y2
Dα
t u(y, t) + β2u, 0 ≤ α < 1, (4.1)

u(0, t) = tα−1

Γ(α) , u(1, t) = 0, u(y, 0) = 0, 0 < y < 1. (4.2)

Solution: The Laplace transform applied to (4.1) yields

∂2U
∂y2
− (β

2+(1+l2β2)sα

1+sαl2
)U = 0, (4.3)

the solution of which is

U(y, s) = c1e
−y

√
β2+(1+l2β2)sα

1+sαl2 + c2e
+y

√
β2+(1+l2β2)sα

1+sαl2 . (4.4)

Taking into account the Laplace transform of the boundary conditions

U(0, s) = 1
sα , U(1, s) = 0, (4.5)

and therefore, through use of the relation (4.5), we arrive at the result

U(y, s) =
sinh((1−y)

√
β2+(1+l2β2)sα

1+sαl2
)

sαsinh(

√
β2+(1+l2β2)sα

1+sαl2
)

. (4.6)

At this stage, in order to invert (4.6), we use the method of the residues.
Let us define the function G(y, s) as follows

G(y, s) =
sinh((1−y)

√
β2+(1+l2β2)s

1+sl2
)

ssinh(

√
β2+(1+l2β2)s

1+sl2
)

, (4.7)

it is easy to verify that G(y, sα) = U(y, s). (4.8)

The function G(y, s) has a simple pole at s = 0 and simple poles at sk = − β2+(πk)2

1+l2(β2+(πk)2)
,

k = 1, 2, 3, ..., therefore, we find that

L−1G(y, s) = (Res
sinh((1−y)

√
β2+(1+l2β2)s

1+sl2
)

ssinh(

√
β2+(1+l2β2)s

1+sl2
)

: s = 0)+

+
∑k=+∞

k=1 (Res
sinh((1−y)

√
β2+(1+l2β2)s

1+sl2
)

ssinh(

√
β2+(1+l2β2)s

1+sl2
)

: sk = − β2+(πk)2

1+l2(β2+(πk)2)
). (4.9)

Let us evaluate the residues at simple poles

s = 0, sk = − β2+(πk)2

1+l2(β2+(πk)2)
, k = 1, 2, 3, ...,. (4.10)

The residue at simple pole s = 0 is as follows

b0 = lims−>0

sinh((1−y)

√
β2+(1+l2β2)s

1+sl2
)

sinh(

√
β2+(1+l2β2)s

1+sl2
)

= sinh(1−y)β
sinhβ . (4.11)
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The residue at simple poles sk = − β2+(πk)2

1+l2(β2+(πk)2)
, k = 1, 2, 3, ...

after simplifying is as follows

bk = lims−>sk
(s−sk)sinh((1−y)

√
β2+(1+l2β2)s

1+sl2
)

ssinh(

√
β2+(1+l2β2)s

1+sl2
)

= − (1−y)siny
(β2+(πk)2)(1+l2(β2+(πk)2)

,(4.12)

from which we deduce

L−1G(y, s) = g(y, t) = h(t)( sinh(1−y)β
sinhβ + 2π

∑+∞
k=1

(−1)kkesktsin(1−y)kπ
(β2+(πk)2)(1+l2(β2+(πk)2)

),

finally, by using part three of the Lemma 1.1, we arrive at the solution to (4.1)-(4.2)

L−1U(y, s) = L−1G(y, sα) = 1
π

∫∞
0 g(y, w)(

∫∞
0 e−tr−wr

αcosαπsin(wrαsinαπ)dr)dw.(4.13)

Let us consider the special case α = 0.5 , using part four of the Lemma 1.1, we get the
following

(1 + l2β2)D0.5
t u(y, t) = ∂2u

∂y2
+ l2 ∂2

∂y2
D0.5
t u(y, t) + β2u, (4.14)

u(0, t) = 1√
πt
, u(1, t) = 0, u(y, 0) = 0, 0 < y < 1, .(4.15)

with formal solution as below

L−1U(y, s) = L−1G(y,
√
s) = 1

2t
√
πt

∫∞
0 re−

r2

4t g(y, r)dr, (4.16)

equivalently,

u(y, t) = 1
2t
√
πt

∫∞
0 re−

r2

4t h(r)( sinh(1−y)β
sinhβ + 2π

∑+∞
k=1

(−1)kkersksin(1−y)kπ
(β2+(πk)2)(1+l2(β2+(πk)2)

)dr,(4.17)

it is easy to check the boundary conditions;

u(y, 0) = 0, u(1, t) = 0, u(0, t) = 1√
πt

.

Note. In relation (4.17) h(.) stands for the Heaviside unit step function.

5. Conclusion

Operational methods provide fast and universal mathematical tool for obtaining solu-
tion of PDEs or even FPDEs. Combination of integral transforms, operational methods
and special functions give more powerful analytical instrument for solving a wide range of
engineering and physical problems. The paper is devoted to study exponential operators
and their applications in solving certain boundary value problems. The main purpose of
this work is to develop methods for solving certain linear time fractional Couette flow.
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