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INTEGRAL TRANSFORMS OF THE GALUE TYPE STRUVE

FUNCTION
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Abstract. This paper refers to the study of generalized Struve type function. Using
generalized Galué type Struve function (GTSF), we derive various integral transforms,
including Euler transform, Laplace transform, Whittakar transform, K-transform and
fractional Fourier transform. The transform images are expressed in terms of the gener-
alized Wright function. Interesting special cases of the main results are also considered.
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1. Introduction and preliminaries

Integral transforms have been widely used in various problems of mathematical physics
and applied mathematics (for some recent works, see, e.g., [16, 15, 6, 13]). Integral trans-
forms with such special functions as (for example) the hypergeometric functions have been
played important roles in solving numerous applied problems. This information has in-
spired the study of several integral transforms with verity of special functions (see [5]).
The present paper deals with the evaluation of the Euler transform, Laplace transform,
Whittakar transform, K-transform and Fractional Fourier transform of the Galué type
Struve function recently introduced by [12]. Special cases of the results are also pointed
out briefly.

For the convenience of the reader, we give here the baisc definitions and related notations
which is necessary for the understanding of this study.

Definition 1.1 (Generalized Galué type Struve function [12]). The generalized form of
Struve function, named as generalized Galué type Struve function (GTSF), is defined as:

aw
λ,µ
p,b,c,ξ(z) =
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k=0

(−c)k

Γ (λk + µ) Γ
(
ak + p

ξ + b+2
2

) (z
2

)2k+p+1
, a ∈ N; z, p, b, c ∈ C. (1)

where λ > 0, ξ > 0 and µ is an arbitrary parameter.
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of Mathematics, 2018; all rights reserved.

114



D.L.SUTHAR, S.D.PUROHIT AND K.S.NISAR: INTEGRAL TRANSFORMS... 115

For the detailed definition of the Struve function and its more generalization, the interested
reader may refer to the research papers Bhowmick [3],[4], Kanth [8], Singh [17], [18] and
Singh [19].

Particularly, if we set λ = a = 1, µ = 3/2 and ξ = 1 in the equation (1), it reduces
to generalization of the Struve function which is defined by Orhan and Yagmur [14] as
follows:

Hp,b,c (z) =

∞∑
k=0

(−c)k

Γ
(
k + 3

2

)
Γ
(
k + p+ b+2

2

) (z
2

)2k+p+1
, z, p, b, c ∈ C. (2)

Details related to the function Hp,b,c (z) and its particular cases can be seen in Baricz [1],

[2], Mondal and Swaminathan [11] and Nisar et al. [13].

Definition 1.2 (Euler Transform [20]). The Euler transform of a function f(z) is defined
as

B {f(z); a, b} =

∫ 1

0
za−1 (1− z)b−1 f (z) dz a, b ∈ C,< (a) > 0, < (b) > 0. (3)

Definition 1.3 (Laplace Transform [20]). The Laplace transform of a function f(z), de-
noted by F (s), is defined by the equation

F (s) = (Lf) (s) = L {f (z) ; s} =

∫ ∞
0

e−sz f (z) dz (< (s) > 0), (4)

provided the integral (4) is convergent and that the function f(z), is continous for z > 0
and of exponential order as z →∞. The operator (4) may be symbolically written as

F (s) = L {f (z) ; s} or f (z) = L−1 {F (s) ; z} . (5)

Definition 1.4 (Whittakar Transform [22]).∫ ∞
0

e−
z
2 zζ−1Wτ,ω (z) dz =

(
1
2 + w + ζ

)
Γ
(
1
2 − w + ζ

)
Γ (1− τ + ζ)

, (6)

where < (w ± ζ) > −1/2 and Wτ,ω (z) is the Whittakar confluent hypergeometric function

Wτ,ω (z) =
Γ (−2ω)

Γ
(
1
2 − τ − ω

)Mτ,ω (z) +
Γ (2ω)

Γ
(
1
2 + τ + ω

)Mτ,−ω (z) , (7)

where Mτ,ω (z) is defined by

Mτ,ω (z) = z1/2+ωe−1/2z1F1

(
1

2
+ ω − τ ; 2ω + 1; z

)
. (8)

Definition 1.5 (K-Transform [7]). K-Transform is defined by the following integral equa-
tion

<υ [f (z) ; p] = g [p; υ] =

∫ ∞
0

(pz)1/2Kυ (pz) f (z) dz, (9)

where < (p) > 0;Kυ (z) is the Bessel function of the second kind defined by [7]

Kυ (z) =
( π

2z

)1/2
W0,υ (2z) ,

where W0,υ (.) is the Whittakar function defined in equation (7).

The following result given in [10], will be used in evaluating the main results:∫ ∞
0

tρ−1Kυ (ax) dx = 2ρ−2 a−ρ Γ

(
ρ± υ

2

)
;< (a) > 0;< (ρ± υ) > 0. (10)
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Definition 1.6 (Fractional Fourier Transform [9]). The fractional Fourier transform of
order α, 0 < α ≤ 1 is defined by

_
uα (ω) = =α [u] (ω) =

∫
R
eiω

(1/α)tu (t) dt. (11)

When α = 1, equation (11) reduces to the conventional Fourier transforms and for
ω > 0, it reduces to the Fractional Fourier transform defined by Luchko et al. [9].

Our main results are expressed in terms of the generalized Wright hypergeometric func-
tion pψq(z) [23] (see, for detail, Srivastava and Karson [21]), for z, ai, bj ∈ C and αi, βj ∈ R,
where (αi, βj 6= 0; i = 1, 2, ... , p; j = 1, 2, ... , q), is defined as below:

pψq(z) = pψq

[
(ai, αi)1,p
(bj , βj)1,q

|z
]

=
∞∑
k=0

∏p
i=1 Γ(ai + αik)zk∏q
j=1 Γ(bj + βjk) k!

, (12)

under the condition:
q∑
j=1

βj −
p∑
i=1

αi > −1.

2. Integral Transforms of aw
λ,µ
p,b,c,ξ (z)

In this section, we evaluate the following Euler transform, Laplace transform, Whittakar
transform and K-transform of Generalized Galué type Struve function.

Theorem 2.1 (Euler Transform). For a ∈ N, p, b, c, r, s ∈ C, we have
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]
, (13)

where < (r) > 0,< (s) > 0, λ > 0, ξ > 0 and µ is an arbitrary parameter.

Proof. Using (1) and (3), we get

B
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2
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In accordance with the definition of (12), we obtain the result (13). This completes the
proof of the theorem. �
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Corollary 2.1. For λ = a = 1, µ = 3/2 and ξ = 1, equation (13) reduces in the following
form

B
{
Hp,b,c
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. (14)

Theorem 2.2 (Laplace Transform). For a ∈ N, p, b, c ∈ C, the following formula holds:
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where λ > 0, ξ > 0 and µ is an arbitrary parameter.

Proof. Using (1) and (4), it gives
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which in view of definition (12), yield to the result (15). �

Again, for λ = a = 1, µ = 3/2 and ξ = 1, result (15) reduces in the following form:

Corollary 2.2. The Laplace trsnform of the generalized Struve function, defined by (2),
is given by

L
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Theorem 2.3 (Whittakar Transform). If a ∈ N, p, b, c ∈ C and < (ζ) > 0, < (w ± ζ) >
−1/2, then ∫ ∞

0
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provided < (e) > |< (ω)| − 1/2,< (p) > 0, λ > 0, ξ > 0 and µ is an arbitrary parameter.

Proof. On using (1), the left hand side of (17) (say L) can be written as
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Now, on using (6), we obtain
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which in accordance with the definition (12), yield the desired result (17). �

Corollary 2.3. If we set, λ = a = 1, µ = 3/2 and ξ = 1, then formula (17) reduces in
the following form∫ ∞

0
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t
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Theorem 2.4 (K-Transform). Let us assume a ∈ N; p, b, c, ρ ∈ C, then the following result
holds true: ∫ ∞

0
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where < (ω) > 0,< (ρ± υ) > 0. λ > 0, ξ > 0 and µ is an arbitrary parameter.

Proof. Using definition (1), the left hand side of (19) (say L) can be expressed as
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Hence, on using (12), we obtain the required result (19). �
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Further, if we take λ = a = 1, µ = 3/2 and ξ = 1, equation (19) reduces in the following
result:

Corollary 2.4. The following integral holds true:∫ ∞
0
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3. Fractional Fourier Transforms (FFT) of aw
λ,µ
p,b,c,ξ (z)

Now, we present the fractional Fourier transform of the generalized Struve type function
as follows:

Theorem 3.1. Suppose a ∈ N, p, b, c ∈ C, then
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provided ζ > 0, λ > 0, ξ > 0 and µ is an arbitrary parameter.

Proof. Using (1) and (11), it gives
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=
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This completes the proof of the theorem. �

Finally, if we put λ = a = 1, µ = 3/2 and ξ = 1, then result (21) reduces to the
following corollary:

Corollary 3.1. Fractional Fourier transform of the generalized Struve type function is
given by
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) ]
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. (22)

Lastly, we conclude this paper by remarking that, the integral transform formulas de-
duced in this paper, for generalized Galué type Struve function (GTSF), are significant
and can lead to yield numerous transforms for variety of Struve functions. The transforms
established here are general in nature and are likely to find useful in applied problem of
sciences, engineering and technology.
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