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SOLUTIONS FOR A DISCRETE BOUNDARY VALUE PROBLEM

INVOLVING KIRCHHOFF TYPE EQUATION VIA VARIATIONAL

METHODS

ZEHRA YÜCEDAG1

Abstract. In this paper, Mountain Pass theorem is applied together with Ekeland
variational principle, and we show the existence of nontrivial solutions for a discrete
boundary value problem of p (k)-Kirchhoff-type in a finite dimensional Hilbert space.
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1. Introduction

1. Introduction

We are concerned with the following problem{
−M (A(k − 1,∆u (k − 1))) ∆ (a(k − 1,4u (k − 1))) = λf (k, u (k)) ,

u (0) = u (T + 1) = 0, k ∈ Z [1, T ] ,
(P)

where T ≥ 2 is a positive integer, Z [a, b] denotes the discrete interval {a, a+ 1, ..., b} with
a and b are integers such that 0 < a < b; ∆u(k) = u(k+ 1)−u(k) is the forward difference
operator; f : Z [1, T ] × R → (0,+∞) is a continuous function; λ is a positive constant.
Moreover, we assume that the function a(k, ξ) : Z [1, T ]× R→ R is continuous derivative
with respect to ξ of the mapping A : Z [1, T ]×R→ R, A = A(k, ξ), i.e. a(k, ξ) = ∇ξA(k, ξ);
p : Z [0, T ]→ [2,∞) satisfies

p− = min
k∈Z[0,T ]

p (k) ≤ p+ = max
k∈Z[0,T ]

p (k) <∞.

We suppose that f , M,a and A satisfy the following conditions:
(M1) M : (0,+∞)→ (0,+∞) is continuous function such that

(1− η) sα−1 ≤M(s) ≤ (1 + η) sα−1,

for all s > 0, 0 ≤ η < 1 and α ≥ 1.
(f0) There exists a function q(k) : Z [1, T ]→ [2,∞) such that

|f(k, t)| ≤ c0

(
1 + |t|q(k)−1

)
,

for all (k, t) ∈ Z [1, T ]× R, where c0 is pozitif constant.
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(A1) There exists a constant c0 such that

|a(k, ξ)| ≤ c0(1 + |ξ|p(k)−1),

for all (k, ξ) ∈ Z [0, T ]× R
(A2) The following inequalitiy holds true

|ξ|p(k) ≤ a(k, ξ) · ξ ≤ p (k)A(k, ξ),

for all (k, ξ) ∈ Z [0, T ]× R.
(A3) The following inequality holds true

(a(k, ξ)− a(k, η)) · (ξ − η) > 0,

for all k ∈ Z [0, T ] and ξ, η ∈ R such that ξ 6= η.
(A4) A (k, 0) = 0, for all k ∈ Z [0, T ] .
Problem (P ) is related to the stationary version of a model, the so-called Kirchhoff

equation, introduced by Kirchhoff [20]. To be more precise, Kirchhoff established a model
given by the equation

ρ
∂2u

∂t2
−

P0

h
+
E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

 ∂2u

∂x2
= 0, (1.1)

where ρ, P0, h, E, L are constants, which extends the classical D’Alambert’s wave equa-
tion, by considering the effects of the changes in the length of the strings during the
vibrations.

Discrete boundary value problems have been extensively studied by applying variational
methods in the last few years because they can be used to models various phenomena
arising from the study of elastic mechanics [30], electrorheological fluids [26] and image
restoration [9]. We refer to the recent results of involving the discrete p−Laplacian op-
erator and p (k)− Laplacian operator [6, 7, 8, ?, 19, 22, 29]. The discrete problems of
type (P) involving anisotropic exponents have first been discussed by [24, 21]. Moreover,
Koné and Guiro studied a more general operator in [21, 13]. In [24], by using critical
point theory, the authors showed the existence of a continuous spectrum of eigenvalues
for a discrete anisotropic problem. In [21], using minimization method, Koné and Ouaro
obtained the existence and uniqueness of weak solutions for anisotropic discrete bound-
ary value problems. Then, the authors studied the existence and multiplicity of positive
solutions for a discret anisotropic equation by variational methods and a critical point
theory in [11, 28]. Moreover, many interesting results are obtained see for examples, in
[2, 3, 4, 5, 12, 15, 16, 17, 18, 25]

In this paper, applying Mountain-Pass theorem together with Ekeland variational prin-
ciple of Ambrosetti-Rabinovitz’s (see [24]), we obtain the existence of at least one nontrivial
weak solution of an anisotropic discrete boundary value problem of p (k)-Kirchhoff type.

This paper is organized as follows. In Section 2, we present some necessary preliminary
results. In Section 3, we get some existence results for (P).

2.Preliminaries
Let us define the function space

W = {u : Z [0, 1 + T ]→ R; such that u(0) = u(T + 1) = 0} .
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Then, W is a T -dimensional Hilbert space [1] with the inner product

〈u, v〉 =
T+1∑
k=1

∆u(k − 1)∆v(k − 1), ∀u, v ∈W .

Then, the associated norm is defined by

‖u‖ =

(
T+1∑
k=1

|∆u(k − 1)|2
)1/2

.

On the other hand, it is useful to introduce other equivalent norms on W , namely

|u|m =

(
T∑
k=1

|u(k)|m
)1/m

, ∀u ∈W and m ≥ 2.

It can be verified [7, 24] that

T 2−m/(2m) |u|2 ≤ |u|m ≤ T
1/m |u|2 , ∀u ∈W and m ≥ 2. (2.1)

Lemma 2.1[24]
(i) For every u ∈W with ‖u‖ > 1,we have

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T (2−p−)/2 ‖u‖p
−
− (T + 1) .

(ii) For every u ∈W with ‖u‖ ≤ 1,we have

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T (p+−2)/2 ‖u‖p
+

.

(iii) For any m ≥ 2 there exist a positive constant cm such that

T∑
k=1

|u(k)|m ≤ cm
T+1∑
k=1

|∆u(k − 1)|m , ∀u ∈W.

Furthermore, from (2.1) and Lemma 2.1(iii), it reads

|u|mm ≤ T |u|
m
2 ≤ cmT

(
T+1∑
k=1

|∆u(k − 1)|2
)m

2

= cmT ‖u‖m . (2.2)

Definition 2.2 Let X be a real Banach spaces and let Iλ be a functional such that Iλ ∈
C (X,R). We say that Iλ satisfies Palais-Smale condition ( (PS) condition for short) if
any sequence {un} in X such that {Iλ (un)} is bounded and I ′λ (un)→ 0 as n→∞, has
a convergent subsequence.

Theorem 2.3 (Mountain-Pass lemma)(see [27]) Let X be a Banach space and I
∈ C1 (X,R) satisfy the Palais-Smale condition. Assume that I (0) = 0, and

(i) There exist two positive real numbers γ and r such that I (u) ≥ r > 0, for all u ∈ X
with ‖u‖ = γ.

(ii) There exists u ∈ X with ‖u‖ > γ such that and Iλ (u) < 0.
Then, I has a critical value β ≥ α. Moreover, β can be characterized as
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0 < β := inf
ϕ∈G

max
t∈[0,1]

I (ϕ (t)) ,

where G = {ϕ ∈ C ([0, 1] , E) : ϕ (0) = 0, ϕ (1) = u}.

3. The Main results
The energy functional corresponding to problem (P) is defined as Iλ : W → R,

Iλ (u) = M̂

(
T+1∑
k=1

A (k − 1,∆u (k − 1))

)
− λ

T∑
k=1

F (k, u (k)) ,

where k ∈ Z [1, T ] , M̂ (t) =
t∫
0

M (s) ds and F (k, t) =
t∫
0

f (k, ξ) dξ.

A critical point to Iλ is a point u ∈W such that

M

(
T+1∑
k=1

A (k − 1,∆u (k − 1))

)
T+1∑
k=1

a (k − 1,∆u (k − 1))4υ (k − 1)

= λ
T∑
k=1

f (k, u (k)) υ (k) , ∀k ∈ Z [1, T ]

which in turn is a weak solution to (P) for any υ ∈W. Since we work in a finite dimensional
space, we see that any weak solution of (P) is in fact a strong, i.e. classical solution. Hence,
in order to solve (P), we need to find critical points of Iλ .

Lemma 3.1
(i) The functional Iλ is well defined on W .
(ii) The functional Iλ is of class C1(W,R) and〈
I
′
λ(u), υ

〉
= M

(
T+1∑
k=1

A (k − 1,∆u (k − 1))

)
T+1∑
k=1

a (k − 1,∆u (k − 1))4υ (k − 1)

−λ
T∑
k=1

f (k, u (k)) υ (k) , ∀k ∈ Z [1, T ] ,

for all υ, υ ∈W.
Since the proof of Lemma 3.2 is very similar to that of the proof of Lemma 3.4 in [13],

we omit it.

Lemma 3.2 [23] A varifies the following condition

A (k, tξ) ≤ A (k, ξ) tp(k), for all (k, t) ∈ Z [0, T ]× R, t ≥ 1.

Theorem 3.3 Assume that (M1) and (f0) hold with q+ < αp−. Then, there exists
λ∗∗ > 0 such that for any λ ∈ (0, λ∗∗) the problem (P) has at least one nontrivial solution.

Proof. Let ‖u‖ > 1.Using the condition (M1), we have
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Iλ(u) = M̂

(
T+1∑
k=1

A (k − 1,∆u (k − 1))

)
− λ

T∑
k=1

F (k, u (k)) (3.1)

≥ (1− η)

T+1∑
k=1

A(k−1,∆u(k−1))∫
0

sα−1ds− λc0

T∑
k=1

|u (k)|q(k)

q (k)
.

If we use the inequalities |u(k)|q(k) ≤ |u(k)|q
−

+ |u(k)|q
+

for ∀k ∈ Z [1, T ] , u ∈W , Lemma
2.1(iii) and relation (2.2), we obtain

|u(k)|q
−

+ |u(k)|q
+

≤ cq+

T+1∑
k=1

|∆u (k − 1)|q
+

+ cq−

T+1∑
k=1

|∆u (k − 1)|q
−

(3.2)

≤ cq+T ‖u‖q
+

+ cq−T ‖u‖q
−
.

For u ∈ W with ‖u‖ > 1, the above inequalities combined with (3.1) ,Lemma 2.1(i) , (f0)
and relation (A2) , imply that

Iλ(u) ≥ 1− η
α

(
T+1∑
k=1

A (k − 1,∆u (k − 1))

)α
−
λcq+

q−
T ‖u‖q

+

≥ 1− η
α (p+)α

T ( 2−p−
2

)α ‖u‖αp
−
−
λcq+

q−
T ‖u‖q

+

.

Thus, if we choose as

λ∗∗ =
(1− η)q−T ( 2−p−

2
)α

α (p+)α cq+T

then for any λ ∈ (0, λ∗∗) and q+ < αp−, Iλ is coercive.
A continuous coercive functional on a finite dimensional space is bounded from below.

On the other hand, it is obvious that it is also weakly lower semicontinuous on the finite
dimensional Hilbert space W . Therefore, (P) has at least one nontrivial solution in W .

Example 3.1 As examples of a and A functions satisfying assumptions (A2)-(A4), we
can give the following.

If we take

a(k, ξ) = |ξ|p(k)−2 ξ, for all (k, ξ) ∈ Z [1, T ]× R
we have

A(k, ξ) =
1

p (k)
|ξ|p(k) .

On the other hand, if we let

a(k, ξ) =
(

1 + |ξ|2
)(p(k)−2)/2

ξ, for all (k, ξ) ∈ Z [1, T ]× R

then we have

A(k, ξ) =
1

p (k)

[(
1 + |ξ|2

)p(k)/2
− 1

]
.
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Example 3.2 As an example of application of the Theorem 3.3, we consider the following:
Let

f(k, t) = |t|k+2 , p (k − 1) = ek−1+5, q (k) = k+3,M (t) = t, T = 2, α = 2, cq+ = 1 and η = 1/2,

then we have

F (k, t) =
1

k + 3
|t|k+3 , p− = 6, p+ = e+ 5, q− = 4, q+ = 5 and λ∗∗ = 0, 134291561.

Thus, all the assumptions requested in Theorem 3.3 are provided.

Theorem 3.4 Assume that (M1),(f0) hold. Suppose, additionally, that the following
conditions hold:

(f1) : f (k, t) = o(|t|αp
+−1), t→ 0,with αp+ < q− for ∀k ∈ Z [1, T ];

(AR) : Ambrosetti-Rabinovitz’s condition holds, i.e. There exists constants ∃t∗ > 0,
0 ≤ η < 1

θ >
1 + η

1− η
αp+

such that

0 < θF (k, t) ≤ f(k, t)t, |t| ≥ t∗, ∀k ∈ Z [1, T ] .

Then, the problem (P) has at least a nontrivial solution for any λ > 0.

Lemma 3.5 Assume that the assumptions of Theorem 3.4 hold. Then,
(i) There exist two positive real numbers γ and r such that Iλ (u) ≥ r > 0, u ∈W with

‖u‖ = γ.
(ii) There exists u ∈W such that ‖u‖ > γ and Iλ (u) < 0.
Proof. (i) Let ‖u‖ < 1. Then, using condition (M1), (A2), (A4) and relation (2.2), we

have

Iλ (u) = M̂

(
T+1∑
k=1

A (k − 1,∆u (k − 1))

)
− λ

T∑
k=1

F (k, u (k))

≥ (1− η)

α (p+)α
T ( 2−p−

2
)α ‖u‖αp

+

− λ
T∑
k=1

F (k, u (k)) .

From (f0) and (f1) , we can write the following inequality

F (k, t) ≤ ε |t|αp
+

+ c1 |t|q(k) ,

where c1 is pozitif constant and t ∈ R. Let ε > 0 be small enough such that λεcαp+T ≤
1−η

2α(p+)α
T ( 2−p−

2
)α . Thus, considering also inequality (2.2) , (3.2) and Lemma 2.1(ii) we

obtain

Iλ (u) ≥ (1− η)

α (p+)α
T ( 2−p−

2
)α ‖u‖αp

+

− λε
T∑
k=1

|u (k)|αp
+

− λc1

T∑
k=1

|u (k)|q(k)

≥ (1− η)

α (p+)α
T ( 2−p−

2
)α ‖u‖αp

+

− λεcαp+T ‖u‖αp
+

− λc1

(
cq+T ‖u‖q

+

+ cq−T ‖u‖q
−
)

≥ 1− η
2α (p+)α

T ( 2−p−
2

)α ‖u‖αp
+

− c2cq−T ‖u‖q
−
.
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Since‖u‖ < 1 and αp+ < q−, there exist two positive real numbers γ and r such that
Iλ (u) ≥ r > 0, u ∈W with ‖u‖ = γ ∈ (0, 1).

(ii) From (AR) and for each t ≥ 1, we can write

F (k, tu) ≥ tθF (k, u) , ∀k ∈ Z [1, T ] .

Thus, for ψ ∈W,ψ 6= 0 and t > 1, we have

Iλ (tψ) = M̂

(
T+1∑
k=1

A (k − 1,∆tϕ (k − 1))

)
− λ

T∑
k=1

F (k, tϕ (k))

≤ 1 + η

α (p−)
1+η
1−ηαp

+
t
1+η
1−ηαp

+

(
T+1∑
k=1

A (k − 1,∆ϕ (k − 1))

)α
− λc3t

θ
T∑
k=1

F (k, ϕ (k) .

Since θ > 1+η
1−ηαp

+, it can be obtanied that Iλ (tψ)→ −∞ as t→ +∞.

Lemma 3.6 Assume that the conditions (M1), (f0) and (AR) hold with αp+ <
q−.Then, for any λ > 0 the functional Iλ satisfies Palais-Smale condition.

Proof. First, we deduce the existence of a sequence {un} ⊂W such that

|Iλ(un)| ≤ c and I ′λ(un)→ 0 as n→∞.
We prove that {un} is bounded in W . Arguing by contradiction and passing to a

subsequence, we have ‖un‖ → ∞ as n→∞. Thus, we may assume that for n large enough,
we have ‖un‖ > 1. Moreover, using the conditions (M1) , (AR), (f0), and relations (A2),
(A4) , we can write

c+ ‖un‖ ≥ Iλ(un)− 1

θ

〈
I ′λ(un), un

〉

≥ (1− η)

T+1∑
k=1

A(k−1,∆un(k−1))∫
0

sα−1ds− (1 + η) p+

θ

(
T+1∑
k=1

A (k − 1,∆un (k − 1))

)α

+λ

(
1

θ

T∑
k=1

f(k, un (k))un (k)−
T∑
k=1

F (k, un (k))

)

≥
(

1− η
α
− (1 + η) p+

θ

)(T+1∑
k=1

A (k − 1,∆un (k − 1))

)α
,

for n large enough. From (A2) , (AR) and Lemma 2.1 (i), we obtain

c+ ‖un‖ ≥
1

(p+)α

(
1− η
α
− (1 + η) p+

θ

)
T (2−p−)/2 ‖u‖p

−
−K (α, T )Tα.

Dividing the last inequality above by ‖u‖p
−
, and passing to the limit as n→∞,we infer

that {‖un‖} is bounded in W . This information combined with the fact that W is a finite
dimensional Hilbert space imply that there exists a subsequence, still denoted by {un} ,
and u0 ∈ W such that {un} converges to u0 in W. Thus, Iλ satisfies (PS) condition.

Proof of Theorem 3.4 From Lemma 3.5, Lemma 3.6 and the fact that Iλ (0) = 0,
Iλ satisfies the conditions of Theorem 2.3. Therefore, the problem (P) has at least one
nontrivial solution.
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Example 3.3 We consider the function

f(k, t) = |t|q(k)−2 t for all (k, t) ∈ Z [1, T ]× R,

From the above definition of f, we get F (k, t) = 1
q(k) |t|

q(k) .If we take

p (k − 1) = k + 1, q (k) = 2(k + 1),M (t) = 2t, T = 2, α = 1 and η = 0, 1316309013,

f(1, t) = t3and f(2, t) = t5,

we obtain

p− = 2, p+ = 3, q− = 4, q+ = 6, F (1, t) = t4/4 and F (2, t) = t6/6.

Hence, all the assumptions requested in Theorem 3.4 hold.

Theorem 3.7 Assume that (M1) and (f0) hold with q− < αp−. Then, there exists
λ∗ > 0 such that for any λ ∈ (0, λ∗) the problem (P) has at least one solution.

Lemma 3.8 Assume that the assumptions of Theorem 3.7 hold. Then, there exist η,
a > 0 and λ∗ > 0 such that for any λ ∈ (0, λ∗), we have

Iλ (u) ≥ a > 0, ∀u ∈W with ‖u‖ = η.

Proof. Let ‖u‖ < 1. Using conditions (M1), (f0) and relations (A2), (A4), (2.2) , we
obtain that for u ∈W with ‖u‖ = η the following inequalities hold true

Iλ (u) = M̂

(
T+1∑
k=1

A (k − 1,∆u (k − 1))

)
− λ

T∑
k=1

F (k, u (k))

≥ (1− η)

α (p+)α
T

(p+−2)α
2 ‖u‖αp

+

− λ
c2cq−

q−
T ‖u‖q

−
(3.3)

=
(
c3ρ

αp+−q− − λc4

)
ηq
−
,

where c3 and c4 are positive constants. If we use (3.3) and q− < αp− ≤ αp+, and choose
λ∗ as

λ∗ =
c3η

αp+−q−

2c4
,

then for any λ ∈ (0, λ∗) and ∀u ∈ W with ‖u‖ = η there exists a = c3ηαp
+

2 such that
Iλ (u) ≥ a > 0.

Lemma 3.9 Assume that (M1) and (f0) hold with q− < αp−. Then, there exists
ϕ ∈W such that ϕ ≥ 0, ϕ 6= 0 and Iλ (tϕ) < 0, for t > 0 small enough.

Proof. For any fixed ϕ ∈ W,ϕ 6= 0 and each t ∈ (0, 1), using conditions (M1), (f0) and
Lemma 2.1(ii), we have

Iλ (tϕ) = M̂

(
T+1∑
k=1

A (k − 1,∆tϕ (k − 1))

)
− λ

T∑
k=1

F (k, tϕ (k))

≤ 1 + η

α
tαp
−

(
T+1∑
k=1

A (k − 1,∆ϕ (k − 1))

)α
− λc1t

q+

q+

T∑
k=1

|ϕ (k)|q(k)

m (k)

≤ 1 + η

α
tαp
−

(
T+1∑
k=1

A (k − 1,∆ϕ (k − 1))

)α
− λc1t

q−

q−

T∑
k=1

|ϕ (k)|q(k) .
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Thus,
Iλ (tϕ) < 0,

for all t < δ
1

αp−−q− with

0 < δ < min

{
1, λαc1

T∑
k=1

|ϕ (k)|m(k) /

(
(1 + η) q−

(
T+1∑
k=1

A (k − 1,∆ϕ (k − 1))

)α)}
.

The proof of of Lemma 3.9 is complete.

Proof of Theorem 3.7 By Lemma 3.8, we infer that there exists a ball centered at
the origin B ⊂W , such that

inf
∂Bρ(0)

Iλ > 0.

Moreover, from Lemma 3.9, there exists ϕ ∈ W such that Iλ (tϕ) < 0, for all t > 0 small
enough. Thus, by taking into account (3.3), we obtain the following

−∞ < c := inf
Bρ(0)

Iλ < 0.

Let choose ε > 0. Then, it follows

0 < ε < inf
∂Bρ(0)

Iλ − inf
Bρ(0)

Iλ.

Applying Ekeland’s variational principle [10] to the functional Iλ : Bρ (0) → R, we can

find uε ∈ Bρ (0) such that

Iλ (uε) < inf
Bρ(0)

Iλ + ε and Iλ (uε) < Iλ (u) + ε ‖u− uε‖ , u 6= uε.

By the fact that
Iλ (uε) < inf

Bρ(0)
Iλ + ε < inf

∂Bρ(0)
Iλ + ε < inf

∂Bρ(0)
Iλ,

we can infer that uε ∈ Bρ (0) .Now, we define φλ : Bρ (0) → R by φλ (u) = Iλ (u) +
ε ‖u− uε‖ . It is clear that uε is a minimum point of φ, and thus

φλ (uε + tv)− φλ (uε)

t
≥ 0,

for t > 0 small enough and any v ∈ B1 (0) .By the above relation, we have

Iλ (uε + tv)− Iλ (uε)

t
+ ε ‖v‖ ≥ 0.

Letting t→ 0, we have that
〈
I
′
λ(uε), υ

〉
+ε ‖v‖ > 0, and hence, we infer that

∥∥∥I ′λ(uε)
∥∥∥ ≤ ε.

The information obtained so far shows that there exists a sequence {un} ⊂ Bρ (0) such
that

Iλ (un)→ c = inf
Bρ(0)

Iλ < 0 and I ′λ (un)→ 0. (3.4)

Since the sequence {un} is bounded in W , there exists u ∈ W such that, up to a subse-
quence, {un} conververges to u in W. So, we conclude that Iλ has at least one nontrivial
critical point, i.e., the problem (P) has a nontrivial solution.
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