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INTUITIONISTIC FUZZY LABELING GRAPHS

S. SAHOO1, M. PAL1, §

Abstract. In this paper, some new connectivity concepts in intuitionistic fuzzy labeling
graphs are defined. The concepts of strong arc, partial cut node, bridge and block are
introduced. Also, intuitionistic fuzzy labeling tree is defined and investigated many
interesting properties. Finally, partial intuitionistic fuzzy labeling tree is defined and
established many interesting properties on it, which plays a major role in many areas of
science and technology.
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1. Introduction

Concept of graph theory have applications in many areas of computer science, including
data mining, image segmentation, clustering, image capturing, networking, etc. An in-
tuitionistic fuzzy set is a generalization of the notion of a fuzzy set. Intuitionistic fuzzy
models gives more precision, flexibility and compatibility to the system as compared to
the fuzzy models.

In 1983, Atanassov [8, 9] introduced the concept of intuitionistic fuzzy set as a general-
ization of fuzzy sets. Atanassov added a new components which determines the degree of
non-membership in the definition of fuzzy set. The fuzzy sets give the degree of member-
ship, while intuitionistic fuzzy sets give both the degree of membership and the degree of
non-membership, which are more or less independent from each other, the only require-
ment is that the sum of these two degrees is not greater than one. Intuitionistic fuzzy
sets have been applied in a wide variety of fields including computer science, engineering,
mathematics, medicine, chemistry, economics, etc .

In 1975, Rosenfeld [20] discussed the concept of fuzzy graph whose basic idea was
introduced by Kauffman [11] in 1973. The fuzzy relations between fuzzy sets were also
considered by Rosenfeld and he developed the structure of fuzzy graphs, obtained analogs
of several graphs theoretical concepts. Atanassov introduced the concept of intuitionistic
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of Mathematics, 2018; all rights reserved.
Financial support of first author offered by Council of Scientific and Industrial Research, New Delhi,
India (Sanction no. 09/599(0057)/2014-EMR-I) is thankfully acknowledged.

466



S. SAHOO, M. PAL: INTUITIONISTIC FUZZY LABELING GRAPHS 467

fuzzy relation. Different types of intuitionistic fuzzy graphs and their applications can be
found in several papers. Sahoo and Pal [22] discussed the concept of intuitionistic fuzzy
competition graph.

1.1. Motivation. Here, we have presented new connectivity concepts in intuitionistic
fuzzy labeling graphs and we have defined strong arc, partial cut node, bridge and block by
connectivity concepts of intuitionistic fuzzy graph. Also, intuitionistic fuzzy labeling tree
and partial intuitionistic fuzzy labeling tree were defined and established many interesting
properties on them, which plays a major role in many areas of science and technology.

1.2. Review of literature. After Rosenfeld [20] the fuzzy graph theory increases with
its various types of branches, such as - fuzzy tolerance graph [28], fuzzy threshold graph
[27], bipolar fuzzy graphs [18, 19, 33], highly irregular interval valued fuzzy graphs [14, 15],
isometry on interval-valued fuzzy graphs [17], balanced interval-valued fuzzy graphs [12,
16], fuzzy k-competition graphs and p-competition fuzzy graphs [31], fuzzy planar graphs
[26, 34], bipolar fuzzy hypergraphs [29, 30], m−step fuzzy compitition graphs [25], etc.
Fuzzy graph is used in telecommunication system [32]. A new concept of fuzzy colouring
of fuzzy graph is given [35]. Sarwar and Akram discussed novel concepts of bipolar fuzzy
competition graphs [36].

Akram and Davvaz [1] defined strong intuitionistic fuzzy graphs. They also discuss
intuitionistic fuzzy hypergraphs with applications [3]. An novel application of intuitionistic
fuzzy digraphs is given by Akram et al. [2]. Also, Akram and Al-Shehrie [4] defined
intuitionistic fuzzy cycles and intuitionistic fuzzy trees and intuitionistic fuzzy planar
graphs [7]. Balanced intuitionistic fuzzy graphs is discuss by Karunambigai et al. [10].
Also, Parvathi, Karunambigai [13] defined intuitionistic fuzzy graphs. Sahoo and Pal
[22] discussed the concept of intuitionistic fuzzy competition graph. They also discussed
intuitionistic fuzzy tolerance graph with application [23], different types of products on
intuitionistic fuzzy graphs [21] and product of intuitionistic fuzzy graphs and their degree
[24]. Akram and Akmal defined intuitionistic fuzzy graph structures [5] and operations on
intuitionistic fuzzy graph structures [6].

2. Preliminaries

A graph is an ordered pair G = (V,E), where V is the set of all vertices of G, which is
non empty and E is the set of all edges of G. Two vertices x, y in a graph G are said to
be adjacent in G if (x, y) is an edge of G. A simple graph is a graph without loops and
multiple edges. A complete graph is a simple graph in which every pair of distinct vertices

is connected by an edge. The complete graph on n vertices has n(n−1)
2 edges.

An isomorphism of graphs G1 and G2 is a bijection between the vertex sets of G1 and
G2 such that any two vertices v1 and v2 of G1 are adjacent in G1 if and only if f(v1) and
f(v2) are adjacent in G2. An isomorphic graphs are denoted by G1

∼= G2.

2.1. Intuitionistic fuzzy graphs. An intuitionistic fuzzy set A on the set X is char-
acterized by a mapping m : X → [0, 1], which is called as a membership function
and n : X → [0, 1], which is called as a non-membership function. An intuitionistic
fuzzy set is denoted by A = (X,mA, nA). The membership function of the intersec-
tion of two intuitionistic fuzzy sets A = (X,mA, nA) and B = (X,mB, nB) is defined
as mA∩B = min{mA,mB} and the non-membership function nA∩B = max{nA, nB}. We
write A = (X,mA, nA) ⊆ B = (X,mB, nB) (intuitionistic fuzzy subset) if mA(x) ≤ mB(x)
and nA(x) ≥ nA(x) for all x ∈ X.

Here, an intuitionistic fuzzy graph is defined below:
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Definition 2.1. [13] An intuitionistic fuzzy graph is of the form G = (V, σ, µ) where
σ = (σ1, σ2), µ = (µ1, µ2) and

(i) V = {v0, v1, . . . , vn} such that σ1 : V → [0, 1] and σ2 : V → [0, 1], denote the
degree of membership and non-membership of the vertex vi ∈ V respectively and 0 ≤
σ1(vi) + σ2(vi) ≤ 1 for every vi ∈ V (i = 1, 2, . . . , n).

(ii) µ1 : V × V → [0, 1] and µ2 : V × V → [0, 1], where µ1(vi, vj) and µ2(vi, vj) denote
the degree of membership and non-membership value of the edge (vi, vj) respectively such
that µ1(vi, vj) ≤ min{σ1(vi), σ1(vj)} and µ2(vi, vj) ≤ max{σ2(vi), σ2(vj)}, 0 ≤ µ1(vi, vj)+
µ2(vi, vj) ≤ 1 for every (vi, vj).

Now, we give an example of intuitionistic fuzzy graph:

Example 2.1. Let G = (V, σ, µ) be an intuitionistic fuzzy graph, where σ(v) = (σ1(v), σ2(v)),
µ(u, v) = (µ1(u, v), µ2(u, v)). Let the vertex set be V = {v1, v2, v3, v4} and σ(v1) =
(0.3, 0.6), σ(v2) = (0.8, 0.2), σ(v3) = (0.2, 0.8), σ(v4) = (0.5, 0.4); µ(v1, v2) = (0.25, 0.45),
µ(v2, v3) = (0.18, 0.75), µ(v3, v4) = (0.15, 0.52), µ(v4, v1) = (0.3, 0.25), µ(v1, v3) = (0.2, 0.8),
µ(v2, v4) = (0.4, 0.35). The corresponding intuitionistic fuzzy graph is shown in Figure 1.
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v1(0.3, 0.6)

v4(0.5, 0.4)

(0.3, 0.25)

(0.15, 0.52)

(0.25, 0.45)

(0.18, 0.75)

(0.2, 0.8)

(0.4, 0.35)

v2(0.8, 0.2)

v3(0.2, 0.8)

Figure 1. An intuitionistic fuzzy graph

3. Intuitionistic fuzzy labeling graphs

Now, we define intuitionistic fuzzy labeling graphs as follows.

Definition 3.1. An intuitionistic fuzzy graph G = (V, σ, µ) is said to be an intuitionistic
fuzzy labeling graph if σ1 : V → [0, 1], σ2 : V → [0, 1] and µ1 : V ×V → [0, 1], µ2 : V ×V →
[0, 1] is bijective such that the membership and non-membership values of the vertices and
edges are distinct and µ1(vi, vj) < min{σ1(vi), σ1(vj)}, µ2(vi, vj) < max{σ2(vi), σ2(vj)},
0 ≤ µ1(vi, vj) + µ2(vi, vj) ≤ 1 for every edges (vi, vj).

Now, we give an example of intuitionistic fuzzy labeling graph as follows:

Example 3.1. In Figure 2, σ1, σ2 and µ1, µ2 are bijective such that no vertices and edges
have the membership and non-membership values.

Definition 3.2. Intuitionistic fuzzy labeling graph H = (V, τ, ρ) is called an intuitionistic
fuzzy labeling subgraph of G = (V, σ, µ) if τ1(u) ≤ σ1(u), τ2(u) ≥ σ2(u) for all u ∈ V and
ρ1(u, v) ≤ µ1(u, v), ρ2(u, v) ≥ µ2(u, v) for all edges (u, v).

Theorem 3.1. If H = (V, τ, ρ) is an intuitionistic fuzzy labeling subgraph of G = (V, σ, µ),
then ρ∞1 (u, v) ≤ µ∞1 (u, v) and ρ∞2 (u, v) ≥ µ∞2 (u, v) for all u, v ∈ V.
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Figure 2. An intuitionistic fuzzy labeling graph

Proof. Let G = (V, σ, µ) be any intuitionistic fuzzy labeling graph and H = (V, τ, ρ)
be its subgraph. Let (u, v) be any path in G then its strength be (µ∞1 (u, v), µ∞2 (u, v)).
Since H is a subgraph of G, then τ1(u) ≤ σ1(u), ρ1(u, v) ≤ µ1(u, v) and τ2(u) ≥ σ2(u),
ρ2(u, v) ≥ µ2(u, v), which implies that ρ∞1 (u, v) ≤ µ∞1 (u, v) and ρ∞2 (u, v) ≥ µ∞2 (u, v) for
all u, v ∈ V.

We denote x ∧ y = min{x, y} and x ∨ y = max{x, y}, throughout the paper.

Theorem 3.2. The union of any two intuitionistic fuzzy labeling graphs G′ = (V ′, σ′, µ′)
and G′′ = (V ′′, σ′′, µ′′) is also an intuitionistic fuzzy labeling graph, if the membership and
non-membership values of the edges between G′ and G′′ are distinct.

Proof. Let G′ = (V ′, σ′, µ′) and G′′ = (V ′′, σ′′, µ′′) be any two intuitionistic fuzzy
labeling graphs such that the membership and non-membership values of the edges between
G′ and G′′ are distinct. Let G = (V, σ, µ) be the union of two intuitionistic fuzzy labeling
graphs G′ and G′′. Now, we shall prove that G is an intuitionistic fuzzy labeling graph.
Now,

σ1(u) =

 σ′1(u), if u ∈ V ′ − V ′′
σ′′1(u), if u ∈ V ′′ − V ′
σ′1(u) ∨ σ′′1(u), if u ∈ V ′ ∩ V ′′

σ2(u) =

 σ′2(u), if u ∈ V ′ − V ′′
σ′′2(u), if u ∈ V ′′ − V ′
σ′2(u) ∧ σ′′2(u), if u ∈ V ′ ∩ V ′′

and

µ1(u, v) =

 µ′1(u, v), if (u, v) ∈ E′ − E′′
µ′′1(u, v), if (u, v) ∈ E′′ − E′
µ′1(u, v) ∨ µ′′1(u, v), if (u, v) ∈ E′ ∩ E′′

µ2(u, v) =

 µ′2(u, v), if (u, v) ∈ E′ − E′′
µ′′2(u, v), if (u, v) ∈ E′′ − E′
µ′2(u, v) ∧ µ′′2(u, v), if (u, v) ∈ E′ ∩ E′′

Then membership and non-membership values of the vertices and edges are distinct.
Hence, G = (V, σ, µ) is an intuitionistic fuzzy labeling graph.

Definition 3.3. Let G = (V, σ, µ) be an intuitionistic fuzzy labeling graph. The strength
of the path P of n edges ei for i = 1, 2, . . . , n is denoted by S(P ) = (S1(P ), S2(P )) and
defined by S1(P ) = min

1≤i≤n
µ1(ei) and S2(P ) = max

1≤i≤n
µ2(ei).
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Definition 3.4. Let G = (V, σ, µ) be an intuitionistic fuzzy labeling graph. The strength of
connectedness of a pair of vertices u, v ∈ V , denoted by CONNG(u, v) = (CONN1G(u, v),
CONN2G(u, v)) and is defined by CONN1G(u, v) = max{S1(P )| P is a u-v path inG} and
CONN2G(u, v) = min{S2(P )| P is a u-v path inG}.

If u and v are isolated vertices of G, then CONNG(u, v) = (0, 0).

Example 3.2. Consider the following intuitionistic fuzzy labeling graph G. Here CONNG(v1, v2) =
(0.3, 0.5), CONNG(v1, v3) = (0.3, 0.4), CONNG(v1, v4) = (0.2, 0.3) and so on, which is
shown in Figure 3.

u u

uu

v1(0.5, 0.4) v2(0.4, 0.6)

v3(0.6, 0.4)v4(0.4, 0.5)

(0.3, 0.5)

(0.2, 0.4)

(0.4, 0.55)(0.1, 0.3)

Figure 3. Connectedness in intuitionistic fuzzy labeling graph

Proposition 3.1. Let G be an intuitionistic fuzzy labeling graph and H is an intuition-
istic fuzzy labeling subgraph of G. Then for every pair of vertices u, v ∈ V , we have
CONN1H(u, v) ≤ CONN1G(u, v) and CONN2H(u, v) ≥ CONN2G(u, v).

Definition 3.5. A u−v path in an intuitionistic fuzzy labeling graph G is called a strongest
u− v path if S1(P ) = CONN1G(u, v) and S2(P ) = CONN2G(u, v).

Definition 3.6. Let G be an intuitionistic fuzzy labeling graph. A node w is called a partial
cut node (p−cut node) of G if there exists a pair of nodes u, v ∈ G such that u 6= v 6= w
and CONN1(G−w)(u, v) < CONN1G(u, v), CONN2(G−w)(u, v) > CONN2G(u, v).

A connected intuitionistic fuzzy labeling graph having no p-cut nodes is called a partial
block (p−block).

Example 3.3. Let G be an intuitionistic fuzzy labeling graph, which is shown in Fig-
ure 4. Node v2 is a partial cut node, since CONN1(G−v2)(v1, v3) = 0.02 < 0.03 =
CONN1G(v1, v3) and CONN2(G−v2)(v1, v3) = 0.6 > 0.3 = CONN2G(v1, v3).

Definition 3.7. Let G be an intuitionistic fuzzy labeling graph. An arc e = (u, v) is called
partial bridge (p- bridge) if CONN1(G−e)(u, v) < CONN1G(u, v), CONN2(G−e)(u, v) >
CONN2G(u, v).

A p-bridge is said to be a partial bond (p-bond) if CONN1(G−e)(x, y) < CONN1G(x, y),
CONN2(G−e)(x, y) > CONN2G(x, y) with at least one of x or y different from both u and
v and is said to be a partial cut bond (p-cut bond) if both x or y are different from u and
v.

Example 3.4. In Figure 5, all arcs except the arc (v3, v4) are partial bridge. In partic-
ular, arc (v1, v2) is a partial cut bond, since CONN1(G−(v1,v2))(v3, v4) = 0.02 < 0.03 =
CONN1G(v3, v4) and CONN2(G−(v1,v2))(v3, v4) = 0.5 > 0.4 = CONN2G(v3, v4).
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Figure 4. An intuitionistic fuzzy labeling graph in which v2 is a partial
cut node
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Figure 5. An intuitionistic fuzzy labeling graph in which all arcs except
(v3, v4) are partial bridge

Definition 3.8. Let G be an intuitionistic fuzzy labeling graph and C, a cycle in G. Then,
(i) C is called a strong cycle if all arcs in C are strong.
(ii) An arc e = (x, y) ∈ E is called α−strong if CONN1(G−e)(x, y) < µ1(u, v) and
CONN2(G−e)
(x, y) > µ2(u, v); a δ−arc if CONN1(G−e)(x, y) > µ1(u, v) and CONN2(G−e)(x, y) <
µ2(u, v).
(iii) A u− v path P in G is called a strong u− v path if all the arcs of P are strong. In
particular, if all the arcs of P are α−strong, then P is called α−strong path.

Clearly, an arc e = (x, y) is strong if it is α−strong. If (x, y) is strong arc, then x and
y are said to be strong neighbors of each other.

Example 3.5. In Figure 6, the arcs (v1, v2), (v1, v3), (v1, v4) are α−strong and the arc
(v3, v4) is a δ−arc. Also P = v4v1v2 is an α−strong path. But, there is no any strong
cycle.

Theorem 3.3. Let G be a connected intuitionistic fuzzy labeling graph and let u and v be
any two nodes in G. Then there exists a strong path from u to v.

Proof. Suppose that G = (V, σ, µ) is a connected intuitionistic fuzzy labeling graph.
Let u and v be any two nodes of G. If the arc (u, v) is strong, then there is nothing to
prove. Otherwise, either (u, v) is a δ-arc or there exist a path of length more then one
from u to v.
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Figure 6. v4v1v2 is an α-strong path

In the first case, we can find a path P (say) such that S1(P ) > µ1(u, v) and S2(P ) <
µ2(u, v). In either case, the path from u to v of length more then one. If some arc on
this path is not strong, replace it by a path having more strength. This argument can not
repeated arbitrary often; hence we can find a path from u to v on which all the arcs are
strong. Hence, there exists a strong path from u to v.

Theorem 3.4. A connected intuitionistic fuzzy labeling graph G is a partial block if and
only if any two nodes x, y ∈ V such that (x, y) is not α− strong are joined by two internally
disjoint strongest path.

Proof. Suppose that G is a partial block. Let x, y ∈ V such that (x, y) is not α−
strong arc. Now, we shall prove that there exist two internally disjoint strongest x − y
paths. If not, i.e there exist exactly one internally disjoint strongest x−y path in G. Since
(x, y) is not α− strong, length of all strongest x − y path must be at least two. Also for
all strongest x − y paths in G, there must be a common vertex. Let z be a such node in
G. Then CONN1(G−z)(x, y) > CONN1G(x, y) and CONN2(G−z)(x, y) < CONN2G(x, y),
which contradict the fact that G has no P -cut nodes. Hence there exist two internally
disjoint strongest x− y paths.

Conversely, let any two nodes of G are joined by two internally disjoint strongest paths.
Let w be a node in G. For any pair of nodes u, v ∈ V such that u 6= v 6= w, there always
exists a strongest path not containing w. So, w can not be a p−cut node. Hence G is a
partial block.

4. Intuitionistic fuzzy labeling tree

Next, we define intuitionistic fuzzy labeling tree as follows.

Definition 4.1. A graph G = (V, σ, µ) is said to be intuitionistic fuzzy labeling tree, if it
has intuitionistic fuzzy labeling and an intuitionistic fuzzy spanning subgraph F = (V, σ, ρ)
which is a tree, where for all arcs (u, v) not in F , µ1(u, v) < ρ∞1 (u, v) and µ2(u, v) >
ρ∞2 (u, v).

Theorem 4.1. If G is an intuitionistic fuzzy labeling tree, then the arcs of intuitionistic
fuzzy spanning subgraph F are intuitionistic fuzzy bridges of G.

Proof. Let G = (V, σ, µ) be an intuitionistic fuzzy labeling tree and F = (V, σ, ρ) be
its spanning subgraph. Let (x, y) be an arc in F . Then ρ∞1 (x, y) < µ1(x, y) ≤ µ∞1 (x, y)
and ρ∞2 (x, y) > µ2(x, y) ≥ µ∞2 (x, y), which implies that the arc (x, y) is an intuitionistic
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fuzzy bridge of G. Since the arc (x, y) is an arbitrary, then the arcs of F are intuitionistic
fuzzy bridges of G.

Theorem 4.2. Every intuitionistic fuzzy labeling graph is an intuitionistic fuzzy labeling
tree.

Proof. Let G = (V, σ, µ) be an intuitionistic fuzzy labeling graph. Since µ is bijective,
each and every vertex of G will have at least one arc as intuitionistic fuzzy bridge. There-
fore, the spanning subgraph F will exist, such that whose arcs are intuitionistic fuzzy
bridges. Hence, by Theorem 5, every intuitionistic fuzzy labeling graph is an intuitionistic
fuzzy labeling tree.

4.1. Partial intuitionistic fuzzy labeling tree. Finally, we define intuitionistic fuzzy
labeling tree as follows.

Definition 4.2. A connected intuitionistic fuzzy labeling graph G = (V, σ, µ) is called a
partial intuitionistic fuzzy labeling tree if G has a spanning subgraph F = (V, σ, µ′) which
is a tree, where for all arc (x, y) of G which are not in F , CONN1G(x, y) > µ1(x, y) and
CONN2G(x, y) < µ2(x, y).

When the graph G is not connected and the above condition is satisfied by all components
of G, then G is called a partial forest.

Example 4.1. In Figure 7, CONNG(v1, v2) = (0.07, 0.3), CONNG(v2, v3) = (0.03, 0.2),
CONNG(v3, v4) = (0.03, 0.4) and CONNG(v1, v4) = (0.05, 0.4). The following is an
example of a partial intuitionistic fuzzy labeling tree. By removing the arc (v3, v4) we will
get a spanning tree F . Note that for the arc (v3, v4), CONN1G(v3, v4) = 0.03 > 0.02 =
µ1(v3, v4) and CONN2G(v3, v4) = 0.4 < 0.5 = µ2(v3, v4).

u u

uu

v1(0.08, 0.5) v2(0.09, 0.4)

v3(0.1, 0.2)v4(0.06, 0.7)

(0.07, 0.3)

(0.02, 0.5)

(0.03, 0.2)(0.05, 0.4)

Figure 7. Partial intuitionistic fuzzy labeling tree

Next we have a characterization of a partial intuitionistic fuzzy labeling tree.

Theorem 4.3. A connected intuitionistic fuzzy labeling graph G is a partial tree if and only
if any cycle C of G, there exists an arc e = (u, v) such that µ1(e) < CONN1(G−e)(u, v)
and µ2(e) > CONN2(G−e)(u, v), where G− e is the subgraph of G obtained by deleting the
arc e from G.

Proof. Let G be a connected intuitionistic fuzzy labeling graph. If there is no cycle,
it is clearly a tree and hence it is a partial tree. If there exists cycles in G, let (u, v) be
an arc belonging to the cycle C with mimimum membership weight and maximum non-
membership weight in G, then delete the arc (u, v) from G. If there are still cycles in the
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graph, we can repeat the process. Not at each stage no previously deleted arc is strongest
the arc being currently deleted. When no cycle remain, the resulting subgraph is a tree
F . Let (u, v) not be an arc in F . Then (u, v) is one of the arc deleted in the process of
constructing F . Since F is a tree and the arc (u, v) having minimum membership value and
maximum non-membership value from the arcs of a cycle in G, it follows that there exists
a path from u to v whose membership value grater than µ1(u, v) and non-membership
value less than µ2(u, v) and that does not involve (u, v) or any arcs deleted prior to it. If
this path involves arcs that were deleted later, the path can be futher diverted and so on.
This process stabilizer with a path consisting entirely the arcs of F . Thus G is a partial
intuitionistic fuzzy labeling tree.

Conversely, if G is a partial intuitionistic fuzzy labeling tree and P is cycle, then
some arc e = (u, v) of P does not belong to F . Thus by definition we have µ1(e) <
CONN1(G−e)(u, v) < CONN1G(u, v) and µ2(e) > CONN2(G−e)(u, v) > CONN2G(u, v).

Theorem 4.4. If there exist at most one strongest path between any two nodes of G, then
G must be a partial forest.

Proof. Suppose G is not a partial forest. Then there is a cycle C in G such that
µ1(u, v) ≥ CONN1G(u, v) and µ2(u, v) ≤ CONN2G(u, v), for all arcs (u, v) of the cycle
C. Thus (u, v) is the strongest path from u to v. If we choose (u, v) to be a weakest
arc of C, it follows that the rest of the cycle C is also a strongest path from u to v, a
contradiction. Hence, G must be a partial forest.

Theorem 4.5. If G is a partial tree and not a tree, then there exists at least one arc (u, v)
for which µ1(u, v) < CONN1G(u, v) and µ2(u, v) > CONN2G(u, v).

Proof. If G is a partial tree, then by definition there exists a spanning tree F such that
µ1(u, v) < CONN1G(u, v) and µ2(u, v) > CONN2G(u, v), for all arcs (u, v) not in F . By
hypothesis, there exists at least one such arc (since G is not a tree) and hence the result
follows.

Theorem 4.6. If G is a partial tree and F , the spanning tree, then the arcs of F are the
partial bridges of G.

Proof. Let (u, v) be an arc in F . Then this arc is the unique path between u and v in
F . If there is no other paths in G from u and v, then clearly (u, v) is a bridge of G and
hence a partial bridge of G. If there exists a path say P from u to v in G, then P will
definitely contain an arc (x, y) which is not in F such that µ1(u, v) < CONN1G(u, v) and
µ2(u, v) > CONN2G(u, v). Then (u, v) is not a weakest arc of any cycle in G and hence
(u, v) is a partial bridge.

5. Conclusion

Connectivity concepts are the major key in intuitionistic fuzzy graph problems. Here,
we have presented new connectivity concepts in intuitionistic fuzzy labeling graphs. Also,
we defined strong arc, partial cut node, bridge and block by connectivity concepts of
intuitionistic fuzzy graph. Also, intuitionistic fuzzy labeling tree and partial intuitionistic
fuzzy labeling tree were defined and established many interesting properties on them,
which plays a major role in many areas of science and technology. We are extending
our research work to (1) Covering problem on intuitionistic fuzzy graphs, (2) Chromatic
number in intuitionistic fuzzy graphs and (3) Colouring of intuitionistic fuzzy graphs.
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