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INEQUALITIES FOR CONVEX FUNCTIONS ON TIME SCALES

ALPER EKINCI1, §

Abstract. In this paper, we presented ostrowski type ∆−integral inequalities for convex
functions. Also we give some results for continuous and discrete choises of time scales.
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1. INTRODUCTION

In [1], Dinu gave definition of convex functions on time scales where T denotes a time
scale and, for any I interval of R (open or closed), IT = I ∩T a time scale interval.

Definition 1.1. A function f : T→ R is called convex on IT, if

f (λt+ (1− λ) s) ≤ λf (t) + (1− λ) f (s) , (1)

for all t, s ∈ IT and all λ ∈ [0, 1] such that λt+ (1− λ) s ∈ IT.

The function f is strictly convex on IT if the inequality (1) is strict for distinct t, s ∈ IT
and λ ∈ (0, 1) .

In [5], Alomari and Darus proved the following Ostrovski type Inequality:

Theorem 1.1. Let f : I ⊂ [0,∞) → R be a differentiable mapping on I◦ such that
f ′ ∈ L [a, b] , where a, b ∈ I with a < b. If |f ′| is convex on [a, b] , then the following
inequality holds: ∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (u) du

∣∣∣∣∣∣ (2)

≤

[
1

6
+

1

3

(
x− a
b− a

)3
] ∣∣f ′ (b)∣∣+

[
1

6
+

1

3

(
b− x
b− a

)3
] ∣∣f ′ (a)

∣∣ ,
for each x ∈ [a, b] .
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1.1. Preliminaries. A time scale (or measure chain) T is a nonempty closed subset of R
(together with the topology of subspace of R). The most popular examples of time scales
are the real numbers R, the integers Z or hZ.

Throughout this paper T will denote a time scale and, for any I interval of R (open
or closed), IT =I ∩ T a time scale interval. Next we define the concepts of forward and
backward jump operators:

For all t ∈ T, we define the forward jump operator σ and the backward jump operator
ρ by the formulas:

σ(t) = inf {τ ∈ T: τ > t} ∈ T, ρ (t) = sup {τ ∈ T: τ < t} ∈ T.

In this definition, the convention is inf � = supT and sup� = inf T.
If σ (t) > t, then we say that t is right − scattered, and if ρ (t) < t, then we say that

t is left − scattered. Points that are right-scattered and left-scattered at the same time
are called isolated. Also, if σ (t) = t, then t is said to be right − dense, and if ρ (t) = t,
then t is said to be left−dense. Points that are simultaneously right-dense and left-dense
are called dense. If T has a left-scattered maximum M, then we define Tκ = T\ {M};
otherwise Tκ = T. If T has a right-scattered minimum m, then we define Tκ = T\ {m};
otherwise Tκ = T.

The mappings µ, v : T→ [0,∞) defined by

µ (t) = σ (t)− t
and

v (t) = t− ρ (t)

is called, respectively, forward and backward grininess functions.

Definition 1.2. Assume f : T→ R is a function and let t ∈ Tκ. Then we define f∆ (t) ,
to be the number (provided it exist) with the property that given any ε > 0, there is a
neighborhood U of t such that

∣∣(f (σ (t))− f (s))− f∆ (t) (σ (t)− s)
∣∣ ≤ ε |σ (t)− s|

for all s ∈ U.
We call f∆ (t) the delta derivative of f at t. We say that f is delta differentiable on

Tκ provided f∆ (t) exists for all t ∈ Tκ.
If T = R, then

f∆ (t) = f ′ (t) .

If T = N, then

f∆ (t) = f (t+ 1)− f (t) .

is the forward difference operator.
For a function f : T→ R we define fσ : T→ R by fσ (t) = f (σ (t)) for all t ∈ T, (that

is fσ = f ◦ σ). We also define fρ : T→ R by fρ (t) = f (ρ (t)) for all t ∈ T, (that is
fρ = f ◦ ρ).

For all t ∈ Tκ, we have the following properties.

(i) If f is delta differentiable at t, then f is continuous at t.
(ii) If f is left continuous at t and t is right-scattered, then f is ∆ differentiable at t

with f∆ (t) = fσ(t)−f(t)
µ(t) .

(iii) If t is right-dense, then f is delta differentiable at t if and only if lim
s→t

f(t)−f(s)
t−s exists

as a finite number. In this case, f∆ (t) = lim
s→t

f(t)−f(s)
t−s .
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(iv) If f is delta differentiable at t then f (σ (t)) = f (t) + µ (t) f∆ (t) .

In the same manner, for all Tκ we have the following properties:

Definition 1.3. A function f : T→ R is called rd − continuous if it is continuous at
all right-dense points in T and its left-sided limits are finite at all left-dense points in T.
We denote by Crd the set of all rd-continuous functions. We say that f is rd-continuously
delta differentiable (and write f ∈ C1

rd if f∆ (t) exists for all t ∈ Tκ and f∆ ∈ Crd.

Definition 1.4. A function F : T→ R is called a delta antiderivative of f : T→ R if

F∆ (t) = f (t) , for all t ∈ Tκ, then the delta integral can be defined as
t∫
a
f (s) ∆s =

F (t)− F (a) .

Theorem 1.2. (Theorem 1.77 in [2]). If a, b, c ∈ T, β ∈ R, and f, g ∈ Crd, then

1
b∫
a

(f (t) + g (t)) ∆t =
b∫
a
f (t) ∆t+

b∫
a
g (t) ∆t;

(1)
b∫
a
βf (t) ∆t = β

b∫
a
f (t) ∆t;

(2)
b∫
a
f (t) ∆t = −

a∫
b

f (t) ∆t;

(3)
b∫
a
f (t) ∆t =

c∫
a
f (t) ∆t+

b∫
c
f (t) ∆t;

(4)
b∫
a
f (σ (t)) g∆ (t) ∆t = (fg) (b)− (fg) (a)−

b∫
a
f∆ (t) g (t) ∆t;

(5)
b∫
a
f (t) g∆ (t) ∆t = (fg) (b)− (fg) (a)−

b∫
a
f∆ (t) g (σ (t)) ∆t;

(6)
a∫
a
f (t) ∆t = 0;

(7) if f (t) ≥ 0 for all t, then
b∫
a
f (t) ∆t ≥ 0;

(8) if |f (t)| ≤ g (t) on [a, b) , then∣∣∣∣∣∣
b∫
a

f (t) ∆t

∣∣∣∣∣∣ ≤
b∫
a

g (t) ∆t.

In [2] Bohner and Peterson gave the following integration rule for time scales:

Theorem 1.3. (Substitution [2]) Assume that v : T→ R is strictly increasing and T̃ =v (T)
is a time scale. If f : T→R is an rd-continuous function and v is differentiable with rd-
continuous derivative, then for a, b ∈ T,

b∫
a

f (t) v∆ (t) ∆t =

v(b)∫
v(a)

(
f ◦ v−1

)
(s) ∆̃s.

The following analogue of Hölder’s inequality for time scales had proved by Wong et al.
in [6]:
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Theorem 1.4. (Hölder’s Inequality [6]) Let h, f, g ∈ Crd ([a, b] , [0,∞)) with

b∫
a

h (x) gq (x) ∆x > 0.

If 1
p + 1

q = 1 with p > 1, then

b∫
a

h (x) f (x) g (x) ∆x ≤

 b∫
a

h (x) fp (x) ∆x


1
p
 b∫
a

h (x) qq (x) ∆x


1
q

.

In [2] Bohner and Peterson gave the following Ostrowski type results:

Lemma 1.1. Let a, b, s, t ∈ T, a < b and f : [a, b]→ R be differentiable. Then

f (t) =
1

b− a

b∫
a

fσ (t) ∆t+
1

b− a

b∫
a

p (t, s) f∆ (s) ∆s

where

p (t, s) =

{
s− a a ≤ s < t
s− b t ≤ s ≤ b .

Theorem 1.5. Let a, b, s, t ∈ T, a < b and f : [a, b]→ R be differentiable. Then∣∣∣∣∣∣f (t)− 1

b− a

b∫
a

fσ (t) ∆t

∣∣∣∣∣∣ ≤ M

b− a
(h2 (t, a)− h2 (t, b)) ,

where

M = sup
a<t<b

∣∣f∆ (t)
∣∣

and time scales polynomial hk : T2 → R, k ∈ N0 be defined by

h0 (t, s) = 1 , hk+1 (t, s) =
t∫
s
hk (τ, s) ∆τ

for all s, t ∈ T.

2. Main Results

Lemma 2.1. Let T, T̃ be time scales and f : IT → R is a ∆−differentiable mapping on
IκT. Assume that T̃ =v (T) with v = t−a

b−a . If
∣∣f∆

∣∣ is convex on IT, f∆ ∈ Crd (I,R) and
a, b, t ∈ IT with a < b then the following identity holds:

f (t)− 1

b− a

b∫
a

fσ (t) ∆t = (b− a)

1∫
0

k (t, s) f∆ (sb+ (1− s) a) ∆̃s

where

k (t, s) =

{
s 0 ≤ s < t−a

b−a
s− 1 t−a

b−a ≤ s ≤ 1
.
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Proof. First we recall the Montgomery identity in Lemma 1.1

f (t) =
1

b− a

b∫
a

fσ (t) ∆t+
1

b− a

b∫
a

p (t, s) f∆ (s) ∆s, (3)

where

p (t, s) =

{
s− a a ≤ s < t
s− b t ≤ s ≤ b .

If we use Theroem 1.3 in (3) we have

1

b− a

b∫
a

p (t, s) f∆ (s) ∆s =

b∫
a

p (t, s) f∆ (s) v∆ (s) ∆s

=

1∫
0

p
(
v−1 (t) , v−1 (r)

)
f∆
(
v−1 (r)

)
∆̃r

= (b− a)

1∫
0

k (t, r) f∆ (rb+ (1− r) a) ∆̃r

and that completes the proof. �

Theorem 2.1. Let T, T̃ be time scales and f : IT → R is a ∆−differentiable mapping on
IκT. Assume that T̃ =v (T) with v = t−a

b−a = c. If
∣∣f∆

∣∣ is convex on IT, f∆ ∈ Crd (I,R) and
a, b, t ∈ IT with a < b then the following inequality holds:∣∣∣∣∣∣f (t)− 1

b− a

b∫
a

fσ (u) ∆u

∣∣∣∣∣∣
≤ (b− a)

{
(λ2 + µ1 − µ2)

∣∣f∆ (b)
∣∣+ (µ2 + λ1 − λ2)

∣∣f∆ (a)
∣∣}

where

λ1 =
c∫

0

s∆̃s µ1 =
1∫
c

(1− s) ∆̃s

λ2 =
c∫

0

s2∆̃s µ2 =
1∫
c

(1− s)2 ∆̃s

(4)

for c ∈ T̃.

Proof. By using the Lemma 2.1 and the property of modulus, for s ∈ T̃ we have∣∣∣∣∣∣f (t)− 1

b− a

b∫
a

fσ (t) ∆t

∣∣∣∣∣∣ (5)

≤ (b− a)

c∫
0

∣∣sf∆ [sb+ (1− s) a]
∣∣ ∆̃s+

1∫
c

∣∣(s− 1) f∆ [sb+ (1− s) a]
∣∣ ∆̃s.
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Since
∣∣f∆

∣∣ is convex then

c∫
0

∣∣sf∆ [sb+ (1− s) a]
∣∣ ∆̃s+

1∫
c

∣∣(s− 1) f∆ [sb+ (1− s) a]
∣∣ ∆̃s

≤
c∫

0

s
[
s
∣∣f∆ (b)

∣∣+ (1− s)
∣∣f∆ (a)

∣∣] ∆̃s+

1∫
c

|s− 1|
[
s
∣∣f∆ (b)

∣∣+ (1− s)
∣∣f∆ (a)

∣∣] ∆̃s

=

 c∫
0

s2∆̃s+

1∫
c

(1− s) s∆̃s

∣∣f∆ (b)
∣∣+

 c∫
0

s (1− s) ∆̃s+

1∫
c

(1− s)2 ∆̃s

∣∣f∆ (a)
∣∣

=

 c∫
0

s2∆̃s+

1∫
c

[
(1− s)− (1− s)2

]
∆̃s

∣∣f∆ (b)
∣∣+

 c∫
0

[
s− s2

]
∆̃s+

1∫
c

(1− s)2 ∆̃s

∣∣f∆ (a)
∣∣

This implies the desired result. �

Remark 2.1. Under the Assumptions of Theorem 2.1, assuming M = sup
a<t<b

∣∣f∆ (t)
∣∣ , we

have Theorem 1.5.

Remark 2.2. (Continuous Case) Let T = R. Then we obtain the inequality (2) .

Corollary 2.1. (Discrete Case). Let T = Z. Let a = 0, b = n, s = j, t = i and
f (k) = xk. Then the following inequality holds:∣∣∣∣∣∣xi − 1

n

n∑
j=1

xj

∣∣∣∣∣∣
≤ 1

6n
{[g (i) + h (n− i+ 1)] |xn+1 − xn|+ [g (n− i+ 1) + h (i)] |x1 − x0|}

where

g (u) = u (u− 1) (2u− 1)

h (u) = u (u− 1) (3n− 2u− 1)

Proof. Since the fact that ∣∣f∆ (b)
∣∣ = |xn+1 − xn| ,∣∣f∆ (a)
∣∣ = |x1 − x0| ,

If we calculate the four integrals in (4) , we deduce the desired result. �

Example 2.1. Using Corollary 2.1, let f (x) = x2, T = Z and a = 0, b = 12. If we apply
the formula we have∣∣∣∣∣∣xi − 1

n

n∑
j=1

xj

∣∣∣∣∣∣ =

∣∣∣∣i2 − 1

12

(12) . (13) (25)

2

∣∣∣∣ =
∣∣i2 − 162, 5

∣∣ = 162, 5− i2
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and

1

6n
{[g (i) + h (n− i)] |xn+1 − xn|+ [g (n− i) + h (i)] |x1 − x0|}

=
1

72
{[g (i) + h (n− i)] (25) + [g (n− i) + h (i)]}

=
1

72

(
39336− 528i− 844i2 + 96i3

)
.

One can easily see that LHS ≤ RHS.

Theorem 2.2. Let T, T̃ be time scales and f : IT → R is a ∆−differentiable mapping on
IκT. Assume that T̃ =v (T) with v = t−a

b−a = c. If
∣∣f∆

∣∣q is convex on IT, f∆ ∈ Crd (I,R)
and a, b, t ∈ IT with a < b, q > 1 then the following inequality holds:∣∣∣∣∣∣f (t)− 1

b− a

b∫
a

fσ (u) ∆u

∣∣∣∣∣∣
≤ (b− a) (λ1 + µ1)

1
p

{
(λ2 + µ1 − µ2)

∣∣f∆ (b)
∣∣q + (µ2 + λ1 − λ2)

∣∣f∆ (a)
∣∣q} 1

q

where

λ1 =
c∫

0

s∆̃s µ1 =
1∫
c

(1− s) ∆̃s

λ2 =
c∫

0

s2∆̃s µ2 =
1∫
c

(1− s)2 ∆̃s

and 1
p + 1

q = 1.

Proof. By using the Lemma 2.1 and the property of modulus, for s ∈ T̃ we have∣∣∣∣∣∣f (t)− 1

b− a

b∫
a

fσ (t) ∆t

∣∣∣∣∣∣ (6)

≤ (b− a)

1∫
0

|k (t, s)|
∣∣f∆ [sb+ (1− s) a]

∣∣ ∆̃s
By using Hölder Inequality in Theorem 1.4 we can state that

1∫
0

|k (t, s)|
∣∣f∆ [sb+ (1− s) a]

∣∣ ∆̃s
≤

 1∫
0

|k (t, s)| ∆̃s


1
p
 1∫

0

|k (t, s)|
∣∣f∆ [sb+ (1− s) a]

∣∣q ∆̃s


1
q

Thus we have

1∫
0

|k (t, s)| ∆̃s =

c∫
0

s∆̃s+

1∫
c

(1− s) ∆̃s

= λ1 + µ1
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and since
∣∣f∆

∣∣q is convex than we can write

1∫
0

|k (t, s)|
∣∣f∆ [sb+ (1− s) a]

∣∣q ∆̃s

≤
1∫

0

|k (t, s)|
[
s
∣∣f∆ (b)

∣∣q + (1− t)
∣∣f∆ (b)

∣∣q] ∆̃s.

By using the same method as in the proof of previous Theorem we have

1∫
0

|k (t, s)|
[
s
∣∣f∆ (b)

∣∣q + (1− t)
∣∣f∆ (b)

∣∣q] ∆̃s

= (λ2 + µ1 − µ2)
∣∣f∆ (b)

∣∣q + (µ2 + λ1 − λ2)
∣∣f∆ (a)

∣∣q .
Writing these results in (6) we deduce the desired result. �

Remark 2.3. (Continuous Case) In Theorem 2.2, Let T = R. Then we obtain∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (u) du

∣∣∣∣∣∣
≤ (b− a)

1− 2
p

{
(x− a)2 + (b− x)2

2

} 1
p

×

{[
1

6
+

1

3

(
x− a
b− a

)3
] ∣∣f ′ (b)∣∣+

[
1

6
+

1

3

(
b− x
b− a

)3
] ∣∣f ′ (a)

∣∣} 1
q

.

Corollary 2.2. (Discrete Case). In Theorem 2.2, Let T = Z. Let a = 0, b = n, t = i
and f (k) = xk. Then the following inequality holds∣∣∣∣∣∣xi − 1

n

n∑
j=1

xj

∣∣∣∣∣∣
≤ n

−1
q

2

(
1

3

) 1
q

{[g (i) + h (n− i+ 1)] |xn+1 − xn|q + [g (n− i+ 1) + h (i)] |x1 − x0|q}
1
q

× [r (i) + r (n− i+ 1)]
1
p .

where

g (u) = u (u− 1) (2u− 1)

h (u) = u (u− 1) (3n− 2u+ 1)

r (u) = u (u− 1) .

Corollary 2.3. Under the Assumptions of Theorem 2.2, assuming M = sup
a<t<b

∣∣f∆ (t)
∣∣q ,

we have the following inequality∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

fσ (t) ∆t

∣∣∣∣∣∣
≤ (b− a) {λ1 + µ1}M.
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