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ON THE PARTIAL SUMS OF CONVEX HARMONIC UNIVALENT FUNCTIONS

A. ZIREH1, M. M. SHABANI1, §

Abstract. Partial sums of analytic univalent functions and partial sums of starlike have
been investigated extensively by several researchers. In this paper, we investigate a partial
sums of convex harmonic functions that are univalent and sense preserving in the open unit
disk.

Keywords: Harmonic, Univalent, Convex, Partial sums.

AMS Subject Classification: 30C45; 30C50.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a complex
domain Ω ⊂ C if both u and v are real harmonic in Ω.
In any simply connected domain Ω ⊂ C, we may write f = h+ g, where h and g are analytic
in Ω. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient
condition for f to be locally univalent and sense-preserving in Ω is that |h′

(z)| > |g′
(z)| in Ω.

(See [2]).
Denote by SH the class of functions f = h + g that are harmonic univalent and sense-

preserving in D = {z ∈ C : |z| < 1} for which f(0) = fz(0)− 1 = 0. Then for f = h+ g ∈ SH,
the analytic functions h and g can be expressed as

h(z) = z +
∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1)

A function f of the form (1) is harmonic convex of order α, 0 ≤ α < 1, denoted by KH(α), if
it satisfies

∂

∂θ

{
arg
( ∂
∂θ
f(reiθ

)}
= Re

{z(zh′(z))′ + z
(
zg′(z)

)′
zh′(z)− zg′(z)

}
≥ α,

where 0 ≤ θ ≤ 2π, |z| = r < 1.
As shown recently by Jahangiri [6] a sufficient condition for a function of the form (1) to be
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in KH(α) is that

∞∑
k=1

(k(k − α)

1− α
|ak|+

k(k + α)

1− α
|bk|
)
≤ 2. (2)

In 1985, Silvia[11] studied the partial sums of convex functions of order α. Later, Silverman
[10], Abubaker and Darus[1], Dixit and Porwal[3], Frasin[4, 5], Raina and Bansal[8], Rosy et
al.[9] and Porwal and Dixit[7] exhibited some results on partial sums for various classes of
analytic functions. Here, we investigate a partial sums of convex harmonic functions.
Now, we let the sequences of partial sums of functions of the form (1) with b1 = 0, have forms

fm(z) = z +

m∑
k=2

akz
k +

∞∑
k=2

bkzk,

fn(z) = z +

∞∑
k=2

akz
k +

n∑
k=2

bkzk,

fm,n(z) = z +
m∑
k=2

akz
k +

n∑
k=2

bkzk.

In the present paper, we determine sharp lower bounds for Re
{ f

fm

}
, Re

{fm
f

}
, Re

{ f ′
f ′m

}
,

Re
{f ′m
f ′

}
,Re
{ f
fn

}
, Re

{fn
f

}
, Re

{ f

fm,n

}
, Re

{fm,n
f

}
, Re

{ f ′

f ′m,n

}
and Re

{f ′m,n
f ′

}
,

where f ′(z) =
∂

∂θ
f(reiθ) = i

(
zh′(z)− zg′(z)

)
.

2. Main Results

Theorem 2.1. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

Re
{ f(z)

fm(z)

}
≥ m(m+ 2− α)

(m+ 1)(m+ 1− α)
, (z ∈ D) (3)

The result (3) is sharp with the function

f(z) = z +
1− α

(m+ 1)(m+ 1− α)
zm+1. (4)

Proof. To obtain sharp lower bound given by (3), let us put

(m+ 1)(m+ 1− α)

1− α

[ f(z)

fm(z)
− m(m+ 2− α)

(m+ 1)(m+ 1− α)

]
=

1 +
m∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk +
(m+ 1)(m+ 1− α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak

]
1 +

m∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk

:=
1 +A(z)

1 +B(z)
.
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Set
1 +A(z)

1 +B(z)
=

1 + ω(z)

1− ω(z)
, so that ω(z) =

A(z)−B(z)

2 +A(z) +B(z)
. Then

ω(z) =

(m+ 1)(m+ 1− α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak

]
2 + 2

( m∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk

)
+

(m+ 1)(m+ 1− α)

1− α

( ∞∑
k=m+1

rk−1ei(k−1)θak

)
Hence

|ω(z)| ≤

(m+ 1)(m+ 1− α)

1− α

[ ∞∑
k=m+1

|ak|
]

2− 2
( m∑
k=2

|ak|+
∞∑
k=2

|bk|
)
− (m+ 1)(m+ 1− α)

1− α

( ∞∑
k=m+1

|ak|
)

The last expression is bounded above by 1, if and only if

m∑
k=2

|ak|+
∞∑
k=2

|bk|+
(m+ 1)(m+ 1− α)

1− α

( ∞∑
k=m+1

|ak|
)
≤ 1 (5)

It suffices to show that the L. H. S. of (5) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak|+

k(k + α)

1− α
|bk|
)

,

which is equivalent to

m∑
k=2

(k(k − α)

1− α
− 1
)
|ak|+

∞∑
k=2

(k(k + α)

1− α
− 1
)
|bk|

+
∞∑

k=m+1

(k(k − α)

1− α
− (m+ 1)(m+ 1− α)

1− α

)
|ak| ≥ 0.

To see f(z) = z+
1− α

(m+ 1)(m+ 1− α)
zm+1 gives the sharp result, we observe that for z = rei

π
m

we have

f(z)

fm(z)
= 1 +

1− α
(m+ 1)(m+ 1− α)

zm −→ 1− 1− α
(m+ 1)(m+ 1− α)

=
m(m+ 2− α)

(m+ 1)(m+ 1− α)

when r → 1−. This completes the proof of Theorem 2.1. �

Theorem 2.2. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

Re
{fm(z)

f(z)

}
≥ (m+ 1)(m+ 1− α)

m(m+ 2− α) + 2(1− α)
, (z ∈ D) (6)

The result (6) is sharp with the function given by (4).

Proof. We may write

1 + ω(z)

1− ω(z)
=

m(m+ 2− α) + 2(1− α)

1− α

[fm(z)

f(z)
− (m+ 1)(m+ 1− α)

m(m+ 2− α) + 2(1− α)

]
=

1 +
m∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk −
(m+ 1)(m+ 1− α)

1− α

( ∞∑
k=m+1

rk−1ei(k−1)θak

)
1 +

∞∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk
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where

|ω(z)| ≤

m(m+ 2− α) + 2(1− α)

1− α

[ ∞∑
k=m+1

|ak|
]

2− 2
( m∑
k=2

|ak|+
∞∑
k=2

|bk|
)
− m(m+ 2− α)

1− α

( ∞∑
k=m+1

|ak|
) ≤ 1.

Equivalently
m∑
k=2

|ak|+
∞∑
k=2

|bk|+
m(m+ 2− α) + (1− α)

1− α

( ∞∑
k=m+1

|ak|
)
≤ 1. (7)

since the L. H. S. of (7) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak|+

k(k + α)

1− α
|bk|
)

, the proof is

complete. �

Theorem 2.3. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

Re
{ f ′(z)
f ′m(z)

}
≥ m

m+ 1− α
, (z ∈ D) (8)

The result (8) is sharp with the function given by (4).

Proof. We have

1 + ω(z)

1− ω(z)
=
m+ 1− α

1− α

[ f ′(z)
f ′m(z)

− m

m+ 1− α

]

=

1 +
m∑
k=2

krk−1ei(k−1)θak −
∞∑
k=2

krk−1e−i(k+1)θbk +
m+ 1− α

1− α

[ ∞∑
k=m+1

krk−1ei(k−1)θak

]
1 +

m∑
k=2

krk−1ei(k−1)θak −
∞∑
k=2

krk−1e−i(k+1)θbk

.

Then

ω(z) =

m+ 1− α
1− α

[ ∞∑
k=m+1

krk−1ei(k−1)θak

]
2 + 2

( m∑
k=2

krk−1ei(k−1)θak −
∞∑
k=2

krk−1e−i(k+1)θbk

)
+
m+ 1− α

1− α

( ∞∑
k=m+1

krk−1ei(k−1)θak

)
In a similar fashion as in Theorem 2.1. the proof is complete. �

Theorem 2.4. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

Re
{f ′m(z)

f ′(z)

}
≥ m+ 1− α
m+ 2(1− α)

, (z ∈ D) (9)

The result (9) is sharp with the function given by (4).

Proof. Since

1 + ω(z)

1− ω(z)
=
m+ 2(1− α)

1− α

[f ′m(z)

f ′(z)
− m+ 1− α
m+ 2(1− α)

]
,

proceeding exactly as in the proof of Theorem 2.3, we evidently have the required result. �

Theorem 2.5. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

Re
{ f(z)

fn(z)

}
≥ n(n+ 2 + α)

(n+ 1)(n+ 1 + α)
, (z ∈ D) (10)
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The result (10) is sharp with the function

f(z) = z +
1− α

(n+ 1)(n+ 1 + α)
zn+1. (11)

Proof. Write

1 + ω(z)

1− ω(z)
=

(n+ 1)(n+ 1 + α)

1− α

[ f(z)

fn(z)
− n(n+ 2 + α)

(n+ 1)(n+ 1 + α)

]
=

1 +
∞∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk +
(n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=n+1

rk−1e−i(k+1)θbk

]
1 +

∞∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk

.

where

ω(z) =

(n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=n+1

rk−1e−i(k+1)θbk

]
2 + 2

( ∞∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk

)
+

(n+ 1)(n+ 1 + α)

1− α

( ∞∑
k=n+1

rk−1e−i(k+1)θbk

) .
Then

|ω(z)| ≤

(n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=n+1

|bk|
]

2− 2
( ∞∑
k=2

|ak|+
n∑
k=2

|bk|
)
− (n+ 1)(n+ 1 + α)

1− α

( ∞∑
k=n+1

|bk|
) .

This last expression is bounded above by 1, if and only if
∞∑
k=2

|ak|+
n∑
k=2

|bk|+
(n+ 1)(n+ 1 + α)

1− α

( ∞∑
k=n+1

|bk|
)
≤ 1. (12)

It suffices to show that the L. H. S. of (12) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak|+

k(k + α)

1− α
|bk|
)

,

which is equivalent to
∞∑
k=2

(k(k − α)

1− α
− 1
)
|ak|+

n∑
k=2

(k(k + α)

1− α
− 1
)
|bk|

+

∞∑
k=n+1

(k(k + α)

1− α
− (n+ 1)(n+ 1 + α)

1− α

)
|bk| ≥ 0.

To see that f(z) = z +
1− α

(n+ 1)(n+ 1 + α)
zn+1 gives the sharp result, we observe that for

z = rei
π
n+2 one obtains

f(z)

fn(z)
= 1 +

1− α
(n+ 1)(n+ 1 + α)

rne−
iπ
n+2 (n+2) −→ 1− 1− α

(n+ 1)(n+ 1 + α)
=

n(n+ 2 + α)

(n+ 1)(n+ 1 + α)

when r → 1−. This completes the proof. �

Theorem 2.6. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

Re
{fn(z)

f(z)

}
≥ (n+ 1)(n+ 1 + α)

n(n+ 2 + α) + 2
, (z ∈ D) (13)

The result (13) is sharp with the function given by (11).
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Proof. It is easy to see that

1 + ω(z)

1− ω(z)
=

n(n+ 2 + α) + 2

1− α

[fn(z)

f(z)
− (n+ 1)(n+ 1 + α)

n(n+ 2 + α) + 2

]
=

1 +
∞∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk −
(n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=n+1

rk−1e−i(k+1)θbk

]
1 +

∞∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk

.

Rest of the proof is omitted since it runs parallel to that from Theorem 2.2. �

Theorem 2.7. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

(i) Re
{ f(z)

fm,n(z)

}
≥ m(m+ 2− α)

(m+ 1)(m+ 1− α)
, (z ∈ D) if n(n + 2 + α) + 2α ≥ m(m + 2 − α) or

bk = 0 ∀k ≥ 2.

(ii) Re
{ f(z)

fm,n(z)

}
≥ n(n+ 2 + α)

(n+ 1)(n+ 1 + α)
, (z ∈ D) if n(n + 2 + α) + 2α ≤ m(m + 2 − α) or

ak = 0 ∀k ≥ 2.

Proof. To prove (i), we may write

1 + ω(z)

1− ω(z)
=

(m+ 1)(m+ 1− α)

1− α

[ f(z)

fm,n(z)
− m(m+ 2− α)

(m+ 1)(m+ 1− α)

]
=

P

1 +
m∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk

,

where

P = 1 +

m∑
k=2

rk−1ei(k−1)θak +

n∑
k=2

rk−1e−i(k+1)θbk

+
(m+ 1)(m+ 1− α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak +

∞∑
k=n+1

rk−1e−i(k+1)θbk

]
.

So that

ω(z) =

(m+ 1)(m+ 1− α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak +
∞∑

k=n+1

rk−1e−i(k+1)θbk

]
Q

,

where

Q = 2+2
( m∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk

)
+

(m+ 1)(m+ 1− α)

1− α

( ∞∑
k=m+1

rk−1ei(k−1)θak +
∞∑

k=n+1

rk−1e−i(k+1)θbk

)
.

Then

|ω(z)| ≤

(m+ 1)(m+ 1− α)

1− α

[ ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
]

2− 2
( m∑
k=2

|ak|+
n∑
k=2

|bk|
)
− (m+ 1)(m+ 1− α)

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
) .
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This last expression is bounded above by 1, if and only if

m∑
k=2

|ak|+
n∑
k=2

|bk|+
(m+ 1)(m+ 1− α)

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
)
≤ 1. (14)

Since the L. H. S. of (14) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak| +

k(k + α)

1− α
|bk|
)

, it yields

the following inequality

m∑
k=2

(k(k − α)

1− α
− 1
)
|ak|+

∞∑
k=m+1

(k(k − α)

1− α
− (m+ 1)(m+ 1− α)

1− α

)
|ak|

+
n∑
k=2

(k(k + α)

1− α
− 1
)
|bk|+

∞∑
k=n+1

(k(k + α)

1− α
− (m+ 1)(m+ 1− α)

1− α

)
|bk| ≥ 0.

To see f(z) = z+
1− α

(m+ 1)(m+ 1− α)
zm+1 gives the sharp result, we observe that for z = rei

π
m

that

f(z)

fm,n(z)
= 1 +

1− α
(m+ 1)(m+ 1− α)

zm −→ 1− 1− α
(m+ 1)(m+ 1− α)

=
m(m+ 2− α)

(m+ 1)(m+ 1− α)

when r → 1−.
To prove (ii), note that

1 + ω(z)

1− ω(z)
=

(n+ 1)(n+ 1 + α)

1− α

[ f(z)

fm,n(z)
− n(n+ 2 + α)

(n+ 1)(n+ 1 + α)

]
=

P

1 +
m∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk

.

where

P = 1 +
m∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk

+
(n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak +
∞∑

k=n+1

rk−1e−i(k+1)θbk

]
.

So that

ω(z) =

(n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak +
∞∑

k=n+1

rk−1e−i(k+1)θbk

]
Q

,

where

Q = 2 + 2
( m∑
k=2

rk−1ei(k−1)θak +
n∑
k=2

rk−1e−i(k+1)θbk

)
+

(n+ 1)(n+ 1 + α)

1− α

( ∞∑
k=m+1

rk−1ei(k−1)θak +
∞∑

k=n+1

rk−1e−i(k+1)θbk

)
.
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Consequently

|ω(z)| ≤

(n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
]

2− 2
( m∑
k=2

|ak|+
n∑
k=2

|bk|
)
− (n+ 1)(n+ 1 + α)

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
) .

This last expression is bounded above by 1, if and only if

m∑
k=2

|ak|+
n∑
k=2

|bk|+
(n+ 1)(n+ 1 + α)

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
)
≤ 1. (15)

It suffices to show that the L. H. S. of (15) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak|+

k(k + α)

1− α
|bk|
)

,

which is equivalent to

m∑
k=2

(k(k − α)

1− α
− 1
)
|ak|+

∞∑
k=m+1

(k(k − α)

1− α
− (n+ 1)(n+ 1 + α)

1− α

)
|ak|

+
n∑
k=2

(k(k + α)

1− α
− 1
)
|bk|+

∞∑
k=n+1

(k(k + α)

1− α
− (n+ 1)(n+ 1 + α)

1− α

)
|bk| ≥ 0.

To see f(z) = z+
1− α

(n+ 1)(n+ 1 + α)
zn+1 gives the sharp result, we observe that for z = rei

π
n+2

we get

f(z)

fm,n(z)
= 1 +

1− α
(n+ 1)(n+ 1 + α)

rne−
iπ
n+2 (n+2) −→ 1− 1− α

(n+ 1)(n+ 1 + α)
=

n(n+ 2 + α)

(n+ 1)(n+ 1 + α)

when r → 1−. The result follows.
�

Theorem 2.8. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

(i) Re
{fm,n(z)

f(z)

}
≥ (m+ 1)(m+ 1− α)

m(m+ 2− α) + 2(1− α)
, (z ∈ D) if n(n + 2 + α) + 2α ≥ m(m + 2 − α)

or bk = 0 ∀k ≥ 2.

(ii) Re
{fm,n(z)

f(z)

}
≥ (n+ 1)(n+ 1 + α)

n(n+ 2 + α) + 2
, (z ∈ D) if n(n + 2 + α) + 2α ≤ m(m + 2 − α) or

ak = 0 ∀k ≥ 2.

Proof. To prove (i), we may write

1 + ω(z)

1− ω(z)
=
m(m+ 2− α) + 2(1− α)

1− α

[fm,n(z)

f(z)
− (m+ 1)(m+ 1− α)

m(m+ 2− α) + 2(1− α)

]
=

P

1 +
∞∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk

,

where

P = 1 +

m∑
k=2

rk−1ei(k−1)θak +

n∑
k=2

rk−1e−i(k+1)θbk

− (m+ 1)(m+ 1− α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak +
∞∑

k=n+1

rk−1e−i(k+1)θbk

]
.
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Then

|ω(z)| ≤

m(m+ 2− α) + 2(1− α)

1− α

[ ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
]

2− 2
( m∑
k=2

|ak|+
n∑
k=2

|bk|
)
− m(m+ 2− α)

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
) ≤ 1.

This last inequality is equivalent to

m∑
k=2

|ak|+
n∑
k=2

|bk|+
m(m+ 2− α) + (1− α)

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
)
≤ 1. (16)

Sufficiently, the L. H. S. of (16) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak|+

k(k + α)

1− α
|bk|
)

, the

proof is complete.
To prove (ii), we consider that

1 + ω(z)

1− ω(z)
=
n(n+ 2 + α) + 2

1− α

[fm,n(z)

f(z)
− (n+ 1)(n+ 1 + α)

n(n+ 2 + α) + 2

]
=

P

1 +
∞∑
k=2

rk−1ei(k−1)θak +
∞∑
k=2

rk−1e−i(k+1)θbk

,

where

P = 1 +

m∑
k=2

rk−1ei(k−1)θak +

n∑
k=2

rk−1e−i(k+1)θbk

− (n+ 1)(n+ 1 + α)

1− α

[ ∞∑
k=m+1

rk−1ei(k−1)θak +

∞∑
k=n+1

rk−1e−i(k+1)θbk

]
.

Then

|ω(z)| ≤

n(n+ 2 + α) + 2

1− α

[ ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
]

2− 2
( m∑
k=2

|ak|+
n∑
k=2

|bk|
)
− n(n+ 2 + α) + 2α

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
) ≤ 1.

This last inequality is equivalent to

m∑
k=2

|ak|+
n∑
k=2

|bk|+
n(n+ 2 + α) + (1 + α)

1− α

( ∞∑
k=m+1

|ak|+
∞∑

k=n+1

|bk|
)
≤ 1. (17)

Sufficiently, the L. H. S. of (17) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak|+

k(k + α)

1− α
|bk|
)

, which

completes the proof. �

Theorem 2.9. If f(z) of the form (1) with b1 = 0 satisfies condition (2), then

Re
{ f ′(z)

f ′m,n(z)

}
≥ m

m+ 1− α
, (z ∈ D) ifn > m (18)

The result (18) is sharp with the function given by (4).
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Proof. Consider

1 + ω(z)

1− ω(z)
=
m+ 1− α

1− α

[ f ′(z)

f ′m,n(z)
− m

m+ 1− α

]
=

P

1 +
m∑
k=2

krk−1ei(k−1)θak −
n∑
k=2

krk−1e−i(k+1)θbk

,

where

P = 1 +

m∑
k=2

krk−1ei(k−1)θak −
n∑
k=2

krk−1e−i(k+1)θbk

+
m+ 1− α

1− α

[ ∞∑
k=m+1

krk−1ei(k−1)θak −
∞∑

k=n+1

krk−1e−i(k+1)θbk

]
.

Then

ω(z) =

m+ 1− α
1− α

[ ∞∑
k=m+1

krk−1ei(k−1)θak −
∞∑

k=n+1

krk−1e−i(k+1)θbk

]
Q

,

where

Q = 2 + 2
( m∑
k=2

krk−1ei(k−1)θak −
n∑
k=2

krk−1e−i(k+1)θbk

)
+
m+ 1− α

1− α

( ∞∑
k=m+1

krk−1ei(k−1)θak −
∞∑

k=n+1

krk−1e−i(k+1)θbk

)
.

Consequently, we get

|ω(z)| ≤

m+ 1− α
1− α

[ ∞∑
k=m+1

k|ak| −
∞∑

k=n+1

k|bk|
]

2− 2
( m∑
k=2

k|ak|+
n∑
k=2

k|bk|
)
− m+ 1− α

1− α

( ∞∑
k=m+1

k|ak|+
∞∑

k=n+1

k|bk|
) ≤ 1.

This last inequality is equivalent to
m∑
k=2

k|ak|+
n∑
k=2

k|bk|+
m+ 1− α

1− α

( ∞∑
k=m+1

k|ak|+
∞∑

k=n+1

k|bk|
)
≤ 1. (19)

Since the L. H. S. of (19) is bounded above by
∞∑
k=1

(k(k − α)

1− α
|ak| +

k(k + α)

1− α
|bk|
)

, the proof

is complete. �

Theorem 2.10. If f of the form (1) with b1 = 0 satisfies condition (2), then

Re
{f ′m,n(z)

f ′(z)

}
≥ m+ 1− α
m+ 2(1− α)

, (z ∈ D) (20)

The result (20) is sharp with the function f(z) = z +
1− α

(m+ 1)(m+ 1− α)
zm+1.

Proof. Proceeding exactly as in the proof of Theorem 2.9, we evidently have the required
result. �
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