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GENERALIZATION OF SOME INEQUALITIES FOR THE POLAR

DERIVATIVE OF POLYNOMIALS WITH RESTRICTED ZEROS

E. KHOJASTEHNEZHAD1, M. BIDKHAM1, §

Abstract. If p(z) is a polynomial of degree n, then Govil [N. K. Govil, Some inequalities
for derivative of polynomials, J. Approx. Theory, 66 (1991) 29-35.] proved that if p(z) has
all its zeros in |z| ≤ k, (k ≥ 1), then

max
|z|=1

|p′(z)| ≥ n

1 + kn

{
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
.

In this article, we obtain a generalization of above inequality for the polar derivative of
a polynomial. Also we extend some inequalities for a polynomial of the form p(z) =

zs

(
a0 +

n−s∑
ν=t

aνz
ν

)
, t ≥ 1, 0 ≤ s ≤ n − 1, which having no zeros in |z| < k, k ≥ 1

except s-fold zeros at the origin.
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1. Introduction

Let p(z) be a polynomial of degree n, then according to Bernstein’s inequality on the
derivative of a polynomial, we have

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|, (1)

equality holds in (1) if p(z) has all its zeros at the origin.
The inequality (1) can be sharpened, if we restrict ourselves to the class of polynomials having
no zeros in |z| < 1, in fact, P. Erdös conjectured and later Lax [10] proved that if p(z) 6= 0 in
|z| < 1, then (1) can be replaced by

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (2)

The result is best possible and equality holds in (2) for a polynomial which has all its zeros
on |z| = 1.
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If the polynomial p(z) has all its zeros in |z| ≤ 1, then it was proved by Turán [13] that

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|, (3)

with equality for those polynomials, which have all their zeros on |z| = 1.
For a polynomial p(z) of degree n which having no zeros in |z| < k, k ≥ 1, inequality (2) was
generalized by Malik [11] who proved that

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|. (4)

The inequality (4) is sharp and equality holds for p(z) = (z + k)n.
As a generalization of (4), Aziz and Shah [2] proved that if p(z) has no zero in |z| < k, k ≥ 1,
except s-fold zeros at the origin, then

max
|z|=1

|p′(z)| ≤ n+ ks

1 + k
max
|z|=1

|p(z)| . (5)

If the polynomial p(z) has all its zeros in |z| ≤ k, k ≥ 1, then it was proved by Govil [9] that

max
|z|=1

|p′(z)| ≥ n

1 + kn

{
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
. (6)

The result is best possible and equality holds in (6) for p(z) = zn + kn.
Gardner et al. [8] proved that if the polynomial p(z) = a0 +

∑n
ν=t aνz

ν , having no zeros in
|z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + s0

{
max
|z|=1

|p(z)| − min
|z|=k

|p(z)|
}
, (7)

where s0 = kt+1

{
( t
n

)
|at|
|a0|−m

kt−1+1

( t
n

)
|at|
|a0|−m

kt+1+1

}
.

Let α be a complex number. For a polynomial p(z) of degree n, Dαp(z), the polar derivative
of p(z) is defined [12] as

Dαp(z) = np(z) + (α− z)p′(z).
It is easy to see that

lim
|α|→∞

[
Dαp(z)

α
] = p′(z).

In order to extend inequality (6) for the polar derivative, Aziz and Rather[1] proved that if
p(z) is a polynomial of degree n having all its zeros in |z| ≤ k where k ≥ 1, then for every
real or complex number α with |α| ≥ k,

max
|z|=1

|Dαp(z)| ≥
n(|α| − k)

1 + kn
max
|z|=1

|p(z)|. (8)

As a refinement and generalization of inequality (8), Dewan et al. [7], proved that if p(z) is a
polynomial of degree n, which has all its zeros in |z| ≤ k, where k ≥ 1, with s-fold zeros at
the origin, where 0 ≤ s ≤ n, then for every real or complex number α with |α| ≥ k

max
|z|=1

|Dαp(z)| ≥
n

1 + kn−s

{
(|α| − k) max

|z|=1
|p(z)|+ (

|α|
ks

+
1

kn−1
) min
|z|=k

|p(z)|
}
. (9)

Also inequality (7) extended by Dewan et al. [6] for the polar derivative of a polynomial.
They proved that if p(z) = a0 +

∑n
ν=t aνz

ν , is a polynomial of degree n which does not vanish
in |z| < k, k ≥ 1, then for |α| ≥ 1

max
|z|=1

|Dαp(z)| ≤
n

1 + s0

{
(|α|+ s0) max

|z|=1
|p(z)| − (|α| − 1) min

|z|=k
|p(z)|

}
, (10)
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where s0 is as defined in (7).

The following result, propose a refinement to inequality (9). In a precise set up, we have

Theorem 1. Let p(z) =
n∑
ν=0

aνz
ν , be a polynomial of degree n ≥ 3, which has all its zeros

in |z| ≤ k, k ≥ 1 with s-fold zeros at the origin (0 ≤ s ≤ n−3), then for every real or complex
number α with |α| ≥ k

max
|z|=1

|Dαp(z)| ≥
n

1 + kn−s

{
(|α| − k) max

|z|=1
|p(z)|+

(
|α|
ks

+
1

kn−1

)
min
|z|=k

|p(z)|
}

+

+
1

kn−1

{
2(kn−1 − 1)

(n+ 1)
|na0 + αa1|+

(
kn−1 − 1

n− 1
− kn−3 − 1

n− 3

)
|(n− 1)a1 + 2αa2|

}
+

2n(|α| − k)

k(1 + kn−s)

{
|an−1|

(n− s+ 1)

[
kn−s − 1

n− s
− (k − 1)

]
+
|an−2|
k
×[

(kn−s − 1)− (n− s)(k − 1)

(n− s)(n− s− 1)
− (kn−s−2 − 1)− (n− s− 2)(k − 1)

(n− s− 2)(n− s− 3)

]}
(11)

for n > 3
and

max
|z|=1

|Dαp(z)| ≥
n

1 + kn−s

{
(|α| − k) max

|z|=1
|p(z)|+

(
|α|
ks

+
1

kn−1

)
min
|z|=k

|p(z)|
}

+

+
k − 1

2kn−1
{(k + 1)|na0 + αa1|+ (k − 1)|(n− 1)a1 + 2αa2|}

+
2n(|α| − k)

k(1 + kn−s)

{
|an−1|

(n− s+ 1)

[
kn−s − 1

n− s
− (k − 1)

]
+
|an−2|(k − 1)n−s

k(n− s)(n− s− 1)

}
.

(12)

for n = 3.

Dividing both sides of the inequalities (11) and (12) by |α| and letting |α| → ∞, we have
the following refinement of the inequality (6).

Corollary 1.1. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n, having all its zeros in |z| ≤

k, k ≥ 1 with s-fold zeros at the origin, then

max
|z|=1

|p′(z)| ≥ n

1 + kn−s

{
max
|z|=1

|p(z)|+ 1

ks
min
|z|=k

|p(z)|
}

+

+
2

kn−1

{
(kn−1 − 1)|a1|

n+ 1
+

(
kn−1 − 1

n− 1
− kn−3 − 1

n− 3

)
|a2|
}

+
n

1 + kn−s

{
4kn−1|an−1|
(n− s+ 1)

[
kn−s − 1

n− s
− (k − 1)

]
+

4kn−2|an−2|
2kn

×[
(kn−s − 1)− (n− s)(k − 1)

(n− s)(n− s− 1)
− (kn−s−2 − 1)− (n− s− 2)(k − 1)

(n− s− 2)(n− s− 3)

]}
(13)



488 TWMS J. APP. ENG. MATH. V.9, N.3, 2019

for n > 3
and

max
|z|=1

|p′(z)| ≥ n

1 + kn−s

{
max
|z|=1

|p(z)|+ 1

ks
min
|z|=k

|p(z)|
}

+

+
k − 1

2kn−1
{(k + 1)|a1|+ 2(k − 1)|a2|}

+
2n

k(1 + kn−s)

{
|an−1|

(n− s+ 1)

[
kn−s − 1

n− s
− (k − 1)

]
+
|an−2|(k − 1)n−s

k(n− s)(n− s− 1)

}
.

(14)

for n = 3.

Next we consider a polynomial of degree n, having no zeros in |z| < k, k ≥ 1, except s-fold
zeros at the origin and prove the following generalization of inequality (10) .

Theorem 2. If p(z) = zs(a0 +

n−s∑
ν=t

aνz
ν), t ≥ 1, 0 ≤ s ≤ n − 1 is a polynomial of degree n

having s-fold zeros at the origin and the remaining (n − s) zeros in |z| ≥ k, k ≥ 1, then for
every α with |α| ≥ 1, we have

max
|z|=1

|Dαp(z)| ≤
n(|α|+ Λt) + sΛt(|α| − 1)

1 + Λt
max
|z|=1

|p(z)|

− (n− s)(|α| − 1)

ks(1 + Λt)
min
|z|=k

|p(z)|,
(15)

where Λt = kt+1

{
( t
n−s )

ks|at|
ks|a0|−m

kt−1+1

( t
n−s )

ks|at|
ks|a0|−m

kt+1+1

}
, and m = min|z|=k |p(z)|.

Remark 1.1. Clearly for s = 0, inequality (15) reduce to inequality (10).

Dividing both side of (15) by |α| and let |α| → ∞, then we have

Corollary 1.2. If p(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1 except
s-fold zeros at the origin, then

max
|z|=1

|p′(z)| ≤n+ sΛt
1 + Λt

max
|z|=1

|p(z)| − n− s
ks(1 + Λt)

min
|z|=k

|p(z)|, (16)

where Λt is as defined in Theorem 2.

Remark 1.2. Inequality (16) is a refinement of inequality (5), since by applying Lemma 2.4
for the polynomial p(z)/zs of degree (n− s), we can conclude that k ≤ Λt which is equivalent
to n+sΛt

1+Λt
≤ n+ks

1+k . For s = 0 the inequality (16) reduce to inequality (7).

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma is due to
Aziz and Rather [1].

Lemma 2.1. If p(z) is a polynomial of degree n, has all its zeros in |z| ≤ 1, then for every
|α| ≥ 1,

max
|z|=1

|Dαp(z)| ≥
n

2
{(|α| − 1) max

|z|=1
|p(z)|+ (|α|+ 1) min

|z|=1
|p(z)|} (17)

The following lemma is due to Dewan, Kaur and Mir [4].
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Lemma 2.2. If p(z) is a polynomial of degree n, then for R ≥ 1,

max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)| − 2(Rn − 1)

n+ 2
|p(0)|

−
[
Rn − 1

n
− Rn−2 − 1

n− 2

]
|p′(0)|

(18)

if n > 2, and

max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)| − R− 1

2
[(R+ 1)|p(0)|+ (R− 1)|p′(0)|] (19)

if n = 2.

The following lemma is due to Dewan, Singh and Mir [5].

Lemma 2.3. If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then for R ≥ 1 ,

max
|z|=R

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)| − Rn − 1

2
min
|z|=1
|p(z)|−

2

n+ 1

[
(Rn − 1)

n
− (R− 1)

]
|p′(0)|−[

(Rn − 1)− n(R− 1)

n(n− 1)
− (Rn−2 − 1)− (n− 2)(R− 1)

(n− 2)(n− 3)

]
|p′′(0)|

(20)

if n > 3, and

max
|z|=R

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)| − Rn − 1

2
min
|z|=1
|p(z)|

− 2

n+ 1

[
Rn − 1

n
− (R− 1)

]
|p′(0)|

− (R− 1)n

n(n− 1)
|p′′(0)|]

(21)

if n = 3.

The following lemma is due to Gardner, Govil and Weems [8].

Lemma 2.4. If p(z) = a0 +
∑n

ν=t aνz
ν , is a polynomial of degree n having no zeros in

|z| < k, k ≥ 1, then

kt ≤ s0, (22)

where s0 is given in (7).

3. Proofs of the theorems

Proof of the Theorem 1. Let G(z) = p(kz). Since p(z) has all its zeros in |z| ≤ k,
then G(z) has all its zeros in |z| ≤ 1. Now for α, where |α| ≥ k and using Lemma 2.1 to the
polynomial G(z), we have

max
|z|=1

|Dα
k
G(z)| ≥ n

2

{(
|α|
k
− 1

)
max
|z|=1

|G(z)|+
(
|α|
k

+ 1

)
min
|z|=1
|G(z)|

}
. (23)

By replacing G(z) = p(kz) in above inequality we get,

max
|z|=k

|Dαp(z)| ≥
n

2

{(
|α| − k
k

)
max
|z|=k

|p(z)|+
(
|α|+ k

k

)
min
|z|=k

|p(z)|
}
. (24)
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Now by using Lemma 2.2 for the polynomial Dαp(z), which is of degree n−1, where n−1 > 2,
we conclude that

max
|z|=k

|Dαp(z)| ≤ kn−1 max
|z|=1

|Dαp(z)| −
2(kn−1 − 1)

n+ 1
|na0 + αa1|

−
[
kn−1 − 1

n− 1
− kn−3 − 1

n− 3

]
|(n− 1)a1 + 2αa2|.

(25)

By using R.H.S of the inequality (25) for the inequality (24), we have

max
|z|=1

|Dαp(z)| ≥
n

2

{(
|α| − k
kn

)
max
|z|=k

|p(z)|+
(
|α|+ k

kn

)
min
|z|=k

|p(z)|
}

+

2(kn−1 − 1)

(n+ 1)kn−1
|na0 + αa1|+

1

kn−1

[
kn−1 − 1

n− 1
− kn−3 − 1

n− 3

]
|(n− 1)a1 + 2αa2|.

(26)

Now by the hypothesis the polynomial p(z) having all zeros in |z| ≤ k, k ≥ 1 with s-fold
zeros at the origin, therefore q(z) = znp(1/z) is a polynomial of degree (n− s) which does not
vanish in |z| < 1/k, where 1/k ≤ 1. By using the variable z/k instead of z, we conclude that
the polynomial q(z/k) is a polynomial of degree (n− s), having no zeros in |z| < 1. Now we
can use Lemma 2.3 for the polynomial q(z/k), then we have

max
|z|=k

|q(z/k)| ≤ kn−s + 1

2
max
|z|=1

|q(z/k)− kn−s − 1

2
min
|z|=1
|q(z/k)|−

2|an−1|
(n− s+ 1)k

[
kn−s − 1

n− s
− (k − 1)

]
− 2|an−2|

k2
× {

(kn−s − 1)− (n− s)(k − 1)

(n− s)(n− s− 1)
− (kn−s−2 − 1)− (n− s− 2)(k − 1)

(n− s− 2)(n− s− 3)

}
.

(27)

Since q(z/k) = (z/k)np(k/z), therefore max
|z|=k

|q(z/k)| = max
|z|=1

|p(z)|, max
|z|=1

|q(z/k)| = (1/kn) max
|z|=k

|p(z)|,

and min
|z|=1
|q(z/k)| = (1/kn) min

|z|=k
|p(z)|. By replacing these in (27), we have

max
|z|=1

|p(z)| ≤ kn−s + 1

2kn
max
|z|=k

|p(z)− kn−s − 1

2kn
min
|z|=k

|p(z)|

− 2|an−1|
(n− s+ 1)k

{
kn−s − 1

n− s
− (k − 1)

}
− 2|an−2|

k2
× {

(kn−s − 1)− (n− s)(k − 1)

(n− s)(n− s− 1)
− (kn−s−2 − 1)− (n− s− 2)(k − 1)

(n− s− 2)(n− s− 3)

}
.

(28)

or

max
|z|=k

|p(z)| ≥ 2kn

kn−s + 1
max
|z|=1

|p(z) +
kn−s − 1

kn−s + 1
min
|z|=k

|p(z)|

+
4kn−1|an−1|

(n− s+ 1)(kn−s + 1)

[
kn−s − 1

n− s
− (k − 1)

]
+

4kn−2|an−2|
kn−s + 1

× {

(kn−s − 1)− (n− s)(k − 1)

(n− s)(n− s− 1)
− (kn−s−2 − 1)− (n− s− 2)(k − 1)

(n− s− 2)(n− s− 3)

}
.

(29)
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By using the inequality (29) for max
|z|=k

|p(z)| in the inequality (26), we have

max
|z|=1

|Dαp(z)| ≥
n

1 + kn−s

{
(|α| − k) max

|z|=1
|p(z)|+

(
|α|
ks

+
1

kn−1

)
min
|z|=k

|p(z)|
}

+

+
1

kn−1

{
2(kn−1 − 1)

(n+ 1)
|na0 + αa1|+

(
kn−1 − 1

n− 1
− kn−3 − 1

n− 3

)
|(n− 1)a1 + 2αa2|

}
.

+
2n(|α| − k)

k(1 + kn−s)

{
|an−1|

(n− s+ 1)

[
kn−s − 1

n− s
− (k − 1)

]
+
|an−2|
k
×[

(kn−s − 1)− (n− s)(k − 1)

(n− s)(n− s− 1)
− (kn−s−2 − 1)− (n− s− 2)(k − 1)

(n− s− 2)(n− s− 3)

]}
.

(30)

The inequality completes the proof of the Theorem 1 in the case n > 3. For the case n = 3,
we have the similar proof as above, only it is enough to use inequalities (19) and (21) instead
of inequalities (18) and (20), respectively. This completes the proof of Theorem 1. �

Proof of the Theorem 2. Let p(z) = zsh(z), where h(z) = a0 +
n−s∑
ν=t

aνz
ν , is a polynomial

of degree (n−s) having no zeros in |z| ≤ k, k ≥ 1. Applying inequality (10) to the polynomial
h(z), we get

max
|z|=1

|Dαh(z)| ≤ n− s
1 + s′0

{(|α|+ s′0) max
|z|=1

|h(z)| − (|α| − 1)m′}, (31)

where s′0 = kt+1

{
( t
n−s )

|at|
|a0|−m′

kt−1+1

( t
n−s )

|at|
|a0|−m′

kt+1+1

}
and m′ = min|z|=k |h(z)|.

On the other hand

Dαp(z) = np(z) + (α− z)p′(z) =

nzsh(z) + (α− z)(szs−1h(z) + zsh′(z)) = zsDαh(z) + αszs−1h(z).

Therefore

zDαp(z) = zs+1Dαh(z) + αsp(z).

Hence for |z| = 1, we have

|Dαp(z)| ≤ |Dαh(z)|+ s|α||p(z)|.

which implies

max
|z|=1

|Dαp(z)| ≤ max
|z|=1

|Dαh(z)|+ s|α|max
|z|=1

|p(z)|.

Since max|z|=1 |p(z)| = max|z|=1 |h(z)| and min|z|=k |h(z)| = 1
ks min|z|=k |p(z)|, which on using

in (31) gives

max
|z|=1

|Dαp(z)| ≤
n(|α|+ Λt) + sΛt(|α| − 1)

1 + Λt
max
|z|=1

|p(z)|

− (n− s)(|α| − 1)

ks(1 + Λt)
min
|z|=k

|p(z)|},
(32)

Hence the proof of Theorem 2 is complete. �
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