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FRACTIONAL INTEGRALS FOR THE PRODUCT OF SRIVASTAVA’S

POLYNOMIAL AND (p, q)–EXTENDED HYPERGEOMETRIC

FUNCTION
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Abstract. The main object of this paper is to present certain new image formulas for
the product of general class of polynomial and (p, q)–extended Gauss’s hypergeometric
function by applying the Saigo-Maeda fractional integral operators involving Appell’s
function F3. Certain interesting special cases of our main results are also considered.
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1. Introduction and preliminaries

Extensions, generalizations and unifications of Euler’s Beta together with related higher
transcendent hypergeometric type special functions were investigated recently by several
authors, consult for instance (see, e.g., [1], [2], [6], [20]) and for a very recent work (see
also, [9], [10]). In particular, Chaudhry et al. [1, p. 20, Equation (1.7)] presented the
following extension of the Beta function as:

B(x, y; p) =

∫ 1

0
tx−1 (1− t)y−1 e

− p
t(1−t) dt , (<(p) > 0 ); (1)

where for p = 0, min{<(x), <(y)} > 0. They obtained related connections of B(x, y; p)
with Macdonald (or modified Bessel function of the second kind), error and Whittaker
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of Mathematics, 2019; all rights reserved.

822



D. L. SUTHAR, L. N. MISHRA, A. M. KHAN, A. ALARIA: FRACTIONAL INTEGRALS FOR ... 823

functions. Further, Chaudhry et al. [2] used B(x, y; p) to extend the Gaussian hypergeo-
metric function in the following manner

Fp(a, b; c; z) =
∞∑
n≥0

(a)n
B(b+ n, c− b ; p)

B(b, c− b)
zn

n!
(2)

(p ≥ 0;For p = 0, |z| < 1 ; <(c) > <(b) > 0 ).

Recently, Choi et al. [3] introduce further extension of B(x, y; p) and Fp(a, b; c; z) in the
following manner:

B(x, y ; p, q) :=

∫ 1

0
tx−1(1− t)y−1 exp

(
−p
t
− q

1− t

)
dt (3)(

min{<(x),<(y)} > 0; min{<(p),<(q)} ≥ 0
)

and

Fp,q (a, b; c; z) := 2F1 (a, b; c; z p, q) =

∞∑
n=0

(a)n
B(b+ n, c− b ; p, q)

B(b, c− b)
zn

n!
(4)(

p ≥ 0, q ≥ 0;For p = 0 = q, |z| < 1; <(c) > <(b) > 0
)
.

The more general definitions of (3) and (4) have already discussed in [18]. Also, for our
present investigation, we need the concept of Hadamard product (or convolution) of two
analytic functions. It can help us in decomposing a newly emerged function into two
known functions. If, in particular, one of the power series defines an entire function, then
the Hadamard product series defines an entire function, too. Let

f(z) :=

∞∑
n=0

anz
n (|z| < Rf ) and g(z) :=

∞∑
n=0

bnz
n (|z| < Rg)

be two given power series whose radii of convergence are given by Rf and Rg, respectively.
Then their Hadamard product is a power series defined by

(f ∗ g)(z) :=

∞∑
n=0

an bnz
n = (g ∗ f)(z) (|z| < R), (5)

whose radius of convergence R is

1

R
= lim sup

n→∞
(|an bn|)

1
n ≤

(
lim sup
n→∞

(|an|)
1
n

)(
lim sup
n→∞

(|bn|)
1
n

)
=

1

Rf ·Rg
and so R ≥ Rf ·Rg (see [12]).

The general class of polynomials defined by Srivastava in the following manner [16, p.
1, Eq.(1)]:

Suw[x] =

[w/u]∑
s=0

(−w)u s
s!

Aw,s x
s w = 0, 1, 2, ... (6)

where u is an arbitrary positive integer and the coefficients Aw,s(w, s) ≥ 0 are arbitrary
constants, real or complex. The polynomial family Suw[x] gives a number of known poly-
nomials as its special cases on suitably specializing the coefficient Aw,s.

Recently, Parmar and Purohit [11] investigated certain fractional integral formulas in-
volving Saigo operaters for the extended hypergeometric functions Fp,q(z) given by Choi et
al. [3]. Motivated by the above work, here we aim to establish certain new image formulas
for the product of general class of polynomial and (p, q)–extended Gauss’s hypergeomet-
ric function by applying the Saigo-Maeda fractional integral operators involving Appell’s
function F3. Certain interesting special cases of our main results are also considered.
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2. Fractional Integral approach

Fractional integral operators involving the various special functions have been actively
investigated in various mathematical tools (see, e.g., [5]). We recall here the Saigo and
Maeda generalized fractional integral operators involving Appell function F3 in the kernel
[15, p. 293]:

(
Iµ,µ

′,ν,ν′,δ
0,+ f

)
(x) =

x−µ

Γ(δ)

∫ x

0
(x− t)δ−1 t−µ′F3

(
µ, µ′, ν, ν ′; δ; 1− t

x
, 1− x

t

)
f(t)dt (7)

and(
Iµ,µ

′,ν,ν′,δ
0,− f

)
(x) =

x−µ
′

Γ(δ)

∫ ∞
x

(t− x)δ−1 t−µF3

(
µ, µ′, ν, ν ′; δ; 1− x

t
, 1− t

x

)
f(t)dt , (8)

respectively. For the definition of the Appell function F3(.) the interested reader may refer
to the monograph by Srivastava and Karlson [17] (see Erdélyi et al. [4] and Prudnikov et
al.[13]). We begin by stating some image formulas regarding (7) and (8) which may be
known formulas and are given in the following lemma [14].

Lemma 2.1. Let µ, µ′, ν, ν ′, δ ∈ C and x > 0. Then

(a) If <(ρ) > max {0,<(µ+ µ′ + ν ′ − δ),<(µ′ − ν ′)} and <(δ) > 0, then(
Iµ,µ

′,ν,ν′,δ
0,+ xρ−1

)
(x) = xρ−µ−µ

′+δ−1Γ

[
ρ, ρ+ δ − µ− µ′ − ν, ρ+ ν ′ − µ′

ρ+ ν ′, ρ+ δ − µ− µ′, ρ+ δ − µ′ − ν

]
. (9)

(b) If <(ρ) < 1 +min {<(−ν),<(µ+ µ′ − δ),<(µ+ ν ′ − δ)} and <(δ) > 0, then(
Iµ,µ

′,ν,ν′,δ
0,− xρ−1

)
(x) = xρ−µ−µ

′+δ−1Γ

[
1− ρ− ν, 1− ρ− δ + µ+ µ′, 1− ρ+ µ+ ν ′ − δ

1− ρ, 1− ρ+ µ+ µ′ + ν ′ − δ, 1− ρ+ µ− ν

]
.

(10)

The symbol occurring in (9) and (10) is given by

Γ

[
a, b, c
d, e, f

]
=

Γ(a) Γ(b)Γ(c)

Γ(d) Γ(e)Γ(f)
.

Now the composition formulas of generalized fractional integrals (9) and (10) involving
the product of the general class of polynomial and generalized Gauss hypergeometric type
functions Fp,q(a, b; c; z) are given in Theorems 2.1 and 2.2.

Theorem 2.1. Let µ, µ′, ν, ν ′, δ, ρ ∈ C be such that min {<(p),<(q)} > 0, <(δ) > 0 and
<(ρ+ s) > max [0,<(µ+ µ′ + ν − δ),<(µ′ − ν ′)]. Then for x > 0(

Iµ,µ
′,ν,ν′,δ

0+

[
tρ−1Suw[σt]Fp,q

[
a, b
c

; et

]])
(x)] = xρ−µ−µ

′+δ−1
[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s

× Γ(ρ+ s)Γ(ρ+ δ − µ− µ′ − ν + s)Γ(ρ+ ν ′ − µ′ + s)

Γ(ρ+ δ − µ− µ′ + s)Γ(ρ+ δ − µ′ − ν + s)Γ(ρ+ ν ′ + s)

× Fp,q

[
a, b
c

; ex

]
∗ 4F3

[
1, ρ+ s, ρ+ δ − µ− µ′ − ν + s, ρ+ ν ′ − µ′ + s;

ρ+ δ − µ− µ′ + s, ρ+ δ − µ′ − ν + s, ρ+ ν ′ + s;
ex

]
,

(11)
where ∗ denotes the Hadamard product in (5) and whose left-sided hypergeometric frac-
tional integral is assumed to be convergent.
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Proof. Let L be the left-hand side of (11). Applying (4) and (6) to (7) and changing the
order of integration and summation, which is valid under the given conditions here, and
using (9), we find

L =

[w/u]∑
s=0

∞∑
n=0

(−w)u s(σ)s

s!
Aw,s (a)n

Bp,q(b+ n, c− b)
B(b, c− b)

en

n!

(
Iµ,µ

′, ν,ν′, δ
0+ tρ+n+s−1

)
(x)

= xρ−µ−µ
′+δ−1

[w/u]∑
s=0

∞∑
n=0

(−w)u s(σx)s

s!
Aw,s (a)n

Bp,q(b+ n, c− b)
B(b, c− b)

× Γ(ρ+ n+ s)Γ(ρ+ δ − µ− µ′ − ν + n+ s)Γ(ρ+ ν ′ − µ′ + n+ s)

Γ(ρ+ δ − µ− µ′ + n+ s)Γ(ρ+ δ − µ′ − ν + n+ s)Γ(ρ+ ν ′ + n+ s)

(ex)n

n!
,

(12)

Expressing the last summation in (12) in terms of the Hadamard product (5) with the
functions (4) and generalized hypergeometric function, we obtain the right-hand side of
(11). �

Theorem 2.2. Let µ, µ′, ν, ν ′, δ, ρ ∈ C be such that min {<(p),<(q)} > 0, <(δ) > 0 and
<(ρ) < 1 + min [<(−ν),<(µ+ µ′ − δ),<(µ− ν ′ − δ)]. Then for x > 0(

Iµ,µ
′, ν,ν′, δ

−

[
tρ−1Suw[σt]Fp,q

[
a, b
c

;
e

t

]])
(x) = xρ−µ−µ

′+δ−1
[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s

×Γ(1 + µ+ µ′ − δ − ρ− s)Γ(1 + µ+ ν ′ − δ − ρ− s)Γ(1− ν − ρ− s)
Γ(1− ρ− s)Γ(1 + µ+ µ′ + ν ′ − δ − ρ− s)Γ(1 + µ− ν − ρ− s)

× Fp,q

[
a, b
c

;
e

x

]
∗ 4F3

[
1, 1 + µ+ µ′ − δ − ρ− s, 1 + µ+ ν ′ − η − ρ− s, 1− ν − ρ− s;

1− ρ− s, 1 + µ+ µ′ + ν ′ − δ − ρ− s, 1 + µ− ν − ρ− s;
e

x

]
,

(13)
where ∗ denotes the Hadamard product in (5) and whose right-sided hypergeometric frac-
tional integral is assumed to be convergent.

Proof. Applying a similar argument as in the proof of 2.1 by using (4) and (6) to (8), and
using (9), we obtain the right-hand side of (11). �

If we set µ′ = ν ′ = 0, ν = −η, µ = µ + ν, δ = µ in the operators (7) and (8), then we
arrive at Saigo hypergeometric fractional integral operators (see, [5], Mathai et al. [8, p.
104]): For <(µ) > 0,

(Iµ,ν,η0+ f(t))(x) =
x−µ−ν

Γ(µ)

x∫
0

(x− t)µ−12F1

(
µ+ ν,−η;µ; 1− t

x

)
f(t) dt (14)

and

(Iµ,ν,η− f(t))(x) =
1

Γ(µ)

∞∫
x

(t− x)µ−1t−µ−ν2F1

(
µ+ ν,−η;µ; 1− x

t

)
f(t) dt. (15)

Corollary 2.1. Let µ, ν, η, ρ ∈ C be such that min {<(p),<(q)} > 0, <(µ) > 0 and
<(ρ) > max{0, <(ν − η)}. Then for x > 0(

Iµ,ν,η0+

[
tρ−1 Suw[σt]Fp,q

[
a, b
c

; et

]])
(x) = xρ−ν−1

[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s
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× Γ(ρ+ s)Γ(ρ− ν + η + s)

Γ(ρ+ µ+ η + s)Γ(ρ− ν + s)

×Fp,q
[
a, b
c

; ex

]
∗ 3F2

[
1, ρ+ s, ρ− ν + η + s;

ρ− ν + s, ρ+ µ+ η + s;
ex

]
. (16)

Corollary 2.2. Let µ, ν, η, ρ ∈ C be such that min {<(p),<(q)} > 0, <(µ) > 0 and
<(ρ) < 1 + min{<(η), <(ν)}. Then for x > 0

(
Iµ,ν,η−

[
tρ−1 Suw[σt]Fp,q

[
a, b
c

;
e

t

]])
(x) = xρ−ν−1

[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s

× Γ(1− ρ+ ν − s)Γ(1− ρ+ η − s)
Γ(1− ρ− s)Γ(1− ρ− η + ν + µ− s)

×Fp,q
[
a, b
c

;
e

x

]
∗ 3F2

[
1, 1− ρ+ ν − s, 1− ρ+ η − s;

1− ρ− s, 1− ρ+ µ+ ν − η − s;
e

x

]
. (17)

The operator Iµ,ν,η0+ (·) contains both the Riemann-Liouville Iµ0+(·) and the Erdélyi-Kober

I+η,µ(·) fractional integral operators by means of the following relationships:

(Iµ0+f(t))(x) = (Iµ,−µ,η0+ f(t))(x) =
1

Γ(µ)

x∫
0

(x− t)µ−1f(t) dt (18)

and

(I+η,µf(t))(x) = (Iµ,0,η0+ f(t))(x) =
x−µ−η

Γ(µ)

x∫
0

(x− t)µ−1tηf(t) dt. (19)

It is noted that the operator (15) unifies the Weyl type and the Erdélyi-Kober fractional
operators as follows:

(Iµ−f(t))(x) = (Iµ,−µ,η− f(t))(x) =
1

Γ(µ)

∞∫
x

(t− x)µ−1f(t) dt (20)

and

(K−η,µf(t))(x) = (Iµ,0,η− f(t))(x) =
xη

Γ(µ)

∞∫
x

(t− x)µ−1t−µ−ηf(t) dt. (21)

Corollary 2.3. Let µ, η, ρ ∈ C be such that min {<(p), <(q)} > 0, <(µ) > 0 and <(ρ +
s) > <(−η). Then for x > 0(

I+η,µ

[
tρ−1 Suw[σt]Fp,q

[
a, b
c

; et

]])
(x) = xρ−1

[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s

×Γ(ρ+ η + s)

Γ(ρ+ µ+ s)
Fp,q

[
a, b
c

; ex

]
∗ 2F1

[
1, ρ+ η + s;

ρ+ µ+ η + s;
ex

]
. (22)

Corollary 2.4. Let µ, η, ρ ∈ C be such that min {<(p), <(q)} > 0, <(µ) > 0 and <(ρ +
s) < 1 + <(η). Then for x > 0

(
K−η,µ

[
tρ−1 Suw[σt]Fp,q

[
a, b
c

;
e

t

]])
(x) = xρ−1

[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s
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× Γ(1− ρ+ η − s)
Γ(1− ρ− η + µ− s)

Fp,q

[
a, b
c

;
e

x

]
∗ 2F1

[
1, 1− ρ+ η − s;

1− ρ+ µ− η − s;
e

x

]
. (23)

Further, replacing ν by −µ in Corollary 2.1 and 2.2 and making use of the relations (18)
and (20) gives the other Riemann-Liouville and Weyl fractional integrals of the extended
hypergeometric function in (4) given by the following Corollaries.

Corollary 2.5. Let µ, ρ ∈ C be such that min {<(p), <(q)} > 0 and <(µ) > 0. Then for
x > 0

(
Iµ0+

[
tρ−1 Suw[σt]Fp,q

[
a, b
c

; et

]])
(x) = xρ+µ−1

[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s

× Γ(ρ+ µ+ η + s)

Γ(ρ+ µ+ s)
Fp,q

[
a, b
c

; ex

]
∗ 2F1

[
1, ρ+ s;

ρ+ µ+ s;
ex

]
. (24)

Corollary 2.6. Let µ, ρ ∈ C be such that min {<(p), <(q)} > 0 and <(µ) > 0. Then for
x > 0

(
Iµ−

[
tρ−1 Suw[σt]Fp,q

[
a, b
c

;
e

t

]])
(x) = xρ+µ−1

[w/u]∑
s=0

(−w)u s
s!

Aw,s(σx)s

× Γ(1− ρ− µ− s)
Γ(1− ρ− s)

Γ(1− ρ+ η − s)
Γ(1− ρ− η − s)

Fp,q

[
a, b
c

;
e

x

]
∗ 3F2

[
1, 1− ρ− µ− s, 1− ρ+ η − s;

1− ρ− s, 1− ρ− η − s;
e

x

]
. (25)

3. Concluding remark and observations

We conclude this paper by emphasizing that on giving suitable special values to the
coefficient Aw,s, the general class of polynomial gives many known classical orthogonal
polynomial as its particular cases. In Particular, if we set w = 0 , A0,0 = 1 then Suw = 1
in (11) and (13), we obtain new results asserted in Corollary 3.1 and 3.2.

Corollary 3.1. Let µ, µ′, ν, ν ′, δ, ρ ∈ C be such that min {<(p),<(q)} > 0, <(δ) > 0 and
<(ρ+ s) > max [0,<(µ+ µ′ + ν − δ),<(µ′ − ν ′)]. Then for x > 0(

Iµ,µ
′,ν,ν′,δ

0+

[
tρ−1 Fp,q

[
a, b
c

; et

]])
(x)]

= xρ−µ−µ
′+δ−1 Γ(ρ+ s)Γ(ρ+ δ − µ− µ′ − ν + s)Γ(ρ+ ν ′ − µ′ + s)

Γ(ρ+ δ − µ− µ′ + s)Γ(ρ+ δ − µ′ − ν + s)Γ(ρ+ ν ′ + s)

× Fp,q

[
a, b
c

; ex

]
∗ 4F3

[
1, ρ+ s, ρ+ δ − µ− µ′ − ν + s, ρ+ ν ′ − µ′ + s;

ρ+ δ − µ− µ′ + s, ρ+ δ − µ′ − ν + s, ρ+ ν ′ + s;
ex

]
, (26)

Corollary 3.2. Let µ, µ′, ν, ν ′, δ, ρ ∈ C be such that min {<(p),<(q)} > 0, <(δ) > 0 and
<(ρ) < 1 + min [<(−ν),<(µ+ µ′ − δ),<(µ− ν ′ − δ)]. Then for x > 0(

Iµ,µ
′, ν,ν′, δ

−

[
tρ−1Suw[σt]Fp,q

[
a, b
c

;
e

t

]])
(x)

= xρ−µ−µ
′+δ−1Γ(1 + µ+ µ′ − δ − ρ− s)Γ(1 + µ+ ν ′ − δ − ρ− s)Γ(1− ν − ρ− s)

Γ(1− ρ− s)Γ(1 + µ+ µ′ + ν ′ − δ − ρ− s)Γ(1 + µ− ν − ρ− s)
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× Fp,q

[
a, b
c

;
e

x

]
∗ 4F3

[
1, 1 + µ+ µ′ − δ − ρ− s, 1 + µ+ ν ′ − η − ρ− s, 1− ν − ρ− s;

1− ρ− s, 1 + µ+ µ′ + ν ′ − δ − ρ− s, 1 + µ− ν − ρ− s;
e

x

]
,

(27)

Also, it is interesting to observe that if we set w = 0, A0,0 = 1 and Suw = 1, the results
obtained in Corollaries 2.1 to 2.6, yield corresponding results given in [11]. Further, the
polynomial family Suw[x] gives a number of known polynomials as its special cases on
suitably specializing the coefficient Aw,s. These include Hermite, Leguerre, Jacobi, the
Konhauser polynomials and so on. If we set u = 2 and Aw,s = (−1)s, then the general
class of polynomials reduce to

Sw2 [x] −→ xu/2Hw

(
1

2
√
x

)
(28)

where Hw(x) denotes the well known Hermite polynomials, and defined by

Hw(x) =

[w/2]∑
s=0

(−1)s
w

s!(w − 2s)!
(2x)w−2s. (29)

We left the results for interested readers.
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