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NUMERICAL SOLUTION OF AN INVERSE PROBLEM FOR THE

LIOUVILLE EQUATION

FİKRET GÖLGELEYEN1, MUHAMMED HASDEMİR1, §

Abstract. We consider an inverse problem for the Liouville Equation. We present the
solvability conditions and obtain numerical solution of the problem based on the finite
difference approximation.
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1. Introduction

In this work, we consider the Liouville equation

Lu ≡ ∂u

∂t
+ {H,u} = λ(x, v, t) (1)

in the domain Ω = {(x, v, t) : x ∈ D ⊂ Rn, v ∈ G ⊂ Rn, t ∈ (0, T )} , where

{H,u} =

n∑
i=1

(
∂H

∂vi

∂u

∂xi
− ∂u

∂vi

∂H

∂xi

)
and the boundary ∂Ω is sufficiently smooth.

In applications, u(x, v, t) is the density of distribution of the number of the particles
in the phase space, H(x, v, t) is the Hamiltonian, λ(x, v, t) is a source function, x is the
space coordinate vector, v and t denote the velocity and time, respectively. The Liouville
equation characterizes the continuity of the motion of a substance with phase volume
conservation. It is used for quantitative and qualitative description of many physical,
chemical, biological, social and other processes [3].

There have been many works on the direct problems for the Liouville equation, [See, e.
g. 9]. As for the inverse problems, we refer to [1, 3], where the uniqueness of the solution
was investigated. Numerical solution of some inverse problems for the stationary kinetic
and transport equations were studied in [6-8]. To the best of our knowledge, there has been
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no study devoted to numerical solution of such inverse problems for the non-stationary
Liouville equation.

In this paper, we investigate the solvability conditions and numerical solution of the
following inverse problem:

Problem 1. Determine the functions u(x, v, t) and λ(x, v, t) that satisfy equation (1)
provided that the trace of the solution u(x, v, t) on the boundary ∂Ω is known:

u|∂Ω = u0. (2)

The uniqueness of the solution of Problem 1 will be proved in the same way as in [1, p.
86], [3, p. 43].

Theorem 1. Let the Hamiltonian H(x, v, t) ∈ C2
(
Ω
)

satisfy the conditions

n∑
i,j=1

∂2H

∂vi∂vj
ξiξj ≥ α1 |ξ|2 ,

n∑
i,j=1

∂2H

∂xi∂xj
ξiξj ≤ −α2 |ξ|2 , (3)

for all (x, v, t) ∈ Ω , ξ ∈ Rn, where α1, α2 are positive numbers. We assume that the
function λ(x, v, t) satisfies the equation

L̂λ ≡
n∑

j=1

∂2λ

∂vj∂xj
= 0. (4)

Then Problem 1 has at most one solution (u, λ) such that u ∈ C2
(
Ω
)
, λ ∈ C2 (Ω) .

Proof. Let (u, λ) be a solution to Problem 1 such that u = 0 on ∂Ω and u ∈ C2
(
Ω
)
,

λ ∈ C2 (Ω). Since (4) holds for the function λ, we have

n∑
i=1

∂u

∂vi

∂λ

∂xi
=

n∑
i=1

∂

∂vi

(
u
∂λ

∂xi

)
. (5)

On the other hand, we can write

2
n∑

i=1

∂u

∂vi

∂

∂xi

(
∂u

∂t
+ {H,u}

)

=
n∑

i,j=1

(
∂2H

∂vi∂vj

∂u

∂xi

∂u

∂xj
− ∂2H

∂xi∂xj

∂u

∂vi

∂u

∂vj

)

+
n∑

i=1

[
∂

∂t

(
∂u

∂vi

∂u

∂xi

)
+

∂

∂xi

(
∂u

∂vi

(
∂u

∂t
+ {H,u}

))
− ∂

∂vi

(
∂u

∂xi

(
∂u

∂t
+ {H,u}

))]
+

n∑
i,j=1

[
∂

∂xj

(
∂H

∂vj

∂u

∂vi

∂u

∂xi

)
− ∂

∂vj

(
∂H

∂xj

∂u

∂vi

∂u

∂xi

)]
. (6)

Taking into account the geometry of the domain Ω and condition u = 0 on ∂Ω, from (5)-
(6), we get

n∑
i,j=1

∫
Ω

(
∂2H

∂vi∂vj

∂u

∂xi

∂u

∂xj
− ∂2H

∂xi∂xj

∂u

∂vi

∂u

∂vj

)
dΩ = 2

n∑
i=1

∫
Ω

∂u

∂vi

∂λ

∂xi
dΩ = 0. (7)
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By condition (3), we have

α1

∫
Ω
|∇xu|2 dΩ + α2

∫
Ω
|∇vu|2 dΩ ≤ 0. (8)

Since Ω is bounded and u = 0 on ∂Ω, inequality (8) implies u = 0 in Ω. Hence, by
equation (1), we have λ = 0 in Ω, which completes the proof of the theorem. �

It is easy to check that condition (4) holds, for example, for any function λ of the form
λ = λ1(x, t) + λ2(v, t), where λ1 and λ2 are continuously differentiable functions.

As for the existence of the solution of Problem 1, we reduce the problem to the following
one with homogeneous boundary data:

Problem 2. Determine (u, λ) from the relations

Lu = λ(x, v, t) + F (x, v, t), (9)

u|∂Ω = 0, L̂λ = 0, (10)

provided that the boundary ∂Ω is sufficiently smooth and the concordance conditions for
the data are satisfied. In (9), F is a known function in H2(Ω).

Then the following theorem can be proven by the same method presented in [1] which
is based on the Galerkin method and we will omit the proof here.

Theorem 2. Under the hypothesis of Theorem 1, there exists a solution (u, λ) of
Problem (2) in H1(Ω)× L2(Ω).

We note that the solvability of Problem 1 depends on the geometry of the domain Ω.
Namely, it is necessary that Ω can be represented in the form of the direct product of the
three domains D, G and (0, T ) .

Next, we give another problem where the geometry of the domain is not essential for
the solvability.

Problem 3. Find a pair of functions (u (x, v) , λ (x, v)) defined in D × G that satisfy
the stationary form of equation (1) and the conditions

∇u|∂(D×G) = u0, ∇vλ|∂(D×G) = λ0, u (x0, v0) = u1, (11)

where (x0, v0) is a point in D ×G.
Theorem 3. Under the hypothesis of Theorem 1, Problem 3 has at most one solution

(u, λ) such that u ∈ C2
(
D ×G

)
, λ ∈ C2

(
D ×G

)
.

Proof. Suppose that (u, λ) is a solution to problem (3) such that u0 = λ0 = u1 = 0. Using
relations (5)-(8) in the stationary case and by the fact that ∇vλ is given on the entire
boundary we obtain uxi = uvi = 0, i = 1, 2, ..., n. Then equation (1) in the stationary case
implies λ = 0 in D ×G. Since u (x0, v0) = u1 = 0, it follows that u ≡ 0 in D ×G, which
completes the proof. �

It is worth noting here that, by using the semi-group theory, we can have a more
general result devoted to solvability of Problem 1. Since the operator L := {H, ·} is
the infinitesimal generator of a contractive operator semigroup, see [4], we can prove the
existence, uniqueness and stability of the solution of Problem 1 based on the method used
in [5, p. 489].
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2. The Finite Difference Method

Now we concern with the construction of finite difference approximation for the following
inverse problem:

Problem 4. Find (u, λ) from the relations

ut (x, v, t) +Hv (x, v, t)ux (x, v, t)−Hx (x, v, t)uv (x, v, t) = λ (x, v, t) + F (x, v, t), (12)

u (x, v, t)|∂Ω = 0,

L̂λ = 0,

where Ω = {(x, v, t)| x ∈ (a, b) ⊂ R, v ∈ (c, d) ⊂ R, t ∈ (e, f) ⊂ R}.
By applying the operator L̂ to both sides of equation (12), we get an auxiliary Dirichlet

boundary value problem for a third order partial differential equation:

utxv+uxvxHv−uvvxHx+uxxHvv−uvvHxx+uxvHvx−uvxHxv+uxHvvx−uvHxvx = F (x, v, t) ,
(13)

u|∂Ω = 0. (14)

By using the central finite difference formulas in (13)-(14), we obtain the following discrete
version of the previous problem:

(−k2 + k1) ũki−1,j−1 + (2k2 − k3 + k5) ũki,j−1 + (−k1 − k2) ũki+1,j−1

+ (−2k1 + k4 − k6) ũki−1,j + (−2k4 + 2k3) ũki,j + (2k1 + k4 + k6) ũki+1,j

+ (k1 + k2) ũki−1,j+1 + (−2k2 − k3 − k5) ũki,j+1 + (k2 − k1) ũki+1,j+1

+(k7)(ũk+1
i+1,j+1 − ũ

k+1
i−1,j+1 − ũ

k+1
i+1,j−1 + ũk+1

i−1,j−1 − ũ
k−1
i+1,j+1 + ũk−1

i−1,j+1

+ũk−1
i+1,j−1 − ũ

k−1
i−1,j−1) = f̃ki,j , i = 1, ..., I, j = 1, ..., J , k = 1, ...,K; (15)

ũk0,j = ũkI+1,j = ũki,0 = ũki,J+1 = ũ0
i,j = ũK+1

i,j = 0,

i = 0, 1, ..., I + 1, j = 0, 1, ..., J + 1, k = 0, 1, ...,K + 1, (16)

where I, J, K are positive integers, ∆x = (b−a)
(I+1) , ∆v = (d−c)

(J+1) and ∆t = (f−e)
(K+1) are step sizes

in the directions x, v, t, respectively. In (15), ũki,j is the finite difference approximation

for the solution u(xi, vj , tk) = u(a + i∆x, c + j∆v, e + k∆t), hki,j is the finite difference

approximation for the function H(xi, vj , tk) = H(a + i∆x, c + j∆v, e + k∆t), f̃ki,j is the

approximation to the function F(xi, vj , tk) = F(a+ i∆x, c+ j∆v, e+ k∆t) and

k1 =
hki+1,j − hki−1,j

4 (∆x)2 (∆v)2 , k2 =
hki,j+1 − hki,j−1

4 (∆x)2 (∆v)2 ,

k3 =
hki+1,j − 2hki,j + hki−1,j

(∆x)2 (∆v)2 , k4 =
hki,j+1 − 2hki,j + hki,j−1

(∆x)2 (∆v)2 ,

k5 =
hki+1,j+1 − 2hki,j+1 + hki−1,j+1 − hki+1,j−1 + 2hki,j−1 − hki−1,j−1

4 (∆x)2 (∆v)2 ,

k6 =
hki+1,j+1 − 2hki+1,j + hki+1,j−1 − hki−1,j+1 + 2hki−1,j − hki−1,j−1

4 (∆x)2 (∆v)2 ,

k7 =
1

8 (∆x) (∆v) (∆t)
.
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The approximate solution ũki,j of Problem 4 is obtained at I × J ×K mesh points of Ω by
solving the matrix equation

Ãũ = F̃ , (17)

where Ã is a block tridiagonal banded matrix of the form

Ã =



A(1) B(1) 0 · · · 0

C(2) A(2) B(2) . . .
...

0 C(3) . . .
. . . 0

...
. . .

. . .
. . . B(I−1)

0 . . . 0 C(I) A(I)


IJK× IJK

. (18)

In (18), the matrices A(i), B(i), C(i) are defined as follows

A(i) =



A
(i,1)
1 A

(i,1)
2 0 · · · 0

A
(i,2)
3 A

(i,2)
1 A

(i,2)
2

. . .
...

0 A
(i,3)
3

. . .
. . . 0

...
. . .

. . .
. . . A

(i,J−1)
2

0 · · · 0 A
(i,J)
3 A

(i,J)
1


JK × JK

, i = 1, 2, . . . , I;

B(i) =



B
(i,1)
1 B

(i,1)
2 0 · · · 0

B
(i,2)
3 B

(i,2)
1 B

(i,2)
2

. . .
...

0 B
(i,3)
3

. . .
. . . 0

...
. . .

. . .
. . . B

(i,J−1)
2

0 · · · 0 B
(i,J)
3 B

(i,J)
1


JK ×JK

, i = 1, 2, ..., I − 1;

C(i) =



C
(i,1)
1 C

(i,1)
2 0 · · · 0

C
(i,2)
3 C

(i,2)
1 C

(i,2)
2

. . .
...

0 C
(i,3)
3

. . .
. . . 0

...
. . .

. . .
. . . C

(i,J−1)
2

0 · · · 0 C
(i,J)
3 C

(i,J)
1


JK × JK

, i = 2, 3, ..., I;
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where

A(i,j)
s =


fs(i, j) 0 · · · 0

0 fs(i, j)
. . .

...
...

. . .
. . . 0

0 · · · 0 fs(i, j)


K x K

,

B(i,j)
s =



gs(i, j)
(−1)s(s−1)

(s−1)! a 0 · · · 0

(−1)(s+1)(s−1)
(s−1)! a gs(i, j)

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . (−1)s(s−1)

(s−1)! a

0 · · · 0 (−1)(s+1)(s−1)
(s−1)! a gs(i, j)


K×K

,

C(i,j)
s =



hs(i, j)
(−1)(s+1)(s−1)

(s−1)! a 0 · · · 0

(−1)s(s−1)
(s−1)! a hs(i, j)

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . (−1)(s+1)(s−1)

(s−1)! a

0 · · · 0 (−1)s(s−1)
(s−1)! a hs(i, j)


K×K

,

s = 1, 2, 3 , j = 1, 2, ..., J ,

and

f1(i, j) = −2k4 + 2k3, f2(i, j) = −2k2 − k3 − k5, f3(i, j) = 2k2 − k3 + k5,

h1(i, j) = −2k1 + k4 − k6, h2(i, j) = k1 + k2, h3(i, j) = k1 − k2,

g1(i, j) = 2k1 + k4 + k6, g2(i, j) = −k1 + k2, g3(i, j) = −k1 − k2, a = k7.

In (17), F̃ is a column matrix which consists of

F̃ =
[
f̃1

1,1, f̃
2
1,1,, ..., f̃

K
1,1, f̃

1
1,2, f̃

2
1,2, ..., f̃

K
1,2, ..., f̃

1
1,J , f̃

2
1,J , ..., f̃

K
1,J , ..., f̃

K
I,J

]T
and ũ is the solution vector:

ũ =
[
ũ1

1,1, ũ
2
1,1,, ..., ũ

K
1,1, ũ

1
1,2, ũ

2
1,2, ..., ũ

K
1,2, ..., ũ

1
1,J , ũ

2
1,J , ..., ũ

K
1,J , ..., ũ

K
I,J

]T
.

Finally, we obtain λ numerically from the difference equation

(ũk+1
i,j − ũ

k−1
i,j )

2∆t
+ k2

(ũki+1,j − ũki−1,j)

2∆x
− k1

(ũki,j+1 + ũki,j−1)

2∆v
− f̃ki,j = λ̃

k
i,j ,

i = 1, 2, ..., I; j = 1, 2, ..., J ; k = 1, 2, ...,K, where λ̃
k
i,j is the approximation to the

function λ(xi, vj , tk) = λ(a + i∆x, c + j∆v, e + k∆t). The last relation is derived from
(12) by using the central-difference formulas.
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3. Numerical Experiments

In this section, we present numerical solution of three inverse problems of the form
(9)-(10) by using the method developed in the previous section. The computations are
performed using MATLAB R2014a program on a PC with Intel(R) Core(TM) i7-7700HQ
CPU 2.80 GHz, 16 Gb memory RAM, running under Windows 10.

Example 1. Let us consider the problem of finding (u, λ) in Ω = (2, 3)×(−1, 1)×(0, 1)
from relations (9)-(10) provided that

H (x, v, t) = v2 + log(x),

F (x, v, t) = x3(v − 2tv + 2tv3 − v3) + x2(6t2v4 − 9t2v2 − 6tv4 − 10tv3 + 9tv2

+10tv + 5v3 − 5v) + x(−20t2v4 + 35t2v2 + 20tv4 + 12tv3

−35tv2 − 12tv − 6v3 + 6v).

It is known that the exact solution of the inverse problem is

u (x, v, t) = xv(x− 2)(x− 3)(v2 − 1)(t2 − t),
λ (x, v, t) = t(t− 1)(12v4 − 30v2 + x2 − 5x+ 6).

In the following figures, we compare the exact solution with the calculated finite difference
solution of the problem for I = 80, J = 200,K = 2, that is we consider 32000 mesh points.

Figure 1. (a) Computed values and (b) Exact values of u for t=0.5.

Table 1. Errors in the computation for Example 1
I = 50, J = 100, I = 50, J = 200, I = 80, J = 200,

K = 2 K = 2 K = 2
Number of mesh points 10000 20000 32000

Elapsed time 90.42 s 183.49 s 622.27 s
Maximum error for u 3.8445e− 04 8.9666e− 06 8.4668e− 06
Maximum error for λ 3.9840e− 04 8.5537e− 05 8.2733e− 05
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Figure 2. (a) Computed values and (b) Exact values of λ for t=0.5.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5
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Figure 3. The structure of the matrix Ã (32000×32000) in Example 1.
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Computed Solution
Exact Solution

Figure 4. A comparison of computed and exact solutions for u:

(a) fixed v, t; (b) fixed x, t.

Example 2. Find a pair of functions (u, λ) defined in Ω = (2, 3)× (0, 3) × (0, 1) that
satisfies equation (9)-(10) with

H (x, v, t) =
v2

2
− x2,

F (x, v, t) = x3(4tev − 4t2ev − 2tvev + 2t2vev) + x2(v + 3ev + 20t2ev − 2tv − 26tev

−vev + 12tvev − 10t2vev) + x(4tv − 15ev − 2t2v2 − 24t2ev − 5v

+2tv2 + 6t2v + 54tev + 5vev − 16tvev − 2tv2ev + 6t2vev + 2t2v2ev).
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The exact solution of the problem is

u (x, v, t) = (x− 2)(x− 3)(ev − 1)(v − 3)(t2 − t),
λ (x, v, t) = x2(−2t2 + 2t)x3 + (10t2 − 4t− 3) + x(−12t2 − 18t+ 15) + 36t+ 6v

+tv(5tv − 5v − 15t+ 3) + ev(v − 3)(12t+ 5tv − 5t2v − 6)− 18.

Figure 5. (a) Computed values and (b) Exact values of u for t=0.7.

Figure 6. (a) Computed values and (b) Exact values of λ for t=0.7.

Table 2. Errors in the computation for Example 2
I = 4, J = 500, I = 10, J = 700, I = 10, J = 1300,

K = 4 K = 3 K = 3
Number of mesh points 8000 21000 39000

Elapsed time 39.11 s 214.51 s 1153.12 s
Maximum error for u 1.2796e-05 8.1005e-06 2.3519e-06
Maximum error for λ 4.4605e-04 2.8981e-04 8.4804e-05
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4
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−0.25

−0.2

−0.15

−0.1

 

 

Exact solution
Computed solution

Figure 7. A comparison of computed and exact solutions for u (all values).

Example 3. Find a pair of functions (u, λ) defined in Ω = (−3, 3)× (0, 1) × (1, 3) that
satisfies relation (9)-(10) with

H (x, v, t) =
v2

2
− x2,

F (x, v, t) =
1

t2
[
vx(3x− 3vx)− tvx(−6v2 + 6v − 12x2 + 108)

+3vecos(πv
2

+x))(x2 − 9)(v − 1)
]

+
1

t

[
6xecos(πv

2
+x))(−v3 + v2 − 2vx2 + 18v + x2 − 9)

+ecos(πv
2

+x) sin(
πv

2
+ x)(x2 − 9)(v2 − v)(v + πx)(t2 − 4t+ 3)

]
+vx(−8v2 + vx+ 8v − 16x2 − x+ 144)− tvx(−2v2 + 2v − 4x2 + 36)

−ecos(πv
2

+x)
[
x3(4tv − 16v − 2t+ 8) + x2(v2 − v)

+x(18t+ 144v − 36tv − 2tv2 + 2tv3 + 8v2 − 8v3 − 72)− 9v2 + 9v
]
.

The exact solution of the problem is

u (x, v, t) = (t− 3)(
1

t
− 1)(ecos(πv

2
+x) − 1)(x2 − 9)(v2 − v),

λ (x, v, t) = x3(8− 6

t
− 2t) + x(18t+

54

t
− 72) + 9v +

1

t2
(27v2 − 27v)− 9v2.

The finite difference and the exact solution of the inverse problem at t = 2 are shown
in Figures 8-9 for I = 100, J = 100,K = 3.
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Figure 8. (a) Computed values and (b) Exact values of u for t=2.
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Figure 9. (a) Computed values and (b) Exact values of λ for t=2.
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Consequently, numerical experiments have demonstrated that the proposed method
provides highly accurate numerical solutions for the source inverse problems for the Liou-
ville equation. It is worth to note that the method used for proving the solvability of the
inverse problem paves the way of solving the problem numerically. Namely, applying the

operator L̂, our problem is reduced to a direct problem for u. Then the finite difference
approximation for the Dirichlet problem for a third order partial differential equation gives
the result directly.
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