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Recently, an encryption algorithm based on two-dimensional discretized chaotic maps was proposed
[Xiang et al., Phys. Lett. A 364 (2007) 252]. In this Letter, we analyze the security weaknesses of the
proposal. Using the algebraic dependencies among system parameters, we show that its effective key
space can be shrunk. We demonstrate a chosen-ciphertext attack that reveals a portion of the key.
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1. Introduction

In this Letter, we cryptanalyze the chaotic encryption algorithm
proposed in [1]. The algorithm uses discretized two-dimensional
chaotic maps (TDCM) and S-boxes designed using chaotic systems.
We first show that the key contains redundancies that lead to a
shorter effective key length. Next, we demonstrate a chosen ci-
phertext attack to recover a portion of the key.

2. Description of the algorithm

The encryption algorithm processes a sequence of 16-bit plain-
text blocks and produces another sequence of 16-bit ciphertext
blocks. Plaintext and ciphertext sequences are partitioned into 16-
bit blocks Pi, Ci , 1 � i � n, as

Plaintext: P1 P2 · · · Pn,

Ciphertext: C1C2 · · · Cn.

The key of the cryptosystem is the collection of the parameters
(r,m, t, C0, Ks, Kc). In [1] this collection is defined as the master
key. The master key is composed of the number of rounds r, the
shift amount m, the number of iterations t , the initial value C0, the
subkey Ks and the collection of TDCM parameters Kc .
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(C. Çokal).

A block key Ki is used in the encryption of plaintext block Pi .
Initially, we have

K0 = Ks. (1)

Before the encryption of block Pi , Ki is first updated as

Ki =
{

Ki−1 ⊕ Ci−1 if Ci−1 �= Ki−1,

Ki−1 if Ci−1 = Ki−1.
(2)

The encryption of the ith block is given as

Ci = E(Ki, Pi), (3)

where the function E involves the following round operations:

v0 = Pi,

v j = σ
(

v j−1 ⊕ ROL(Ki, jm)
)
, 1 � j � r,

Ci = vr . (4)

Here, v j is the output of round j. ROL(·, jm) denotes the circular
left rotation by jm bits. The round function σ is given as

σ = w ◦ z−1 ◦ TDCMt
Kc

◦ z ◦ S. (5)

The amount of circular left shifts is given as

m =
{ �16/r�, r � 16,

1 otherwise.
(6)

In (5), S represents the S-box substitution. S invertibly maps
between 16-bit quantities. The S-box is designed to have desirable
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nonlinear properties, and its value is fixed (not secret) for an algo-
rithm. Ref. [2] gives examples of S-boxes designed using iterations
of chaotic systems.

z is an invertible function that maps from 16-bit quantities to
2D vectors of integers. It maps the unsigned integer values cor-
responding to each byte of its argument to one of the integer
coordinates in 2D discrete state space. For example, z(0xF3A7) =
[243,167] because 243 = (F3)16 and 167 = (A7)16.

TDCMt
Kc

denotes the t-times iteration of TDCM. Kc denotes the
collection of the chaotic system parameters. The choice of the
chaotic map is part of the algorithm design. In [1], the standard
map, the generalized cat map, and the generalized baker map are
considered. The chaotic map must be bijective in order to have an
invertible encryption operation. The output of the chaotic system is
passed through z−1 to map the final 2D state of TDCM to a 16-bit
number.

The last mapping w in (5) denotes the byte swap operation.
After the encryption of block i, the block key is once more up-

dated as

Ki ← ROL(Ki, rm). (7)

Since Ki is 16-bits, the effective amount of rotation on Ki in this
step is rm mod 16.

3. Key space weakness

The cryptosystem described in the previous section uses the
secret parameters r(8), m(8), t(8), C0(16), Ks(16). The numbers
between the brackets are the number of bits used to represent the
parameter. The parameters Kc of the TDCM also contribute to the
key space. For example, the standard map has a single parameter
which is represented using 16 bits. In this case, the master key has
72 (56 + 16) bits. Using a simple brute force, an attacker has to try
271 keys on average until he finds the correct key.

However, algebraic dependencies present in the system make
the effective key size smaller.

The relation (6) fixes m once r is known. This removes the free-
dom in the choice of m, and effectively reduces the key length by
8 bits. Therefore, the shift amount m must be treated not as a key
but rather as an internal parameter that is derived from the key.

Another reduction in effective key length is due to the way the
secret parameter C0 is used. Before the encryption of the first 16-
bit block, the subkey Ks is updated by using (2). Hence, the value
of K1 used in the encryption of P1 is Ks ⊕ C0. Consequently, we
can treat Ks ⊕ C0 as one secret parameter rather than two distinct
parameters, Ks and C0. Indeed, any pair of C0 and Ks values that
yields the same XOR value results in identical encryption functions.
This fact reduces the effective key length by another 16 bits. In
the subsequent sections, we assume without loss of generality that
C0 = 0x0000.

One might remedy the key space weakness by using a larger Kc .
However, as we show in the sequel, there are attacks that work
whatever the size of Kc is.

4. Chosen ciphertext attack on Ks

Assume that the attacker knows the number of rounds r. This
is not a very restrictive assumption. Since r is represented with
8 bits, it can only take one of 255 possible nonzero values. The at-
tacks that we develop in this and the next section have very low
computational requirements. In the case when the attacker does
not know the value of r, he tries all 255 possible values with the
attacks described here. He then eliminates false r values by try-
ing the encryption against a couple of known plaintext–ciphertext
pairs. Namely, the attacker uses brute-force for recovering r, once
he has fast methods to attack the rest of the key.

To illustrate the method of the attack, we first analyze the case
when rm ≡ 0 mod 16. Later in the section we will give the attack
that works when rm �≡ 0 mod 16.

We assume that the attacker does not know the TDCM param-
eters, so he does not know the function E in (3).

4.1. rm ≡ 0 mod 16.

Assume that the first two ciphertext blocks are given as

C1 = C2 = j. (8)

If j = Ks , using (1), (2), (3) and (7), we have

j = E(Ks, P1), j = E(Ks, P2).

So, by the invertibility of E for fixed Ks , we have P1 = P2.
If j �= Ks , we have

j = E(Ks, P1), j = E(Ks ⊕ j, P2).

In this case, most probably P1 �= P2. The difference in two cases
indicates that the equality of P1 and P2 is a good test on whether
Ks = j.

The attack on Ks proceeds as follows. The attacker chooses a
16-bit number j. He requests plaintexts for a two-block ciphertext
C1C2 chosen as in (8). He compares these plaintext blocks P1 and
P2. If they are equal, then j is a candidate for the secret Ks . The
attacker repeats this for all the 16-bit j values and records candi-
dates for Ks . A total of 216 − 1 trials are made.

It may happen that the attacker obtains P1 = P2 even when
j �= Ks . This is because we might have E(K1, P ) = E(K2, P ) for
some K1 �= K2, and P . In order to eliminate the false keys, the
attacker performs the following further tests.

Assume that the attacker has two candidates j1 and j2 for the
subkey Ks . From his previous attempt at determining the keys, the
attacker knows P1 and P2 which satisfy

j1 = E(Ks, P1), j2 = E(Ks, P2). (9)

The attacker now chooses the new ciphertext blocks C̄1 and C̄2 as
C̄1 = j1 and C̄2 = j2. He obtains the corresponding plaintext blocks
P̄1 and P̄2. There are two cases for the validity of j1. Let us see
how P̄1 and P̄2 differ for each case.

Case 1. j1 = Ks . Using (1), (2), (3) and (7), we find that

j1 = E(Ks, P̄1), j2 = E(Ks, P̄2).

Comparing this with (9), we obtain P̄1 = P1 and P̄2 = P2.

Case 2. j1 �= Ks . This time we find,

j1 = E(Ks, P̄1), j2 = E(Ks ⊕ j1, P̄2).

Comparing this with (9), we conclude P̄1 = P1 and P̄2 is a random
16-bit number.

In both cases, P̄1 = P1. However, only in the first case we are
guaranteed to have P̄2 = P2. In the second case, we might have
P̄2 = P2 even when j1 �= Ks . So, if P̄2 �= P2 the test is conclusive
and j1 �= Ks . If P̄2 = P2 the test is inconclusive.

This test gives the attacker a method to eliminate the false sub-
keys among the candidates. Assume that attacker has determined
q candidates, { j1, j2, . . . , jq} for the subkey Ks . To eliminate the
false subkeys, he chooses a pair of candidates ji1 and ji2 and ap-
plies the test as explained. In this way, he eliminates ji1 if the test
is conclusive. Otherwise, he chooses a different pair and repeats
the test. The attack on Ks successfully terminates when there re-
mains only one candidate for the subkey.
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4.2. rm �≡ 0 mod 16

Let the ciphertext be chosen as

C1 = C2 = · · · = Ck−1 = 0, Ck = j, Ck+1 = 0, (10)

where k = lcm(16,u)
u and u = rm mod 16. Here, k is chosen such that

K1 = Kk+1. Using (10) together with (1), (2), (3) and (7), we obtain

0 = E(Ks, P1),

0 = E
(
ROL(Ks, u), P2

)
,

0 = E
(
ROL(Ks,2u), P3

)
,

.

.

.

0 = E
(
ROL

(
Ks, (k − 2)u

)
, Pk−1

)
,

j = E
(
ROL

(
Ks, (k − 1)u

)
, Pk

)
, (11)

and

0 =
{

E( j ⊕ Ks, Pk+1) if j �= Ks,

E(Ks, Pk+1) if j = Ks.
(12)

Comparing (11) and (12), we find that if j = Ks , we have P1 =
Pk+1. The attacker uses this fact to launch a chosen ciphertext at-
tack.

For a 16-bit nonzero number j, the attacker chooses the cipher-
text sequence as in (10) and obtains the corresponding plaintext
sequence P1, . . . , Pk+1. If P1 = Pk+1, then j is a candidate subkey.
The attacker repeats this for all the 16-bit j values and records
candidates for Ks . A total of 216 − 1 trials are made.

It may happen with a low probability that we have P1 = Pk+1
even when j �= Ks . In order to rule out such a false key j, the
attacker chooses the ciphertext sequence C̄1 = ROL( j, u), C̄2 = 0
and obtains the corresponding plaintext sequence P̄1 P̄2. Using this
with (1), (2), (3) and (7) we obtain

ROL( j, u) = E(Ks, P̄1),

and

0 =
{

E(ROL( j, u) ⊕ ROL(Ks, u), P̄2) if j �= Ks,

E(ROL(Ks, u), P̄2) if j = Ks.
(13)

Comparing (11) with (13), we see that if j = Ks , P2 = P̄2. Thus, the
attacker eliminates a false key j, if P2 �= P̄2.

In attacking the 16-bit subkey Ks , we used about 216 chosen ci-
phertexts. It might seem that our attack is on the same order of a

brute-force attack. However, when using our method, an attacker
does not need to know the parameters Kc and t , which charac-
terizes the function E . In a brute-force attack, the attacker would
need to know these parameters. A brute-force attack on a part of
the key is possible only if the rest of the key is known.

5. Simulation results

We give simulation results for two examples that illustrate our
methods.

In the first simulation, we used the cryptosystem with se-
cret parameters given in the example in [1]. We have r = 8,
m = 2, t = 12, C0 = 0x4ED3, Ks = 0x8F4C. Using the equiva-
lence explained in Section 3, this is equivalent to C0 = 0x0000,
Ks = 0xC19F = 0x4ED3 ⊕ 0x8F4C. We used the standard map
as TDCM. The secret TDCM parameter is Kc = 53246.

We applied the chosen ciphertext attack on Ks given in Sec-
tion 4. We found only one nonzero candidate for Ks . Hence we do
not have false candidates for the subkey.

In the second example, we choose r = 5 and m = 3. The rest of
the parameters are the same.

We apply the attack on Ks for the case rm �≡ 0 mod 16 given in
Section 4.2. In this case, we have u = 15, so Ki is rotated left by
15 bits after the encryption of every block of plaintext. We found
two nonzero candidates for Ks; 0xC19F and 0xCFE1. Using the
elimination method given at the end of Section 4.2, we arrived at
the correct subkey Ks = 0xC19F.

6. Conclusion

In this Letter, we gave a partial break of a cryptosystem that
uses discretized two-dimensional chaotic maps. We showed a de-
pendence among secret parameters that yield a smaller key space.
We next showed that 16 bits of the key can be revealed using a
chosen ciphertext attack. Using simulation with different parame-
ters, we also demonstrated the feasibility of our attacks.
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