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LINEAR COMBINATIONS OF q-STARLIKE FUNCTIONS OF ORDER

ALPHA
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Abstract. In this paper, we introduced a new concept of bounded radius rotation to
define the class of q-starlike functions of order α using the q-derivative, some geometric
properties of linear combination of such functions are studied.
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1. Introduction

Let A denote the class of functions of form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1},
and S denote the subclass of A consisting of all function which are univalent in U .
Jackson[5] initiated q-calculus and developed the concept of the q-integral and q-derivative.
For a function f ∈ S given by (1) and 0 < q < 1, the q-derivative of f is defined by

∂qf(z) =

{
f(z)−f(qz)
z(1−q) , z 6= 0,

f ′(0), z = 0.
(2)

Equivalently (2), may be written as

∂qf(z) = 1 +
∞∑
n=2

[n]qanz
n−1, z 6= 0

where

[n]q =
1− qn

1− q
.
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Note that as q → 1, [n]q → n.
Now, recall the definition of the class of q-starlike functions of order α, 0 ≤ α < 1, denoted
by S∗q (α).

Definition 1.1. [2] A function f ∈ A is said to belong to the class S∗q (α) if∣∣∣∣∣∣
z∂qf(z)
f(z) − α
1− α

− 1

1− q

∣∣∣∣∣∣ ≤ 1

1− q
, z ∈ U , (3)

where ∂qf(z) is defined by (2) and 0 < q < 1.

The following is the equivalent form of Definition 1.1

f ∈ S∗q (α)⇐⇒
∣∣∣∣z∂qf(z)

f(z)
− 1− αq

1− q

∣∣∣∣ ≤ 1− α
1− q

. (4)

We note that as q → 1− the closed disc |ω − (1− q)−1| ≤ (1− q)−1 becomes the right-half
plane and the class S∗q (α) reduces to S∗(α), the subclass of A consisting of functions which
are starlike of order α(0 < α < 1) in U . In particular, when α = 0, the class S∗q (α) coincides
with the class S∗q := S∗q (0), which was first introduced by Ismail et al [4] in 1990 and later
it has been considered in [1, 8, 10, 6, 7].
Observe that (3) holds if and only if

z∂qf(z)

f(z)
≺ 1 + (1− 2α)z

1− qz
, (5)

where ≺ denotes subordination.
Using the definition of the class of S∗q (α) and (5) it can be seen that linear transformation
1+(1−2α)z

1−qz maps |z| = r onto the circle with center C(r) = 1+(1−2α)qr
1−q2r2 and the radius

ρ(r) = (1−α)(1+q)r
1−q2r2 .

Thus using subordination principle, we can write∣∣∣∣z∂qf(z)

f(z)
− 1 + (1− 2α)qr2

1− q2r2

∣∣∣∣ ≤ (1− α)(1 + q)r

1− q2r2
. (6)

Definition 1.2. Let p(z) be analytic in U with p(0) = 0. Then p ∈ Pm(q, α) if and only if,

P (z) = (
m

4
+

1

2
)p1(z)− (

m

4
− 1

2
)p2(z).

where pj(z) ≺ 1+(1−2α)z
1−qz , j = 1, 2, 0 < q < 1, m ≥ 2.

For m = 2 and α = 0, P2(q) = P (q) consists all functions subordinate to 1+z
1−qz , z ∈ U .

Also limq→1− P (q) = P, the class of functions with positive real part.

Definition 1.3. Let f ∈ A. Then f ∈ R∗q(m,α), if and only if,
z∂qf(z)
f(z) ∈ Pm(q, α), z ∈ U .

f in this case, is called a function of q-bounded radius rotation.
Observe that R∗q(2, 0) = S∗q and as q → 1−, α = 0, R∗q(m,α) = Rm, the class of functions
with bounded radius rotation.
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2. Main results

We need the following lemmas, to prove our main results.

Lemma 2.1. Let f ∈ R∗q(m,α). Then for m ≥ 2, 0 < q < 1∣∣∣∣z∂qf(z)

f(z)
− 1 + (1− 2α)qr2

1− q2r2

∣∣∣∣ ≤ m
2 (1− α)(1 + q)r

1− q2r2
. (7)

Lemma 2.2. If |u− a| ≤ d and |v − a| ≤ d where a and d are real and a > d ≥ 0, and

ω = u
1

1 +Aeiβ
+ v

1

1 +A−1e−iβ
,

where A is real and A > 0 and β ∈ [0, β), then

R(ω) ≥ a− d sec(
β

2
).

Lemma 2.3. Let f ∈ R∗q(m,α). Then f ∈ S∗q (α) for |z| < r∗q(α). where

r∗q(α) =
4(1− 2α)

m(1 + q − 2α) +
√
m2(1 + q − 2α)2 − 16(1− 2α)q

. (8)

Proof. Since f ∈ R∗q(m,α), we have

z∂qf(z)

f(z)
= p(z) ∈ Pm(q, α).

This implies that p(z) can be written as

P (z) = (
m

4
+

1

2
)p1(z)− (

m

4
− 1

2
)p2(z).

where pj(z) ≺ 1+(1−2α)z
1−qz , j = 1, 2, 0 < q < 1, m ≥ 2.

Therefore
R(

z∂qf(z)
f(z) ) = R(p(z)) ≥ (m4 + 1

2)(1+(1−2α)r
1−qr )− (m4 −

1
2)(1−(1−2α)r1+qr )

=
1 + m

2 (1 + q − 2α)r + (1− 2α)qr2

1− q2r2
,

and from this, it follows that R(
z∂qf(z)
f(z) ) ≥ 0 for |z| < r∗q(α). where r∗q(α) is given by (8). �

Observe that as α = 0, f ∈ R∗q(m) and in this case R(
z∂qf(z)
f(z) ) > 0 for |z| < r∗q , where

r∗q = 4

m(1+q)+
√
m2(1+q)2−16q

, see [7] and as q → 1−, α = 0, f ∈ Rm and in this case

R( zf
′(z)

f(z) ) > 0 for |z| < r∗ = 2
m+
√
m2−4 , see [3].

Lemma 2.4. Let f ∈ R∗q(m,α). Then

| arg f(z)| ≤ m
2 (1− α)(1 + q) sin−1 r and | arg f ′(z)| ≤ m(1− α)(1 + q) sin−1 r.

Theorem 2.1. Let f1, f2 ∈ R∗q(m,α) and let

F (z) = λf1(z) + (1− λ)f2(z), (9)

where 0 ≤ µ = arg λ
1−λ < π. Then F ∈ S∗q (α) in |z| < rq,m(α) where rq,m(α) is the smallest

positive value of r satisfying the equation

g(r) = [1 + (1− 2α)qr2] cos(
µ

2
+
m

2
(1− α)(1 + q) sin−1 r)− m

2
(1− α)(1 + q)r sin−1 r = 0.
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Proof. Using q-difference operator of (15), we obtained
∂qF (z) = λ∂qf1(z) + (1− λ)∂qf2(z),
and therefore
∂qF (z)
F (z) =

λ∂qf1(z)+(1−λ)∂qf2(z)
λf1(z)+(1−λ)f2(z)

=
z∂qf1(z)

f1(z)

[
1 +

(
λ

1− λ
.
f1(z)

f2(z)

)−1]−1
+
z∂qf2(z)

f2(z)

[
1 +

(
λ

1− λ
.
f1(z)

f2(z)

)]−1
. (10)

Put

u =
z∂qf2(z)

f2(z)
, v =

z∂qf1(z)

f1(z)
, A =

∣∣∣∣ λ

1− λ
.
f1(z)

f2(z)

∣∣∣∣ . (11)

From (10) and (17), we obtained

ω(z) =
∂qF (z)

F (z)
= u

1

1 +Aeiβ
+ v

1

1 +A−1e−iβ
. (12)

Using Lemma 2.1 and Lemma 2.2, we obtained

R
{
∂qF (z)

F (z)

}
≥ 1 + (1− 2α)qr2

1− q2r2
−

m
2 (1− α)(1 + q)r

1− q2r2
sec(

β

2
), (13)

where
β = arg

(
λ

1−λ .
f1(z)
f2(z)

)
= 2nπ + µ+ arg f1(z)− arg f2(z).

Now by Lemma 15,
|β| ≤ µ+m(1− 2α)(1 + q) sin−1 r,

and this gives us sec(β2 ) ≤ 1
cos(µ2+

m
2
(1−α)(1+q) sin−1 r)

.

Therefore
R
{
∂qF (z)
F (z)

}
≥ 0, if

g(r) = [1 + (1− 2α)qr2] cos(
µ

2
+
m

2
(1− α)(1 + q) sin−1 r)− m

2
(1− α)(1 + q)r > 0.

We note that
g(r) = cos(µ2 ), for r = 0, and

g(r) = −m
2 (1− α)(1 + q) sin

(
π−µ

m(1−α)(1+q)

)
< 0, when r = sin

(
π−µ

m(1−α)(1+q)

)
.

This implies that g(r) = 0 has a root in the interval
(

0, sin
(

π−µ
m(1−α)(1+q)

))
and right hand

side of (13) is positive in the disc |z| < rq,m(α), where rq,m(α) is the least positive value of
r satisfying g(r) = 0. �

As α = 0, we have the following result, proved by Noor et al [6].

Corollary 2.1. Let f1, f2 ∈ R∗q(m) and let

F (z) = λf1(z) + (1− λ)f2(z), (14)

where 0 ≤ µ = arg λ
1−λ < π. Then F ∈ S∗q in |z| < rq,m where rq,m is the smallest positive

value of r satisfying the equation

g(r) = [1 + qr2] cos(
µ

2
+
m

2
(1 + q) sin−1 r)− m

2
(1 + q)r = 0.

As q → 1− and for α = 0, we get the following result, introduced by Noor et al [6].
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Corollary 2.2. Let f1, f2 ∈ R(m) and let

F (z) = λf1(z) + (1− λ)f2(z), (15)

where 0 ≤ µ = arg λ
1−λ < π. Then F ∈ S∗ in |z| < r∗m where r∗m is the smallest positive

value of r satisfying the equation gm(r) = B(1 + r2)−mr = 0, B = cos
(µ
2 +m sin−1 r

)
.

This gives us r∗m = m+
√
m2−4B2

2B . As a special case of Corollary 2.2, we take m = 2. Therefore

B = B2 = cos
(µ
2 + 2 sin−1 r

)
, and limq→1− R

∗
q(2) = S∗.

From these observations, we deduce the radius of starlikeness of linear combination of two

starlike functions is given by r∗2 =
1−
√

1−B2
2

B2 .

Corollary 2.3. As α = 0, and m = 2. Then, in Theorem 2.1, f1, f2 ∈ S∗q and it follows
that

R
{
∂qF (z)

F (z)

}
≥ 0 in |z| < r∗q .

where r∗q is the least positive root of

gq(r) = D1qr2− (1 + q)r +D1 = 0, where D1 = cos
(µ
2 + (1 + q) sin−1 r

)
.

and hence r∗q =
(1+q)−

√
(1+q)2−4qD2

1

2qD1
.

Theorem 2.2. Let f1, f2 ∈
⋂

0<q<1 S
∗
q (α) and let

F (z) = λf1(z) + (1− λ)f2(z), (16)

where 0 ≤ µ = arg λ
1−λ < π. Then F maps the disc |z| < rµ onto a convex domain, where

rµ is the least positive value of r that satisfies the equation

gµ(r) = Dr2 − 2r1r +Dr21, where r1 = 2−
√
3+α2

1+α , D = cos(µ2 + 2(1− α) sin−1( rr1 )).

Proof. It has been shown in [2] that⋂
0<q<1

S∗q (α) = S∗(α).

It is well known [9] that f ∈ S∗(α) is convex of order α in the disc |z| < r1 = 2−
√
3+α2

1+α .
with these facts, we proceed to find the radius of convexity for the function F following the
technique used in Theorem 2.1.
We can write

1+
zF ′′(z)

F ′(z)
=

[
1 +

zf ′′1 (z)

f ′1(z)

] [
1 +

(
λ

1− λ
.
f ′1(z)

f ′2(z)

)−1]−1
+

[
1 +

zf ′′2 (z)

f ′2(z)

] [
1 +

(
λ

1− λ
.
f1(z)

f2(z)

)]−1
.

Put

u =

[
1 +

zf ′′1 (z)

f ′1(z)

]
, v =

[
1 +

zf ′′2 (z)

f ′2(z)

]
, A =

∣∣∣∣ λ

1− λ
.
f ′1(z)

f ′2(z)

∣∣∣∣ , β = arg

(
λ

1− λ
.
f ′1(z)

f ′2(z)

)
. (17)

Now, for r1 = 2−
√
3+α2

1+α , we have ∣∣∣∣u− r21 + r2

r21 − r2

∣∣∣∣ ≤ 2rr1
r21 − r2

,∣∣∣∣v − r21 + r2

r21 − r2

∣∣∣∣ ≤ 2rr1
r21 − r2

.

Therefore

ω(z) = 1 +
zF ′′(z)

F ′(z)
= u

1

1 +Aeiβ
+ v

1

1 +A−1e−iβ
. (18)
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where
β = arg

(
λ

1−λ .
f ′1(z)
f ′2(z)

)
= 2nπ + µ+ arg f ′1(z)− arg f ′2(z), and so

|β| ≤ µ+ 4(1− α) sin−1( r
r−1),

Therefore
R
{

1 + zF ′′(z)
F ′(z)

}
> 0, if Tµ(r) = (r21 + r2) cos(µ2 + 2(1 − α) sin−1( r

r−1) − 2r1r = 0, where

r1 = 2−
√
3+α2

1+α .
That is
Tµ(r) = Dr2 − 2r1r +Dr21, D = cos(µ2 + 2(1− α) sin−1( rr1 )).
Hence

rµ =
r1 −

√
r21 −D2r21
D

. (19)

Hence F maps the disc |z| < rµ onto a convex of order α domain, where rµ is given by
(19). �

Remark As α = 0 Theorem 2.1 reduces to Theorem 2 in [6].
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