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ON THE CHEBYSHEV POLYNOMIAL COEFFICIENT PROBLEM OF

BI-BAZILEVIC̆ FUNCTIONS

Ş. ALTINKAYA1, S. YALÇIN1, §

Abstract. A function said to be bi-Bazilevic̆ in the open unit disk U if both the function
and its inverse are Bazilevic̆ there. In this paper, we will study a newly constructed class
of bi-Bazilevic̆ functions. Furthermore, we establish Chebyshev polynomial bounds for
the coefficients, and get Fekete-Szegö inequality, for the class B(β, t).
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1. Introduction and Definitions

Let A indicate an analytic function family, which is normalized under the condition of
f(0) = f ′(0) − 1 = 0 in U = {z : z ∈ C and |z| < 1} and given by the following Taylor-
Maclaurin series:

f(z) = z +
∞∑
n=2

anz
n. (1)

Further, by S we shall denote the class of all functions in A which are univalent in U.
With a view to recalling the principle of subordination between analytic functions, let the
functions f and g be analytic in U. Then we say that the function f is subordinate to g
if there exists a Schwarz function w (z), analytic in U with

w (0) = 0, |w (z)| < 1 (z ∈ U) ,

such that

f (z) = g (w (z)) (z ∈ U) .

We denote this subordination by

f ≺ g or f (z) ≺ g (z) (z ∈ U) .

In particular, if the function g is univalent in U, the above subordination is equivalent to

f(0) = g(0), f(U) ⊂ g(U).

1 Department of Mathematics, Faculty of Arts and Science, Uludag University, 16059, Bursa, Turkey.
e-mail: sahsenealtinkaya@gmail.com; ORCID: http://orcid.org/0000-0002-7950-8450.
e-mail: syalcin@uludag.edu.tr; ORCID: https://orcid.org/0000-0002-0243-8263.
§ Manuscript received: August 24, 2017; accepted: December 20, 2017.

TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.1 c© Işık University, Department
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The Koebe-One Quarter Theorem [10] ensures that the image of U under every univalent
function f ∈ A contains a disc of radius 1/4. Thus every univalent function f has an inverse
f−1 satisfying f−1 (f (z)) = z and f

(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U.
Let Σ denote the class of bi-univalent functions in U given by (1). For a brief history
and interesting examples in the class Σ, see [21] (see also [2], [7], [6], [17], [19]). Fur-
thermore, judging by the remarkable flood of papers on the subject (see, for example, [8],
[14], [22], [23], [24], [25], [26], [29], [30], [32], [33]), the pioneering work by Srivastava et
al. [21] has apparently revised the study of bi-univalent functions in recent years. Not
much is known about the bounds on the general coefficient |an|. In the literature, there
are only a few works determining the general coefficient bounds |an| for the analytic bi-
univalent functions ([3], [4], [13], [35]). The coefficient estimate problem for each of |an|
(n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is still an open problem.

Chebyshev polynomials have become increasingly important in numerical analysis, from
both theoretical and practical points of view. There are four kinds of Chebyshev poly-
nomials. The majority of books and research papers dealing with specific orthogonal
polynomials of Chebyshev family, contain mainly results of Chebyshev polynomials of
first and second kinds Tn(t) and Un(t) and their numerous uses in different applications,
see for example, Doha [11] and Mason [18].

The Chebyshev polynomials of the first and second kinds are well known. In the case
of a real variable t on (−1, 1), they are defined by

Tn(t) = cosnθ,

Un(t) =
sin(n+ 1)θ

sin θ
,

where the subscript n denotes the polynomial degree and where t = cos θ.

Definition 1.1. (see [20]) For 0 ≤ β < 1 and f ∈ A, let B(β) denote the class of Bazilevic̆
functions if and only if

<

((
z

f(z)

)1−β
f ′(z)

)
> 0, (z ∈ U).

Several authors have discussed various subfamilies of the well-known Bazilevic̆ functions
(see, for details, [10]; see also [16], [20], [28]) of type β from various viewpoints such as the
perspective of convexity, inclusion theorems, radii of starlikeness and convexity, boundary
rotational problems, subordination relationships, and so on. It is interesting to note in this
connection that the earlier investigations on the subject do not seem to have addressed
the problems involving coefficient inequalities and coefficient bounds for these subfamilies
of Bazilevic̆ type functions.

Definition 1.2. For f ∈ Σ and t ∈
(

1
2 , 1
]
, let B(β, t) denote the class of Bi-Bazilevic̆

functions order t and type β if only if(
z

f(z)

)1−β
f ′(z) ≺ H(z, t) =

1

1− 2tz + z2
(0 ≤ β < 1, z ∈ U) (3)

and (
w

g(w)

)1−β
g′(w) ≺ H(w, t) =

1

1− 2tw + w2
(0 ≤ β < 1, w ∈ U) (4)
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where g (w) = f−1 (w) .

Remark 1.1. We note that for β = 0 the class B(β, t) reduces to the class B(t).

The class B(t) is defined as follows:

Definition 1.3. A function f ∈ Σ is said to be in the class B(t), and t ∈
(

1
2 , 1
]
, if the

following subordinations hold

zf ′(z)

f(z)
≺ H(z, t) =

1

1− 2tz + z2
(z ∈ U)

and
wg′(w)

g(w)
≺ H(w, t) =

1

1− 2tw + w2
(w ∈ U)

where g (w) = f−1 (w) .

We note that if t = cosα, α ∈
(
−π

3 ,
π
3

)
, then

H(z, t) =
1

1− 2tz + z2

= 1 +
∞∑
n=1

sin(n+ 1)α

sinα
zn (z ∈ U).

Thus
H(z, t) = 1 + 2 cosαz + (3 cos2 α− sin2 α)z2 + · · · (z ∈ U).

Following see, we write

H(z, t) = 1 + U1(t)z + U2(t)z2 + · · · (z ∈ U, t ∈ (−1, 1)),

where Un−1 =
sin(n arccos t)√

1− t2
(n ∈ N) are the Chebyshev polynomials of the second kind.

Also it is known that
Un(t) = 2tUn−1(t)− Un−2(t),

and
U1(t) = 2t, U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, . . . (5)

The Chebyshev polynomials Tn(t), t ∈ (−1, 1), of the first kind have the generating
function of the form

∞∑
n=0

Tn(t)zn =
1− tz

1− 2tz + z2
(z ∈ U).

However, the Chebyshev polynomials of the first kind Tn(t) and the second kind Un(t) are
well connected by the following relationships

dTn(t)

dt
= nUn−1(t),

Tn(t) = Un(t)− tUn−1(t),

2Tn(t) = Un(t)− Un−2(t).

Motivated by the earlier work of Dziok et al. [9], we study the Chebyshev polynomial
expansions to provide estimates for the initial coefficients of some subclasses of bi-univalent
functions (see, for example, [5]). The aim of this paper to discuss a newly constructed
class of bi-Bazilevic̆ functions. Furthermore, we establish Chebyshev polynomial bounds
for the coefficients and get Fekete-Szegö inequality, for the class B(β, t).
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2. Coefficient bounds for the function class B(β, t)

We begin this section by finding the estimates on the coefficients |a2| and |a3| for
functions in the class B(β, t) proposed by Definition 1.2.

Theorem 2.1. Let the function f (z) given by (1) be in the class B(β, t). Then

|a2| ≤
2t
√

2t√
|(β + 1)2 − 2β (β + 1) t2|

and

|a3| ≤
4t2

(β + 1)2 +
2t

β + 2
.

Proof. Let f ∈ B(β, t) From (3) and (4), we have(
z

f(z)

)1−β
f ′(z) =

(
f(z)

z

)β (zf ′(z)
f(z)

)
= 1 + U1(t)φ(z) + U2(t)φ2(z) + · · · , (6)

and(
w

g(w)

)1−β
g′(w) =

(
g(w)

w

)β (wg′(w)

g(w)

)
= 1 + U1(t)ϕ(w) + U2(t)ϕ2(w) + · · · , (7)

for some analytic functions φ, ϕ such that φ(0) = ϕ(0) = 0 and |φ(z)| < 1, |ϕ(w)| < 1 for
all z ∈ U. From the equalities (6) and (7), we obtain that(

z

f(z)

)1−β
f ′(z) = 1 + U1(t)c1z +

[
U1(t)c2 + U2(t)c2

1

]
z2 + · · · , (8)

and (
w

g(w)

)1−β
g′(w) = 1 + U1(t)d1w +

[
U1(t)d2 + U2(t)d2

1

]
w2 + · · · . (9)

It is fairly well-known that if |φ(z)| =
∣∣c1z + c2z

2 + c3z
3 + · · ·

∣∣ < 1 and |ϕ(w)| =∣∣d1w + d2w
2 + d3w

3 + · · ·
∣∣ < 1, z, w ∈ U, then

|cj | ≤ 1, ∀j ∈ N.

It follows from (8) and (9) that

(β + 1)a2 = U1(t)c1, (10)

(β − 1)(β + 2)

2
a2

2 + (β + 2)a2
2 = U1(t)c2 + U2(t)c2

1, (11)

and

−(β + 1)a2 = U1(t)d1, (12)

(β + 2)(β + 3)

2
a2

2 − (β + 2)a2
2 = U1(t)d2 + U2(t)d2

1. (13)

From (10) and (12) we obtain

c1 = −d1 (14)

and

2 (β + 2)2 a2
2 = U2

1 (t)
(
c2

1 + d2
1

)
. (15)

By adding (11) to (13), we get

(β2 + 3β + 2)a2
2 = U1(t) (c2 + d2) + U2(t)

(
c2

1 + d2
1

)
. (16)
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By using (15) in equality (16), we have[
(β2 + 3β + 2)− 2U2(t) (β + 1)2

U2
1 (t)

]
a2

2 = U1(t) (c2 + d2) . (17)

From (5) and (17) we get

|a2| ≤
2t
√

2t√
|(β + 1)2 − 2β (β + 1) t2|

.

Next, in order to find the bound on |a3| , by subtracting (13) from (11), we obtain

2 (β + 2) a3 − 2 (β + 2) a2
2 = U1(t) (c2 − d2) + U2(t)

(
c2

1 − d2
1

)
. (18)

Then, in view of (14) and (15) , we have from (18)

a3 =
U2

1 (t)

2 (β + 1)2

(
c2

1 + d2
1

)
+

U1(t)

2 (β + 2)
(c2 − d2) .

This completes the proof. �

Corollary 2.1. Let the function f (z) given by (1) be in the class B(t). Then

|a2| ≤ 2t
√

2t

and

|a3| ≤ 4t2 + t.

3. Fekete-Szegö inequalities for the function class B(β, t)

The classical Fekete-Szegö inequality, presented by means of Loewner’s method, for the
coefficients of f ∈ S is∣∣a3 − µa2

2

∣∣ ≤ 1 + 2 exp(−2µ/(1− µ)) for µ ∈ [0, 1) .

As µ → 1−, we have the elementary inequality
∣∣a3 − a2

2

∣∣ ≤ 1. Moreover, the coefficient
functional

γµ(f) = a3 − µa2
2

on the normalized analytic functions f in the unit disk U plays an important role in
function theory. The problem of maximizing the absolute value of the functional γµ(f) is
called the Fekete-Szegö problem, see [12]. Many other recent works on the Fekete-Szegö
problem include, for example, [1], [15], [27], [31] and [34].

In this section, we aim to provide Fekete-Szegö inequalities for functions in the class
B(β, t). These inequalities are given in the following theorem.

Theorem 3.1. Let f given by (1) be in the class B(β, t) and µ ∈ R. Then

∣∣a3 − µa2
2

∣∣ ≤



2t

β + 2
;

for |µ− 1| ≤ 1
4(β+2)

∣∣∣∣(β+1
t

)2
− 2β (β + 1)

∣∣∣∣
8 |1− µ| t3

|(β + 1)2 − 2β (β + 1) t2|
;

for |µ− 1| ≥ 1
4(β+2)

∣∣∣∣(β+1
t

)2
− 2β (β + 1)

∣∣∣∣
.
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Proof. From (17) and (18), we conclude that

a3 − µa2
2 = (1− µ)

U3
1 (t) (c2 + d2)

(β2 + 3β + 2)U2
1 (t)− 2 (β + 1)2 U2(t)

+
U1(t) (c2 − d2)

2(β + 2)

= U1(t)

[(
h (µ) +

1

2 (β + 2)

)
c2 +

(
h (µ)− 1

2 (β + 2)

)
d2

]
where

h (µ) =
U2

1 (t) (1− µ)

(β2 + 3β + 2)U2
1 (t)− 2 (β + 1)2 U2(t)

.

Then, in view of (5), we obtain

∣∣a3 − µa2
2

∣∣ ≤


2t

β + 2
; 0 ≤ |h (µ)| ≤ 1

2 (β + 2)

4t |h (µ)| ; |h (µ)| ≥ 1

2 (β + 2)
.

Taking µ = 1 we get

Corollary 3.1. If f ∈ B(β, t), then∣∣a3 − a2
2

∣∣ ≤ 2t

β + 2
.

Corollary 3.2. Let f given by (1) be in the class B(t). Then∣∣a3 − a2
2

∣∣ ≤ t.
�
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Ş. ALTINKAYA, S. YALÇIN: ON THE CHEBYSHEV POLYNOMIAL... 257
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Sibel Yalçın received her Ph.D. degree in Mathematics in 2001 from Uludag Uni-
versity, Bursa, Turkey. She became a full Professor in 2011. She is currently with
the Department of Mathematics, Uludag University. Her research interests include
harmonic mappings, geometric function theory, meromorphic functions, analytic func-
tions, bi-univalent functions, convolution operators.


