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CONVOLUTIONS OF A SUBCLASS OF HARMONIC UNIVALENT

MAPPINGS

ELIF YAŞAR1, ÖZGE ÖZDEMIR1, §

Abstract. The main object of this paper is to investigate the convolution of a subclass
of harmonic univalent mappings which is denoted by fa and generalized harmonic uni-
valent mapping which is denoted by Pc. We obtained Pc ∗ fa is univalent and convex

in the horizantal direction for 0 < c ≤ 2(1−a)
1+a

. In addition, we present an example and
illustrate it graphically with the help of Maple to explain the behaviour of image domain.
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1. Introduction

A continuous function f = u+ iv is a complex-valued harmonic function defined on the
open unit disc U = {z ∈ C : |z| < 1}, where u and v are real harmonic functions in U .
Such function can be expressed as f = h+ g, where

h(z) = z +
∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n

are analytic in U . We call h and g the analytic part and co-analytic part of f , respectively.
A necessary and sufficient condition for f to be locally univalent and sense-preserving in
U is that the dilatation of f defined by w(z) = g′(z)/h′(z), satisfies |w(z)| < 1 for all
z ∈ U .

Denote by SH the class of all harmonic, sense-preserving and univalent mappings f =
h + g in U , which are normalized by the conditions f(0) = fz(0) − 1 = 0. Let S0

H be the
subset of all f ∈ SH in which fz(0) = 0. Further, let KH , CH (resp. K0

H ,C0
H) be the

subclass of SH ( resp. S0
H) whose image domains are convex and close-to-convex domains.

A domain Ω ∈ C is said to be convex in the horizontal direction (CHD) if every line
parallel to the real axis has a connected intersection with Ω. For basic details of harmonic
univalent functions, see [1, 2] .
Let
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f(z) = h(z) + g(z) = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnz
n

and

F (z) = H(z) +G(z) = z +

∞∑
n=2

Anz
n +

∞∑
n=1

Bnz
n

be harmonic univalent functions. The convolution of two harmonic univalent functions is
defined by

(f ∗ F )(z) = (h ∗H)(z) + (g ∗G)(z) = z +
∞∑
n=2

anAnz
n +

∞∑
n=1

bnBnz
n.

Let fa = ha + ga which satisfy the conditions

ha − ga = (1 + a)
z

1− z
with w(z) =

a+ z

1 + az
(−1 < a < 1). (1)

By using the technique of shear construction method (see [1] ), we have

ha(z) =
1 + a

1− a

[
z

(1− z)2
− 1

2

z2

(1− z)2

]
=

1 + a

2(1− a)

[
z

(1− z)2
+

z

1− z

]
and

ga(z) =
1 + a

1− a

[
az

(1− z)2
+

1− 2a

2

z2

(1− z)2

]
=

1 + a

2(1− a)

[
z

(1− z)2
− (1− 2a)z

1− z

]
. (2)

The image of fa(U) for a = 0.5 is shown in Figure 1.

Fig. 1. Image of fa(U) for a = 0.5.

Obviously, for a = 0, denote by F1(z) = H1(z) + G1(z), which satisfy the conditions
H1 − G1 = z/(1 − z) and w1(z) = z studied by Liu and Li [6] . They proved that
F1(U) = {u + iv : v2 > −(u + (1/4))} which implies that F1(z) is a CHD mapping (not
a right half plane mapping). This result was also shown by Dorff and Suffridge [3]. Also,
Wang et al. [7] studied convolutions of F1(z).

Denote by SH the class of harmonic, sense-preserving and univalent mappings fa = ha+ga
with ha − ga = (1 + a) z

1−z and w(z) = a+z
1+az (−1 < a < 1) in U , which are normalized by
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the condition fa(0) = 0. Note that, SH is subclass of SH.

Also, Liu and Li [6] introduced the following generalized harmonic univalent mappings

Pc(z) = Hc(z)+Gc(z) =
1

1 + c

[
cz

(1− z)2
+

z

1− z

]
+

1

1 + c

[
cz

(1− z)2
− z

1− z

]
(z ∈ U ; c > 0).

(3)
Obviously, P0(z) = F1(z). If f = h+ g ∈ SH , then

Pc ∗ f =
czh′ + h

1 + c
+
czg′ − g

1 + c
. (4)

There are several research papers in recent years which investigate the convolution of
harmonic univalent functions, see [4-9]. In particular, Dorff and Dorff et al. studied the
convolution of harmonic univalent mappings in the right half-plane [4, 5] . They proved
that:

Theorem A ([4,Theorem 5]). Let f1 = h1 + g1, f2 = h2 + g2 ∈ S0
H with hi + gi =

z/(1− z) for i = 1, 2. If f1 ∗ f2 is locally univalent and sense-preserving, then f1 ∗ f2 ∈ S0
H

is convex in the horizontal direction.
Theorem B ([5,Theorem 3]). Let fn = hn + gn ∈ S0

H with h + g = z/(1 − z) and

w(z) = g′(z)/h′(z) = eiθzn(θ ∈ R,n ∈ N+) and f0 = h0 + g0 be the canonical right half
plane mapping with the dilatation w0(z) = −z. If n = 1, 2, then f0 ∗ fn ∈ S0

H is convex in
the horizontal direction.

An important tool to prove harmonic functions are locally univalent and sense-preserving
is Cohn’s Rule. This rule is given as follows

Cohn’s Rule ([10,pp.375]). Given a polynomial

p(z) = p0(z) = an,0z
n + an−1,0z

n−1 + · · ·+ a1,0z + a0,0 (an,0 6= 0) (5)

of degree n, let

p∗(z) = p∗0(z) = znp(
1

z
) = an,0 + an−1,0z + · · ·+ a1,0z

n−1 + a0,0z
n. (6)

Denote by r and s the number of zeros of p(z) inside the unit circle and on it, re-

spectively. If |a0,0| < |an,0|, then p1(z) =
an,0p(z)−a0,0p∗(z)

z is of degree n − 1 with
r1 = r − 1 and s1 = s the number of zeros of p1(z) inside the unit circle and on it,
respectively.

In this paper, we investigate the convolution of the harmonic functions fa = ha + ga
which satisfy condition (1) and generalized harmonic univalent mappings which are given
by (3). We obtain the condition for Pc ∗ fa to be univalent and convex in the horizontal
direction. Also, we present an example and illustrate it graphically with the help of Maple
to explain the behaviour of the image domain.

2. Main results

Lemma 2.1. ([6], Lemma 2) Let Pc = Hc(z)+Gc(z) be defined by (3) and f = h+g ∈ S0
H

which satisfy the conditions h − g = z/(1 − z) and w(z) = g′(z)
h′(z)(h′(z) 6= 0, z ∈ U). Then

w̃1 the dilatation of Pc ∗ f , is given by

w̃1(z) =
[(c− 1) + (c+ 1)z]w(1− w) + cw′z(1− z)
[(c+ 1) + (c− 1)z](1− w) + cw′z(1− z)

. (7)
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Lemma 2.2. ([6], Lemma 3) Let Pc = Hc(z)+Gc(z) be defined by (3) and f = h+g ∈ S0
H

which satisfy the conditions h−g = z/(1−z). If Pc∗f is locally univalent, then Pc∗f ∈ S0
H

and is convex in the horizontal direction (CHD).

Theorem 2.1. Pc = Hc(z) + Gc(z) be given by (3). If fa = ha + ga ∈ SH which satisfy
the conditions ha − ga = (1 + a) z

1−z and dilatation wa(z) = a+z
1+az (−1 < a < 1), then

Pc ∗ fa ∈ SH and is convex in the horizontal direction (CHD) for 0 < c ≤ 2(1−a)
1+a .

Proof. In view of Lemma 2.2, it suffices to show that Pc ∗ fa is locally univalent and
sense-preserving. Substituting w(z) = wa(z) = (a+ z)/(1 + az) into (7), we have

w̃1(z) =
[(c− 1) + z(1 + c)] a+z

1+az (1− a+z
1+az ) + c 1−a2

(1+az)2
z(1− z)

[(c+ 1) + (c− 1)z](1− a+z
1+az ) + c 1−a2

(1+az)2
z(1− z)

(8)

= −
z3 − 2−a−c−2ac

1+c z2 + 1−2a−2c−ac
1+c z − a(c−1)

1+c

1− 2−a−c−2ac
1+c z + 1−2a−2c−ac

1+c z2 − a(c−1)
1+c z3

.

Next we just need to show that |w̃1(z)| < 1 for 0 < c ≤ 2(1−a)
1+a , where −1 < a < 1. We

need to consider the following two cases:
Case 1. Suppose that a = 0. Then substituting a = 0 into (8) yields

w̃1(z) = −z
z2 − 2−c

1+cz + 1−2c
1+c

1− 2−c
1+cz + 1−2c

1+c z
2

= −z
(z − 1)

(
z − 1−2c

1+c

)
(1− z)

(
1− 1−2c

1+c z
) .

Then two zeros of the above numerator are z1 = 1 and z2 = 1−2c
1+c which lie in or on the

unit circle for all 0 < c ≤ 2. Thus, |w̃1(z)| < 1.
Case 2. Suppose that a 6= 0. From (8), we have

w̃1(z) = −
z3 − 2−a−c−2ac

1+c z2 + 1−2a−2c−ac
1+c z − a(c−1)

1+c

1− 2−a−c−2ac
1+c z + 1−2a−2c−ac

1+c z2 − a(c−1)
1+c z3

= − p(z)

p∗(z)
= − (z −A)(z −B)(z − C)

(1−Az)(1−Bz)(1− Cz)
.

We will show that A,B,C ∈ U for 0 < c ≤ 2(1−a)
(1+a) . Applying Cohn’s Rule to

p(z) = z3 − 2− a− c− 2ac

1 + c
z2 +

1− 2a− 2c− ac
1 + c

z − a(c− 1)

1 + c
,

note that
∣∣∣a(c−1)

1+c

∣∣∣ < 1 for c > 0 and −1 < a < 1, we get
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p1(z) =
a3p(z)− a0p

∗(z)

z
=
p(z) + a(c−1)

1+c p∗(z)

z

=
(1 + c+ a− ac)(1 + c− a+ ac)

(1 + c)2
z2 +

−2− c+ 6ac+ c2 + 2a2 − a2c− a2c2

(1 + c)2
z

+
1− c− 6ac− 2c2 − a2 − a2c+ 2a2c2

(1 + c)2

=
(1 + c+ a− ac)(1 + c− a+ ac)

(1 + c)2

(
z2 +

−2 + c+ 2a+ ac

1 + c− a+ ac
z +

1− 2c− a− 2ac

1 + c− a+ ac

)
=

(1 + c+ a− ac)(1 + c− a+ ac)

(1 + c)2
(z − 1)

(
z − 1− a− 2c(1 + a)

1− a+ c(1 + a)

)
.

So p1(z) has two zeros z∗1 = 1 and z∗2 = 1−a−2c(1+a)
1−a+c(1+a) which are in or on the unit circle for

0 < c ≤ 2(1−a)
1+a . Thus, by Cohn’s Rule, all zeros of p(z) lie on U, that is A,B,C ∈ U and

so |w̃1(z))| < 1 for all z ∈ U .

Theorem 2.2. Let Pc = Hc(z) + Gc(z) be given by (3). If F1 = h + g = z/(1 − z)
and dilatation w(z) = eiθzn(θ ∈ R,n ∈ N+). Then Pc ∗ F1 ∈ S0

H and is convex in the
horizontal direction (CHD) for 0 < c ≤ 2/n.

Proof. Proof of Theorem 2.2 is similar to the proof of Theorem 7 in [6] .

Example 2.1. In Theorem 2.1, by (1) and (4), we have

Pc ∗ fa =
1

1 + c

[
czh′a(z) + ha(z)

]
+

1

1 + c
[czg′a(z)− ga(z)]

=
1

1 + c

[
cz

(
1 + a

1− a

)
1

(1− z)3
+

(
1 + a

1− a

)(
z − 1

2z
2

(1− z)2

)]

+
1

1 + c

(cz(1 + a

1− a

)(
a+ z − az
(1− z)3

))
−

(1 + a

1− a

)(
az + 1−2a

2 z2

(1− z)2

)
= Re

{
1 + a

(1 + c)(1− a)(1− z)3
[cz(1 + a+ z(1− a))] +

(1 + a)z

(1 + c)(1− z)

}
+iIm

{
(1 + a)cz

(1 + c)(1− z)2
+

1 + a

(1 + c)(1− a)(1− z)2

[
z + az − az2

]}
.

Now, if we set the parameters a and c, by Theorem 2.1, we can know that Pc ∗ fa is

univalent or not. If we take a = 0.5 and c = 0.1, we have 0 < c ≤ 2(1−a)
1+a and hence Pc ∗ fa

is univalent and CHD (see Fig. 2).
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Fig 2. Image of Pc ∗ fa(U) for a = 0.5 and c = 0.1.

If we take a = 0.1, c = 2 or a = 0.5, c = 2 then Pc ∗ fa is not univalent (see Figs. 3-4).

Fig 3. Image of Pc ∗ fa(U) for a = 0.1 and c = 2.

Fig 4. Image of Pc ∗ fa(U) for a = 0.5 and c = 2.

Area For further Investigation: Let fa = ha+ga ∈ SH which satisfy the conditions
ha − ga = (1 + a) z

1−z and dilatation wa(z) = a+z
1+az (−1 < a < 1). Determine other values

of a ∈ U for which the result of Theorem 2.1 holds.
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