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A TOMOGRAPHIC APPROACH FOR THE EARLY DETECTION OF
2D ROGUE WAVES

C. BAYINDIR, §

ABSTRACT. In this paper we propose an efficient tomographic approach for the early
detection of 2D rogue waves. The method relies on the principle of detecting conical
spectral features before rogue wave becomes evident in time. More specifically, the pro-
posed method is based on constructing the 1D Radon transforms of the emerging conical
2D spectra of the wavefield using compressive sampling (CS) and then constructing 2D
spectra from those projections using filtered back projection (FBP) algorithm. For the
2D rogue wave models we use the radially symmetric Peregrine soliton and Akhmediev-
Peregrine soliton solutions of the nonlinear Schrodinger equation, which can model char-
acteristics of the peaked structure of 2D rogue waves and their conical spectra which
may be treated as a sparse signal. We show that emerging conical spectra of 2D rogue
waves before they become evident in time can be acquired efficiently by the proposed
method.
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1. INTRODUCTION

Rogue (freak) waves are generally described as high amplitude waves with a height
bigger than 2 — 2.2 times the significant waveheight in a stochastic wavefield [1]. They
have been extensively studied in recent years in the fields including but are not limited
to hydrodynamics, optics, quantum mechanics, Bose-Einstein condensation, acoustics and
finance, just to name a few [2], [3], [4], [5], [6]. The research has started with the investiga-
tion of the nonlinear Schrodinger equation (NLSE). Discovery of the unexpected rational
rogue wave solutions of the NLSE resulted in seminal studies of rogue waves, such as [2].
Rogue wave dynamics of some of the extensions of the NLSE, such as the Sasa-Satsuma
and the Kundu-Eckhaus equations, are also studied recently [7], [8], [9]. It is natural to
expect that in a medium whose dynamics are governed by nonlinear equations such as the
NLSE and NLSE, rogue waves can also emerge, therefore investigation of the dynamics of
different models needs further attention.
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Development of the rogue wave early warning systems and technology is an active area
of research and is crucially important for the marine environment to safeguard the ocean
travel, oceanic structures and machinery such as wave energy harvesters [3], [5], [10]. Two
of the few early detection methods proposed in 1D are to use the emerging triangular
Fourier spectra (i.e. triangular supercontinnum generation) to detect if a rogue wave is
going to emerge and to use the emerging wavelet spectra to locate its emergence location
[3], [5], [10]. These methods work well for the single rogue waves observed in fiber optics
and hydrodynamic wave flumes and lead to early warning time scales on the order of the
temporal width of the rogue wave. However enhancement of the early warning times for
stochastic wavefields requires further attention and development of realistic solutions such
as the development of the electronic equipment to capture rogue wave emergence may take
many long efforts.

To our best knowledge the early detection rogue waves are only studied in 1D and
no studies exist about the early detection mechanisms of 2D rogue waves. With this
motivation, we analyze the spectral properties of 2D rogue waves. Since the correct form
of the 2D NLSE is not integrable, we use a radially symmetric version of the 1D NLSE
and its Peregrine and Akhmediev-Peregrine solitons solutions. Although this form of
the 2D NLSE does not rely upon an analytical basis, it can exhibit the characteristics
of the localized peaked structures of 2D rogue wave profiles and their conical spectral
forms, very similar to the 1D case. We propose to use the emerging conical spectra of
the 2D rogue waves before they become evident in time as an early detection technique
and thus we discuss their dynamics. With this aim, we propose an efficient method for
the acquisition of the emerging conical 2D rogue wave spectra. We first construct the 1D
Radon transforms of the emerging conical 2D spectra of the wavefield using CS. Then we
construct 2D spectra from those projections using FBP. Since emerging 2D conical spectra
can be treated as a sparse signal, the method can successfully capture the emerging conical
spectra. We numerically show that this approach can produce indistinguishable results
from the classical sampling approach, but it supersedes classical sampling approach due
to greatly reduced sampling requirement.

2. METHODOLOGY

2.1. Review of the Nonlinear Schrédinger Equation. The 2D dynamics of nonlinear
ocean waves, optical waves and quantum vibrations can be modeled in the frame of the
2D NLSE [5], [11], [12]. In order to analyze the early detection mechanism of the 2D
rogue waves, we consider axisymmetric version of the 2D NLSE in polar coordinates, in
this study. The radially symmetric rational soliton solutions of the NLSE can be used to
understand the dynamics of 2D rogue waves, which are accepted as accurate rogue wave
models in 1D [2]. Thus we consider the NLSE in 2D polar coordinates given as

iy + V3 + 0P =0 (1)

where t' is the temporal variable, ¢ is the imaginary unit and ¢ is the complex amplitude
known as the wavefunction in optics and quantum mechanics but the wavefield envelope in
hydrodynamics. This notation is mainly used in hydrodynamics and quantum mechanics,
whereas temporal and spatial axes are switched in fiber optics studies, where NLSE is used
to describe the dynamics of light pulses in nonlinear fiber optical media. The Laplacian
term in Eq.(1) is given by
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Considering the radially symmetric case, % = 0, and using the self-similarity trans-
formations given in [13] to define self-similar parameters r = 7(7,t'), t = ¢/(¢/,7) and
(7, t") — 1(r,t), the NLSE in 2D polar coordinates can be reduced to the non-dimensional
form of

1
it + b + 92 = 0 (3)

where r = /22 + y? is the new spatial radial coordinate. This equation is the classical
cubic NLSE [14]. It is known that the NLSE given by Eq.(3) admits many different types
of analytical solutions among which the first and higher order rational soliton solution
are considered as accurate rogue wave models [2]. For stochastic wavefields where the
analytical solution is unknown, the NLSE can be numerically solved by some numerical
techniques such as the spectral method [15], [16], [17], [18]. However in this study we limit
ourselves with the analytical solutions of the NLSE. The radially symmetric 2D Peregrine
soliton can be written as

1+ 2it
% 5| €
1+ 4r2 4 412

where t and r denotes the time and space, respectively [2], [19]. The Peregrine soliton
is only a first order rational soliton solution in the Darboux hierarchy of the NLSE and
higher order rational soliton solutions do exist [2]. It has been confirmed that rogue waves
can be in the form of the first (Peregrine) and higher order rational soliton solutions of
the NLSE [2], [4], [5].

Second order rational soliton solution of the NLSE is Akhmediev-Peregrine soliton [2],
which is considered to be a model for rogue waves with higher amplitude than the Peregrine
soliton. The formula of Akhmediev-Peregrine soliton is given as

Y1 =|1- xp [it] (4)
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where ¢ is the time and r is the space parameter [2]. Using Darboux transformation
formalism this soliton can be obtained using the Peregrine soliton as the seed solution
[2]. Many numerical simulations also confirm that rogue waves in the NLSE framework
can also be in the form of Akhmediev-Peregrine soliton [2], [4], [5] however to our best
knowledge an experimental verification of this soliton do not exist yet. We use 2D radially
symmetric versions of the Peregrine and Akhmediev-Peregrine solitons as 2D rogue wave
models.

2.2. Review of the Compressive Sampling. Compressive sampling (CS) is an efficient
sampling technique which exploits the sparsity of the signal for its reconstruction by
using far fewer samples than the requirements of the classical Shannon-Nyquist sampling
theorem states [20], [21]. CS has been intensively studied as a mathematical tool in applied
sciences and engineering and currently some engineering devices such as the single pixel
video cameras and efficient A-D converters relies on CS algorithm. We try to give a very
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brief summary of the CS in this section and refer the reader to [20], [21] for a comprehensive
discussion and derivation.

Let v be a K-sparse signal with N elements, that is only K of the N elements of
1 are nonzero. Using orthonormal basis transformations with transformation a matrix
of W, ¢ can be represented in any transformed domain in terms of the basis functions.
Most common orthogonal transformations used in the literature are the Fourier, wavelet
or discrete cosine transforms. Using the orthogonal transformation it is possible to rewrite
the signal as ¢ = \IMZ where 12 is the coeflicient vector. Keeping the non-zero coefficients
and discarding the zero coefficients of 1, it is possible to get ¥ = \IMES where 15 denotes
the signal with non-zero entries only.

CS algorithm guarantees that a K-sparse signal ¢) which has N elements can exactly be
reconstructed from M > Cp?(®, ¥)K log (N) measurements with a very high probability.
In here C is a positive constant and p?(®, ¥) is the mutual coherence between the sensing
® and transform bases W [20], [21]. Taking M projections randomly and using the sensing
matrix ® the sampled signal can be written as g = ®v. Therefore the CS problem can
be rewritten as

min Hz/b\ under constraint g = ®Wip 9)

Iy

e |1, = 5
1

tioned above, the [; minimization solution of the problem is v, = \IMZ 1 minimization
is only one of the techniques that can be used for finding the solution of this optimization
problem and other methods exist [20], [21]. Details of the CS can be seen in [20], [21]. In
the current study we use the sparsity property of the 1D Radon transforms of the emerging
conical 2D rogue wave spectra.

. So that, among all signals that satisfy the given constraints men-

2.3. Review of the Filtered Back Projection Algorithm. In this section we sketch
a very brief review of the FBP algorithm. The projections of a 2D function ¢ (x,y), which
refers to the envelope of the wavefield or probability of finding an atomic particle at a
specific (z,y) at a given time in our study, can be computed using the Radon transform
as

Yr(r,0) ://Lb(x,y)é(r—wcos@—ysin@)dmdy (10)

where 6 is the projection angle defined from the x axis. In a typical computerized tomog-
raphy approach first these projections are obtained, then the full image is backprojected
from these projections. However it is known that unfiltered tomographic data results in
a high intensity blurring at the center of the image. In order to remove such an artifact,
generally a filter is applied. Here we use a ramp filter applied in the Fourier domain as

$(p.0) = F,; " |ke| Frdb(r,0) (11)

where F, and F~! show the forward and inverse Fourier transform operations, respectively
and p is the radial wavenumber parameter. However, other choices of the filter also
exist. Then the image can be reconstructed from these projections by means of the back
projection operation given as

Y(x,y) = Bi(p,0) = /0 (z cos @ + ysin 0)do (12)

In a typical computed tomography approach, this integral is evaluated in a discrete fashion.
The process summarized here is known as the FBP algorithm of the computed tomography.
The reader is referred to [22], for a comprehensive discussion of the FBP algorithm.
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2.4. Proposed Method. In this paper we propose using the conical spectral features
before 2D rogue waves becomes evident in time as an early detection mechanism. To
efficiently measure such emerging spectra we propose a tomographic approach. We first
construct the 1D Radon transforms of the emerging conical 2D spectra of the wavefield
using CS. This principle works because such projections are sparse signals, with nonzero
entries are located around central wavenumber. Then, we construct 2D spectra from
those projections using FBP. For the radially symmetric versions of the Peregrine and
Akhmediev-Peregrine solitons we show that emerging conical spectral features of 2D rogue
waves before they become evident in time can be acquired efficiently by the proposed
method.

The tomographic method proposed in here does not necessarily have to be used with
the same reconstruction techniques. For example, the CS can be utilized by random
selection of the projection angles rather than equally spaced projection angles. Instead of
using FBP, it is possible to use reconstruction techniques such as inverse Radon transform,
Fourier domain reconstruction algorithm and ordered subsets expectation maximization
techniques, just to name a few. All would have some advantages and disadvantages, but
the underlying tomographic approach for the early detection of 2D rogue waves would be
same in principle for all such techniques.

3. RESULTS AND DISCUSSION

3.1. Early Detection of the 2D Peregrine Soliton by the Proposed Method.
In this section we numerically test the proposed algorithm for radially symmetric 2D
Peregrine soliton. In the first step we take random samples along a slice in the physical
domain to obtain the emerging triangular 1D spectra at various times. Then by applying
the /1 minimization of the CS algorithm to those random samples acquired in the physical
domain, we obtain the sparse triangular spectra.

Peregrine Soliton

3
o ol att=0 at t=2 ]
e
2 3
E' 1
g of |
1 s
-50 0 50
1 r
- —— Classical Sampling
iy - - - Compressive Sampling
0.5+ Spectra ]
0 ; : . : ,
-2 -15 -1 -0.5 0 0.5 1 1.5 2

1 ‘ ‘
—— Classical Sampling

Spectra at - - - Compressive Sampling
0.5f =2 1

Spectral Amplitude Spectral Amplitude

FIGURE 1. a) Peregrine soliton at ¢ = 0 and ¢ = 2 b) the Fourier spectrum
of the Peregrine soliton at ¢ = 0 obtained by N = 1024 classical and M = 64
compressive samples ¢) the Fourier spectrum of the Peregrine soliton at ¢ = 2
obtained by N = 1024 classical and M = 64 compressive samples.
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A result obtained this way is depicted in Fig. 1. In Fig. 1a, we show the 1D Peregrine
soliton at times t = 0 and ¢t = 2. Fig. 1b we compare the triangular spectra of the
Peregrine soliton at ¢ = 0 obtained by classical and compressive sampling. The normalized
root-mean-square (nrms) difference between these two spectra depicted in Fig. 1b are
1.56 x 10719 We repeat the same procedure at ¢t = 2 and compare the triangular spectra
of the Peregrine soliton at t = 2 obtained by classical and compressive sampling in Fig. 1c,
where the nrms difference between these two spectra is 7.91 x 10~%. Both of these results
are obtained using N = 1024 classical and M = 64 compressive samples. Due to time
reversal property of the phenomena studied in the frame of the NLSE, the results for
t = 2 is no different than results for the t = —2, thus they may be used for early detection
purposes. Additionally, the detection of emerging triangular spectra can be performed
starting around ¢ = —5 and may be longer early detection times in the Kundu-Eckhaus
equation regime [9]. We also observe that the CS is capable of constructing the triangular
spectra with far fewer samples than M = 64 when the rogue wave is at its peak at ¢t = 0.
The use of the CS for the early detection of the 1D rogue waves is introduced and studied
in [10].
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FIGURE 2. Radially symmetric Peregrine soliton in 2D domain at ¢ = 0.

For the 2D tomographic approach proposed above the 1D Radon transforms, i.e. the
projections, of the 2D wave surface should be obtained. We obtain those projections using
the perpendiculars to the slices shown above where the necessary summations are done
discretely. However this is not a must, 1D Radon transforms can directly be measured
using compressive samples.

In Fig. 2 the radially symmetric 2D version of the Peregrine soliton at ¢ = 0 and in
Fig. 3 its conical spectra obtained by N, = N, = 1024 classical samples are depicted.
This conical spectra begins to develop around ¢t = —5, thus it can be used for the early
detection of the 2D radially symmetric Peregrine soliton.

In Fig. 4, we present the same rogue wave spectrum obtained by the tomographic
approach proposed above, where 1D Radon transforms are computed using M = 64 com-
pressive samples along each lines equally spaced with angles of 0 : 1 : 179 degrees and
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FIGURE 3. The Fourier spectrum of the radially symmetric Peregrine soliton at
t = 0 obtained using N, = N, = 1024 classical samples.
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FIGURE 4. The Fourier spectrum of the radially symmetric Peregrine soliton at
t = 0 obtained using M = 64 compressive samples and FBP algorithm with angles
of 0:1:179 degrees

then the FBP algorithm is used for the reconstruction of the 2D spectrum from those
projections. A comparison of the results depicted in Fig. 3 and in Fig. 4 indicate that the
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FIGURE 5. 3D plot of the Fourier spectrum of the radially symmetric Peregrine
soliton at ¢ = 0 obtained using M = 64 compressive samples and filtered backpro-
jection algorithm with angles of 0 : 20 : 160 degrees.

FIGURE 6. Contour plot of the Fourier spectrum of the radially symmetric Pere-
grine soliton at ¢ = 0 obtained using M = 64 compressive samples on slicing lines
and filtered backprojection algorithm with angles of 0 : 20 : 160 degrees and the
projections.

proposed tomographic approach can successfully capture the spectral features of the 2D
rogue waves, thus enables their early detection.

In order to discuss the effects of using less projections in the tomographic approach for
the early detection of the Peregrine soliton, we depict the spectra in 3D and in contour
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map format obtained using 9 projection at angles of 0 : 20 : 160 degrees in Fig. 5 and
in Fig. 6, respectively. As expected, as the number of projections decrease the capture
of the conical spectral shape of the emerging rogue wave becomes harder. At central
wavenumbers, the conical peak still appears and may be useful for early detection purposes,
but it is surrounded by other spectral components which makes it harder to recognize if
the emerging wave is a rogue wave. One possible technique to reduce the defects of small
number of projections is to select projection angles randomly, which may lead to more
accurate results since CS would perform better for a sparse signal when selections are
random.

3.2. Early Detection of the 2D Akhmediev-Peregrine Soliton by the Proposed
Method. Next we turn our attention to the radially symmetric Akhmediev-Peregrine
soliton and assess the applicability of the proposed approach for its early detection.

Akhmediev—-Peregrine Soliton
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FIGURE 7. a) Akhmediev-Peregrine soliton at ¢ = 0 and ¢ = 2 b) the Fourier spec-
trum of the Akhmediev-Peregrine soliton at ¢ = 0 obtained using N = 1024 classi-
cal and M = 64 compressive samples ¢) the Fourier spectrum of the Akhmediev-
Peregrine soliton at ¢t = 2 obtained using N = 1024 classical and M = 64 com-
pressive samples.

In Fig. 7a, we show the 1D Akhmediev-Peregrine soliton at times t = 0 and ¢t = 2. In
Fig. 7b we compare the triangular spectra of the Akhmediev-Peregrine soliton at ¢t = 0
obtained by classical and compressive sampling. The normalized root-mean-square (nrms)
difference between these two spectra depicted in Fig. 7b are 0.0016. We again repeat the
same procedure at t = 2 and compare the triangular spectra of the Akhmediev-Peregrine
soliton at ¢ = 2 obtained by classical and compressive sampling in Fig. 7c, where the
nrms difference between these two spectra is 0.0027. Similar to the Peregrine soliton case,
both of these results are obtained using N = 1024 classical and M = 64 compressive
samples. We also observe that, similar to the Peregrine soliton case, the CS is capable
of constructing the triangular spectra with far fewer samples than M = 64 when the
Akhmediev-Peregrine soliton is at its peak at ¢t = 0 [10].
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FIGURE 8. Radially symmetric Akhmediev-Peregrine soliton in 2D domain at ¢ = 0.
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FIGURE 9. The Fourier spectrum of the radially symmetric Akhmediev-Peregrine
soliton at ¢t = 0 obtained using IV, = N, = 1024 classical samples.

In Fig. 8 the radially symmetric 2D version of the Akhmediev-Peregrine soliton at ¢t = 0
and in Fig. 9 its conical spectra obtained by N, = N, = 1024 classical samples are
depicted. This conical spectra begins to develop around ¢t = —5, thus it can be used for
the early detection of the 2D radially symmetric Akhmediev-Peregrine soliton, as in the
case of the Peregrine soliton discussed above.

In Fig. 10, we present the same Akhmediev-Peregrine rogue wave spectrum obtained
by the tomographic approach proposed above, where 1D Radon transforms are computed
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FIGURE 10. The Fourier spectrum of the radially symmetric Akhmediev-
Peregrine soliton at ¢ = 0 obtained using M = 64 compressive samples and FBP
with angles of 0:1: 179 degrees

using M = 64 compressive samples along each lines equally spaced with angles of 0 : 1: 179
degrees and then the FBP algorithm is used for the reconstruction of the 2D spectrum
from those projections. Again, a comparison of the results depicted in Fig. 9 and in Fig. 10
indicates that the proposed tomographic approach can successfully capture the spectral
features of the 2D Akhmediev-Peregrine soliton, thus enables their early detection before
they become evident in time using spectral data.

4. CONCLUSION

In this paper we have proposed an efficient method for the early detection of 2D rogue
waves. We have showed that as for the early detection of the 1D rogue waves their emerging
triangular spectra can be used; so the emerging 2D conical rogue wave spectra of the 2D
rogue waves can be used for their early warning. We have proposed and numerically tested
a method which can efficiently be used to detect 2D rogue wave emergence. In the proposed
method we have constructed the 1D Radon transforms of the emerging conical 2D spectra
of the wavefield using CS and then constructed 2D spectra from those projections using
FBP. We have showed that the proposed approach can successfully and efficiently detect
the single rogue wave emergence in 2D, with early warning times around the temporal
width of the rogue wave peak, similar to 1D case. Our results can also be used for efficient
sensing and analysis of waves generated by bodies surging or impinging on still water, such
as the raindrop or wavemakers.

As a future work experimental verification of the proposed method would be necessary.
It should also be tested for the analytical rogue waves solutions of NLSE type equations
which are physically significant, as well as for the stochastic wavefields that are triggered
by the modulation instability. Additionally, other options for the tomographic acquisition
technique do exist. These include but are not limited to using CS with random projections
instead of equally spaced projections and using other reconstruction algorithms such as
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the inverse Radon transform, Fourier domain reconstruction algorithm and the ordered
subsets expectation maximization techniques instead of the FBP.
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