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KORTEWEG-DE VRIES-BURGERS (KDVB) EQUATION WITH

ATANGANA-BALEANU DERIVATIVE WITH FRACTIONAL ORDER

M. A. DOKUYUCU, §

Abstract. In this work, we examine the Korteweg–de Vries–Burgers equation with two
perturbation’s levels to the concepts of fractional differentiation with no singularity. The
Korteweg–de Vries–Burgers equation was constructed using the new fractional differen-
tiation based on the generalized Mittag-Leffler function due to the non-locality. It is
presented the existence of a positive set of the solutions for the KDVB equation. The
uniqueness of the positive solutions was presented in detail.
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1. Introduction

Most real-world problems occurring in many engineering disciplines and natural sciences
are defined by nonlinear ordinary or partial differential equations. The exact solution of
such equations is quite difficult to find. The solution of complex equations with the deriv-
ative definition defined by Newton has become very difficult to solve. Therefore, using the
fractional derivative operators defined in recent years such as Caputo, Riemann-Lioville,
Caputo-Fabrizio and Atangana-Baleanu [1, 2, 3, 8], the results are very close to the real
solution. On the other hand, the memory effect and the management of the time process
are easier to detect. The KDVB equation is used to identify and analyze some physical
theories related to wave dynamics and liquids. For example, Johnson [7] used it to inves-
tigate the propagation of waves in an elastic tube filled with a viscous liquid. Moreover,
Grad and Hu [5] used it to analyze the propagation of shallow water and Hu [6] undular
holes. Extending the equations, systems or models solved with classical derivatives to new
models with time-fractional derivatives and analyzing them with different techniques has
gained importance. Dokuyucu and et al. [4] studied the existence and uniqueness solution
with the fractional cancer treatment model. In this article, we have integrated the KDVB
equation into the Atangana-Baleanu fractional derivative with non-singular and non-local.
Then, it is investigated existence and uniqueness solutions.
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2. Atangana-Baleanu Derivative

In this section we give the basic definitions of the new derivatives with fractional order
by Atangana and Baleanu.

Definition 2.1. The Caputo derivative of fractional derivative is defined as [9]:

C
aD

ν
t f(t)) =

1

Γ(n− ν)

∫ t

a

f (n)(r)

(t− r)ν+1−ndr, n− 1 < ν < n ∈ N. (1)

Definition 2.2. The Riemann-Liouville fractional integral is defined as [9]:

Jνf(t) =
1

Γ(ν)

∫ t

a
f(r)(t− r)ν−1dr. (2)

Definition 2.3. The Riemann-Liouville fractional derivative is defined as [9]:

R
aD

ν
t f(t) =

1

Γ(n− ν)

dn

dtn

∫ t

a

f(r)

(t− r)ν+1−ndr, n− 1 < ν < n ∈ N. (3)

Definition 2.4. The Sobolev space of order 1 in (a, b) is defined as [9]:

H1(a, b) = {u ∈ L2(a, b) : u′ ∈ L2(a, b)}.

Definition 2.5. Let a function u ∈ H1(a, b) and ν ∈ (0, 1) . The AB fractional derivative
in Caputo sense of order ν of u with a based point a is defined as [1]:

ABC
a Dν

t u(t)) =
B(ν)

1− ν

∫ t

a
u′(s)Eν

[
− ν

1− ν
(t− s)ν

]
ds, (4)

where B(ν) has the same properties as in Caputo and Fabrizio case, and is defined as

B(ν) = 1− ν +
ν

Γ(ν)
,

Eν,β(λν) is the Mittag-Leffler function, defined in terms of a series as the following entire
function

Eν,β(z) =
∞∑
k=0

(λν)k

Γ(νk + β)
, ν > 0, λ <∞ and β > 0, λ = −ν(1− ν)−1. (5)

Definition 2.6. Let a function u ∈ H1(a, b) and ν ∈ (0, 1) . The AB fractional derivative
in Riemann-Liouville sense of order ν of u with a based point a is defined as [1]:

ABR
a Dν

t u(t)) =
B(ν)

1− ν
d

dt

∫ t

a
u(s)Eν

[
− ν

1− ν
(t− s)ν

]
ds, (6)

when the function u is constant, we get zero.

Definition 2.7. The Atangana-Baleanu fractional integral of order ν with base point a is
defined as [1]:

ABIνt u(t)) =
1− ν
B(ν)

u(t) +
ν

B(ν)Γ(ν)

∫ t

a
u(s)(t− s)ν−1ds, (7)

when the function u is constant, we get zero.
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3. KDVB Equation with ABC Derivative

The Korteweg–de Vries–Burgers (KDVB) equation is given below,

ρt(x, t) = ηρxx(x, t)− 2ρ(x, t)ρx(x, t)− ξρxxx(x, t). (8)

We apply the equation (8) to the Atangana-Baleanu fractional derivative in Caputo sense,

ABC
a Dν

t = ηρxx(x, t)− 2ρ(x, t)ρx(x, t)− ξρxxx(x, t). (9)

Using the Atangana-Baleanu integral to (9) it yields,

ρ(x, t)− ρ(x, 0) =
1− ν
B(ν)

(
ηρxx(x, t)− 2ρ(x, t)ρx(x, t)− ξρxxx(x, t)

)
+

ν

B(ν)Γ(ν)

∫ t

a

(
ηρxx(x, r)− 2ρ(x, r)ρx(x, r)− ξρxxx(x, r)

)
(t− r)ν−1dr.

(10)

For simplicity,

s(x, t, ρ(x, t)) = ηρxx(x, t)− 2ρ(x, t)ρx(x, t)− ξρxxx(x, t).

3.1. Existence Solution.

Lemma 3.1. The mapping T : H → H is defined as

Tρ(x, t) =
1− ν
B(ν)

s(x, t, ρ(x, t)) +
ν

B(ν)Γ(ν)

∫ t

0
s(x, r, ρ(x, r))(t− r)ν−1dr. (11)

Lemma 3.2. Let M ⊂ H be bounded we can find n > 0 for KDVB equation such that

||ρ(x, t2)− ρ(x, t1)|| ≤ n||t2 − t1||.

Then T (M) is compact.

Proof. Let N = max
{

1−ν
B(ν) + s(x, t, ρ(x, t))}, 0 ≤ ρ(x, t) ≤ P. For ρ(x, t) ∈ M, then we

have the following,

||Tρ(x, t)|| = 1− ν
B(ν)

||s(x, t, ρ(x, t))||+ ν

B(ν)Γ(ν)

∫ t

0
||s(x, r, ρ(x, r))(t− r)ν−1dr||

≤ 1− ν
B(ν)

N +
ν

B(ν)Γ(ν)
N
tν

ν

≤ 1− ν
B(ν)

N +
νtνN

B(ν)Γ(ν + 1)
.

(12)

So we can say that T is bounded. Now the following part, we will consider ρ(x, t) ∈M, t1, t2
and t1 < t2 then for a given ε > 0 if |t2 − t1| < δ. Then,
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||Tρ(x, t2)− Tρ(x, t1)|| ≤
∣∣∣∣∣∣∣∣1− νB(ν)

(
s(x, t2, ρ(x, t2))− s(x, t1, ρ(x, t1))

)∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ ν

B(ν)Γ(ν)

∫ t2

0
(t2 − r)ν−1s(x, r, ρ(x, r))dr

∣∣∣∣∣∣∣∣
−
∣∣∣∣∣∣∣∣ ν

B(ν)Γ(ν)

∫ t1

0
(t1 − r)ν−1s(x, r, ρ(x, r))dr

∣∣∣∣∣∣∣∣
≤ 1− ν
B(ν)

||(s(x, t2, ρ(x, t2))− s(x, t1, ρ(x, t1))||

+
νP

B(ν)Γ(ν)

{∫ t2

0
(t2 − r)ν−1dr −

∫ t1

0
(t1 − r)ν−1dr

}
.

(13)

Now firstly we start the integral part,

∫ t2

0
(t2 − r)ν−1dr −

∫ t1

0
(t1 − r)ν−1dr =

∫ t1

0

(
(t1 − r)ν−1

− (t2 − r)ν−1
)
dr +

∫ t2

t1

(t2 − r)ν−1dr

= 2
(t2 − t1)ν

ν
.

(14)

Then we will investigate the following part,

||(s(x, t2, ρ(x, t2))− s(x, t1, ρ(x, t1))|| = ||ηρxx(x, t2)− 2ρ(x, t2)ρx(x, t2)− ξρxxx(x, t2)||.
(15)

Because all the solution are bounded, let us find appropriate different positive constants,
a1, b1, c1 for all t. So that, if we use Lipschitz condition of the derivative, equality (16)
can be reconsidered as below,

||(s(x, t2, ρ(x, t2))− s(x, t1, ρ(x, t1))|| ≤ ηa2
1||ρ(x, t2)− ρ(x, t1)||

+ 2b1||ρ(x, t2)− ρ(x, t1)||+ ξc3
1||ρ(x, t2)− ρ(x, t1)||

≤ (ηa2
1 + 2b1 + ξc3

1)||ρ(x, t2)− ρ(x, t1)||
≤ A||t2 − t1||.

(16)

Now putting equations (14) – (16) in equation (13), we obtain,

||Tρ(x, t2)− Tρ(x, t1)|| ≤ 1− ν
B(ν)

A||t2 − t1||

+ 2
νP

B(ν)Γ(ν)

||t2 − t1||ν

ν

≤ 1− ν
B(ν)

A||t2 − t1||+
2νP

B(ν)Γ(ν + 1)
||t2 − t1||ν ,

(17)
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δ =
ε

1−ν
B(ν)A+ 2νP

B(ν)Γ(ν+1)

.

Such that ||Tρ(x, t2)−Tρ(x, t1)|| ≤ ε is satisfied. So T (M) is equi-continuous and with

the help of Arzela-Ascoli theorem T (m) is compact. �

3.2. Uniqueness Solution. In this subsection we will show the uniqueness solution. So
the solution is presented as below,

||Tρ(x, t)− Tq(x, t)|| ≤
∣∣∣∣∣∣∣∣1− νB(ν)

(
(s(x, t, ρ(x, t))− (s(x, t, q(x, t))

)
+

ν

B(ν)Γ(ν)

∫ t

0
(t− r)ν−1

(
s(x, r, ρ(x, r))− s(x, r, q(x, r))

)
dr

∣∣∣∣∣∣∣∣
≤ 1− ν
B(ν)

||(s(x, t, ρ(x, t))− (s(x, t, q(x, t))||

+
ν

B(ν)Γ(ν)

∣∣∣∣∣∣∣∣ ∫ t

0
(t− r)ν−1

(
s(x, r, ρ(x, r))− s(x, r, q(x, r))

)
dr

∣∣∣∣∣∣∣∣.
(18)

First we will solve the second part of the equation (18).

ν

B(ν)Γ(ν)

∫ t

0
(t− r)ν−1||

(
ηρxx(x, t)− 2ρ(x, t)ρx(x, t)− ξρxxx(x, t)

− ηqxx(x, t)− 2q(x, t)qx(x, t)− ξqxxx(x, t)
)
||

≤ ν

B(ν)Γ(ν)
aν ||η

(
ρxx(x, t)− qxx(x, t)

)
+ 2
(
q(x, t)qx(x, t)− ρ(x, t)ρx(x, t)

)
+ ξ
(
qxxx(x, t)− ρxxx(x, t)

)
||

≤ ν

B(ν)Γ(ν)
aν
[
η||
(
ρxx(x, t)− qxx(x, t)

)
||+ 2||

(
q(x, t)qx(x, t)− ρ(x, t)ρx(x, t)

)
||

+ ξ||
(
qxxx(x, t)− ρxxx(x, t)

)
||
]

≤ ν

B(ν)Γ(ν)
aν
[
η||∂xx

(
ρ(x, t)− q(x, t)

)
||+ 2||∂x

(
q(x, t)2 − ρ(x, t)2

)
||

+ ξ||∂xxx
(
q(x, t)− ρ(x, t)

)
||
]
.

(19)

Because of assumption that ρ and q are bounded, there is a positive constant c > 0
such that ||ρ|| ≤ c and ||q|| ≤ c. Then, their first order derivative function ∂x satisfies the
Lipschitz condition and there is a number L1 ≥ 0 such that

≤ ηL2
1||ρ(x, t)− q(x, t)||+ 2L1||ρ(x, t)− q(x, t)||

(
ρ(x, t) + q(x, t)

)
+ ξL3

1||ρ(x, t)− q(x, t)||
≤
[
nL2

1 + 2L1c+ ξL3
1

]
||ρ(x, t)− q(x, t)||.

(20)

Then, we will solve the first part of the equation (19).
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∣∣∣∣∣∣∣∣1− νB(ν)

(
(s(x, t, ρ(x, t))− (s(x, t, q(x, t))

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣1− νB(ν)

(
ηρxx(x, t)− 2ρ(x, t)ρx(x, t)− ξρxxx(x, t)

− ηqxx(x, t) + 2q(x, t)qx(x, t) + ξqxxx(x, t)
)∣∣∣∣∣∣∣∣

≤ 1− ν
B(ν)

[
η
(
ρxx(x, t)− qxx(x, t)

)
||+ 2||q(x, t)qx(x, t)− ρ(x, t)ρx(x, t)||

+ ξ||
(
qxxx(x, t)− ρxxx(x, t)

)
||
]

≤ 1− ν
B(ν)

[
ηL2

1||ρ(x, t)− q(x, t)||+ 2L1||ρ(x, t)− q(x, t)||
(
ρ(x, t) + q(x, t)

)
+ ξL3

1||ρ(x, t)− q(x, t)||
]

=
1− ν
B(ν)

[
ηL2

1 + 2L1c+ ξL3
1

]
||ρ(x, t)− q(x, t)||.

(21)

So that,

||Tρ(x, t)− Tq(x, t)|| ≤ 1− ν
B(ν)

(
ηL2

1 + 2L1c+ ξL3
1

)
+

ν

B(ν)Γ(ν)
aν
(
ηL2

1 + 2L1c+ ξL3
1

)
≤ 1− ν
B(ν)

N +
ν

B(ν)Γ(ν)
aνN,

(22)

with N < 1 since T is a contraction, which implies fixed point, the equation (9) has a
unique solution.
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