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A NOTE ON SOME NEW 7P;-TRANSFORMS OF F;, GENERALIZED
HYPERGEOMETRIC FUNCTIONS

S. D. PUROHIT!, H. V. HARSH?, A. K. RATHIE?, §

ABSTRACT. In this note, we aim to establish Ps-transforms of 2 F> generalized hyper-
geometric functions in terms of gamma functions. The results are established from the
generalized classical summation theorems due to Gauss’s second, Kummer’s and Bailey’s
for the series 2 F1 obtained earlier by Lavoie et al. [2]. Special cases of our main findings
are known results derived earlier by Parmar et al. [3].
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1. INTRODUCTION

We define generalized hypergeometric function ,F;;, with p numerator and ¢ denominator
parameters by:

ap, L o (@) (ap)k 2*
F ’ P — —_ 1
ol G = G g
where, as usual, (a), (a € C\ Z;) is well known factorial function defined by
(a), = Hatn) _ g "l )
" ') [[(a+7r) neN
r=0

For convergence conditions of ,F, and other properties, we refer to [4, 5]. In general,
there are four classical summations theorems for the series 9 F7. However, the three gen-
eralized summation theorems, which we shall make use in our present investigations, are
given below:

Generalized Gauss’s second summation theorem [2]
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for i = 0,41, 42, £3, +4, +5.
Generalized Bailey’s summation theorem [2]
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for i = 0,41, £2, £3, +4, +5.
Generalized Kummer’s summation theorem [2]
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for i = 0,41, +2, 43, +4, +5.
In all these results, |x| denotes the greatest integer less than or equal to x and its modulus
is denoted by |z|. The coefficient are given in Tables 1-3.
For ¢ = 0, the result (3), (4) and (5) reduce to classical Gauss second, Bailey and Kummer’s
summation theorems respectively recorded in [4].

On the other hand the Ps-transforms or pathway transforms of the function f(¢) (¢ € R)
is a function Fp(s) of a complex variable s, is defined by (see, e.g., [1])

Pal ()i} = Fo(s) = [ T G- D fydt (5> 1), (6)

For the sufficient condition for the Ps-transform (6) to exist, we refer [1].
Clearly, Ps-transforms of the power function t#~! is given by [1, p. 7, Eq. (32)]

Patr st = (ot ) T0) = o (00> 06> 0, (@
with
o In[14(6—1)s]
ABis) = =gy (8)

Noting that, upon letting § — 1 in the definition (6), the Ps-transform reduces to the
classical Laplace transform [6]:

L{frsh = [0 de (R(5) > 0), (9)
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With the help of the power function formula (7), it is not difficult to derive the Pjs-
transform of the generalized hypergeometric function as [1, p. 8, Eq. (42)]:

[ee] B _% -1 ai, -+ ,ap

/0 [+ (6 1)s] 51¢ qu{ b ‘wt}dt
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forp < q, R(p) >0, %(M)>Oand5>lorforp:q, R(p) > 0, %(M> >

R(w)andd > 1.
If p = g = 2, we get the formula :

/ [1+(0—1)s]” “tlthleZ[ b by ‘wt] di
0

for R(by) > 0, R(bz) > 0, R (D) > () and s > 1.

In this note, an attempt has been made to obtain Ps-transforms of o F» generalized hyper-
geometric functions by employing the results (3) to (5).

2. Ps-TRANSFORMS OF 9 F5(z)

This section deals with the general Ps-transforms of o F5 generalized hypergeometric
functions asserted in the following theorems:

Theorem 2.1. If R(b) > 0, R (m“g(fﬂ‘m) >0 and & > 1, then for i = 0,41, 42, +3,
+4,+5, the following general result holds true:
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Theorem 2.2. For R(1 —a+i) > 0(i = 0,£1, £2, +3, +4, £5), R <W) >0 and

6 > 1, the following general result holds true:

o ot a,1—a+1i [tA(S;s)
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Theorem 2.3. Assuming that R(b) > 0, R (W) > 0 and § > 1, thereupon for
1=0,x1,+2,£3, +4, &5, the following general result holds true:
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Proofs. The proofs of the theorems are quite straight forward. In order to prove Theorem
2.1, setting w = NS%S), by =3(a+b+i+1) and by =d for i = 0,£1,£2,£3,+4,+5 in
(10), we have

/Om[1+(5—1)3]t5t1td_12F2[ d,%(a—l—aéb—l—i—i-l) ’m(jsq "
I'(d) a,b 1
~[AG; ) o Ya+b+itl) ’5}

We, now observe that the 9 F appearing on the right-hand side of (10) can be evaluated
with the help of summation theorem (3) by replacing @ = a and § = b. A} and Bj can
be evaluated from Table-1 by replacing @ = a and § = b. This yields the desired formula
(10).

The results in Theorem 2.2 and Theorem 2.3 can also be proven in a similar fashion by
applying summation theorems (4) and (5), respectively. So we prefer to omit the details.

3. SPECIAL CASES

For d = b, the Theorems 2.1 to 2.3, reduce the following corollaries respectively:
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Corollary 3.1. IfR(b) > 0, %<M> >0andd > 1, fori = 0,41, 42, +3, +4, £5,

the following general result holds true:

/0"0[1+(5_ 1)5]_6%”12_111:1[ %(a—I—ba—i-z'—i-l) ‘tA(Q& 8)] d
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Corollary 3.2. For R(1—a+i) > 0(i = 0,£1, £2, £3, £4, £5), R (%) >0 and
0 > 1, the following general result holds true:
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Corollary 3.3. Suppose R(b) > 0, R (M) > 0 and 6 > 1, then the following

general result holds true:
a
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where ¢ = 0, £1, £2, £3, +4, £5.
Remark 3.1. The results (10) to (10) have recently been obtained by Parmar et al. [3].
4. CONCLUDING REMARKS

In this note an attempt has been made to obtain Ps-transforms of oF5 generalized
hypergeometric functions in terms of gamma functions by employing generalizations of
the classical summation theorems due to Gauss second, Bailey and Kummer for i =
41,42, 4+3,4+4,4£5. We conclude this note by remarking that the new and interesting
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‘Ps-transforms by employing generalizations of classical summation theorems for the sere
is 3F5 such as those of Watson, Dixon and Whipple are further research findings and will

form a subsequent paper in this direction.

Table 1
i Al B
—B+a+6)’+5(B—a+6)B+a+6)+ | (B+a+6)>+5(B—a+6)(8+a+6)
5 1(B—a+6)?+11(3+a+6) —1(B—a+6)?—17(3+a+6)
—BB-a+6)—20 —2(B—a+6)+62
“IB+a+1)(B+a—3)
! —lB—a+3)B-a-3) 2+ 1)
3 —3(B+3a-2) 3(38+a—2)
2 s(B+a-1) -2
1 -1 1
0 1 0
1 1 1
-2 %(,B—l—oz—l) 2
-3 1 3(3a+ B8 -2) 3(38+a—2)
sB+a=3)B+a+1l)
! —lB-a-3)B-a+3) 25 +o-1)
B+a—4)2—1B-a-49)(B+a-4) B+a—42+1B-a-49)(B+a-4)
5 —IB-a—4)?+4(B+a—4) —IB-a—4)?+8(B+a—4)
) —I(B—a—4)+12
Table 2
i 7 D]
5 —4?% + 208 4+ a® 4 223 — 13a — 20 46% + 208 — o® — 348 — o + 62
4 28-2)(B—4) — (a—1)(a —4) 12 —4p
3 a—23+3 a+238—7
2 8—2 -2
1 —1 1
0 1 0
1 1 1
-2 I} 2
-3 20 — « 260+ a+2
4 28(B+2) — ala +3) AB+1)
-5 4% — 203 — o’ + 86 — Ta 4% +2aB — a® 4+ 163 — a + 12
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Table 3
i E! F/
s | —46+a-p)7+28(a B +6)+ 5 46+ —f)* +28(a - § +6) - 52
+22(a—p+6)—13b—20 —34(a—p+6)—[+62
1 2Bta-b(+a-B-@F-1N{FE-1) —i2+a-0)
3 36 —2a—5 20— +1
2 a—F+1 -2
1 -1 1
0 1 0
-1 1 1
-2 a—p—1 2
-3 200 — 36 —1 200 — [ —1
-4 20a—B=3)(a—=B—-1)—B(B+3) Aa—b-2)
[ da- 59 2a-F-4) a—F—1°+28a—B—1) — 7"

+8(a—-B-4)-178

+16(c— B —4) — B+ 12
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