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DIAMETRAL PATHS IN EXTENDED TRANSFORMATION GRAPHS

PRAVIN GARG1, MANALI SHARMA1, §

Abstract. In a graph, diametral path is shortest path between two vertices which has
length equal to diameter of the graph. Number of diametral paths plays an important
role in computer science and civil engineering. In this paper, we introduce the concept
of extended transformation graphs. There are 64 extended transformation graphs. We
obtain number of diametral paths in some of the extended transformation graphs and we
also study the semi-complete property of these extended transformation graphs. Further,
a program is given for obtaining number of diametral paths.
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1. Introduction

All shortest paths between two vertices in a graph which have length equal to diameter of
the graph are diametral paths. Counting number of diametral paths is useful in computer
science. Finding number of diametral paths is also significant in civil engineering, like
optimally using steel bars. The total number of diametral paths incident at a vertex v in
graph G is called diametral reachable index of that vertex v, denoted by DRI(v). Walikar
& Shindhe [13] introduced concept of diametral reachable index and gave its algorithm.
Diameter of a graph is studied in [2, 3, 10]. Deogun & Kratsch [5] introduced diametral
path graphs. Mangam & Kureethara [7–9] have given diametral paths in total graphs.

In a simple graph, for any two vertices vi and vj , if there exist a third vertex vk which
is adjacent to both the vertices vi and vj then the graph is known as semi-complete. It
was introduced by Rao & Raju [12] to solve some defence problems. Further, Amiripalli &
Bobba [1] defined trimet graph optimization topology on scalable networks, which follows
semi-complete property.

Line graph L(G) of graph G = (V,E), is a graph whose vertex set is E and two vertices
in L(G) are adjacent if and only if they are adjacent edges in G. Transformation graph is
G x1x2x3(G) = (VG, EG) where xr ∈ {+,−} r = 1, 2, 3 and VG = V ∪ E and for vivj ∈ EG
if and only if one of the following conditions holds:
(i) vi, vj ∈ V and vi, vj are adjacent in G ( vi, vj are not adjacent in G ) for x1 = +(−).
(ii) vi, vj ∈ E and vi, vj are adjacent in G (vi, vj are not adjacent in G ) for x2 = +(−).
(iii) vi ∈ V, vj ∈ E and vj is incident at vi in G (vj is not incident at vi in G ) for
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x3 = +(−).
Some studies [4, 6, 11] have explored line graph of complete graph and several researchers
have worked on the transformation graphs. G+++(G) is total graph T (G) of graph G and
G−++(G) is quasi-total graph of graph G.

Let G = (V,E) be a graph with | V |= n. Now we introduce notion of extended
transformation graph, G x1x2x3

e x4x5x6
(G) = (VGe , EGe) where xr ∈ {+,−} r = 1, . . . , 6 and

VGe = V ∪ E ∪ E and for vi, vj ∈ VGe ,vivj ∈ EGe if and only if one of the following
conditions holds:
(i) vi, vj ∈ V and vi, vj are adjacent in G ( vi, vj are not adjacent in G ) for x1 = +(−).
(ii) vi, vj ∈ E and vi, vj are adjacent in G (vi, vj are not adjacent in G ) for x2 = +(−).
(iii) vi ∈ V, vj ∈ E and vj is incident at vi in G (vj is not incident at vi in G ) for
x3 = +(−).
(iv) vi, vj ∈ E and vi, vj are adjacent in G (vi, vj are not adjacent in G ) for x4 = +(−).

(v) vi ∈ V, vj ∈ E and vj is incident at vi in G ( vj is not incident at vi in G) for
x5 = +(−).
(vi) vi ∈ E, vj ∈ E and vi, vj are adjacent in Kn (vi, vj are not adjacent in Kn ) for
x6 = +(−).
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Figure 1. Showing the extended transformation graph G1=G +++
e +++(G) of

the graph G

The terminologies used in this paper are taken from West [14]. All graphs are undirected,
simple and unweighted. We will use notations vi and vij for vertices in extended transfor-

mation graph. The vertices vi ∈ V and vij ∈ E ∪ E, where vij = vivj ; 1 ≤ i, j ≤ n, i 6= j
and vij = vji. In Section 2, we determine number of diametral paths in various extended
transformation graphs. In Corollary 3, we will give an alternate proof of number of di-
ametral paths in total graph of complete graph which is previously given by Mangam &
Kureethara [7]. Moreover, we study the semi-complete property of these extended trans-
formation graphs. In Section 3, we will give a program for finding number of diametral
paths.
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2. Diametral paths in G +++
e +++(G), G ++−

e +−+(G),

G +−+
e −+−(G) and G +−−

e −−−(G)

In this section, we determine number of diametral paths and semi-complete property in
G +++

e +++(G), G ++−
e +−+(G), G +−+

e −+−(G) and G +−−
e −−−(G). We also determine semi-complete

property and number of diametral paths in G −++
e +++(G), G −+−

e +−+(G), G −−+
e −+−(G) and

G −−−
e −−−(G) as corollary. Vertex set of G +++

e +++(G) and G ++−
e +−+(G) can be partitioned

into two parts such that one part induces G and the other part induces L(Kn), where n
is the order of G. Vertex set of G +−+

e −+−(G) and G +−−
e −−−(G) can also be partitioned into

two parts such that one part induces G and the other part induces L(Kn), where n is the
order of G

Let G1(V1, E1) and G2(V2 = E1 ∪ E1, E2) be two simple graphs such that vertex set of
V1 = {vi; 1 ≤ i ≤ n} and vertex set of V2 = {vij ; 1 ≤ i, j ≤ n, i 6= j and vij = vji}. Now
we define two new operations as:
(i) G1 ⊕1 G2 = G(V,E),
V = V1 ∪ V2 and E = E1 ∪ E2 ∪ E3 where E3 = {vivij}.
(ii) G1 ⊕2 G2 = G(V,E),
V = V1 ∪ V2 and E = E1 ∪ E2 ∪ E3 where E3 = {vivjk; i 6= j, k}.

Proposition 1. If |V (G)| = n then G +++
e +++(G) ∼= G⊕1 L(Kn).

Proof. The proof is obvious from the definition of G +++
e +++(G) and the definition of oper-

ation ⊕1. �

Theorem 2.1. The extended transformation graph G +++
e +++(G) of a graph G is semi-

complete except G is K1 ∪K1.

Proof. Since G +++
e +++(K1) ∼= K1, G +++

e +++(P2) ∼= K3 and G +++
e +++(K1∪K1) ∼= P3. Now K1 is

trivially semi-complete, K3 is semi-complete and P3 is not semi-complete. Therefore using
Proposition 1 in G +++

e +++(G) for |G| = n > 2, we determine the semi-complete property by
analysing the following cases:
Case1− : Let vi, vj ∈ V (G) then vij ∈ V (L(Kn)). Therefore between any two vertices in
G, there always exists a third vertex vij , which is adjacent to both the vertices vi and vj .
Case2− : Let vij , vkl ∈ V (L(Kn)),
Since from Theorem IV.7 of Rao & Raju [12], line graph L(G) is semi-complete if and only
if G is complete. So between any two vertices of L(Kn), we always have a third vertex in
L(Kn) which is adjacent to both the vertices of L(Kn).
Case3− : Let vi ∈ V (G) and vjk ∈ V (L(Kn)) then consider the following two subcases:
Subcase 3.1 -: If i = j then vi ∈ V (G) and vik ∈ V (L(Kn)). Now third vertex vil ∈
V (L(Kn))(l 6= i, k), which is adjacent to both the vertices vi and vik.
Subcase 3.2 -: If i 6= {j, k} then vi ∈ V (G) and vjk ∈ V (L(Kn)). Now third vertex
vik ∈ V (L(Kn)), which is adjacent to both the vertices vi and vjk.

Therefore between any two vertices in G +++
e +++(G) for |G| = n > 2, there always exists a

third vertex, which is adjacent to both the vertices.
Hence, G +++

e +++(G) is semi-complete except G is K1 ∪K1.
�

Proposition 2. The equation G −++
e +++(G) ∼= G +++

e +++(H) holds if and only if G is comple-
ment graph of H.
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Proof. Since G +++
e +++(G) ∼= G ⊕1 L(Kn) and G −++

e +++(H) ∼= H ⊕1 L(Kn). Therefore,

subgraph of G −++
e +++(G) and G +++

e +++(H) obtained by removing edges of G and H are
identical. So G is complement graph of H. �

Corollary 1. The extended transformation graph G −++
e +++(G) of a graph G is semi-

complete except G is P2.

Proof. The proof follows from Theorem 2.1 and Proposition 2. �

Corollary 2. Diameter of the extended transformation graph G +++
e +++(G) of a graph G is

2 except G is K1 and P2.

Proof. From Observation (3) of Rao & Raju [12], the distance between any two vertices of
a semi-complete graph is at most 2 (distance is 1 when vertices are adjacent and distance is
2 when vertices are non adjacent). Since G +++

e +++(G) is semi-complete except G is K1∪K1

and there are non adjacent vertices in G +++
e +++(G) for n > 2. So the diameter of G +++

e +++(G)

is 2 for n > 2. Now G +++
e +++(K1) ∼= K1, G +++

e +++(P2) ∼= K3 and G +++
e +++(K1 ∪ K1) ∼= P3

and diameters of K1,K3, P3 are 0, 1, 2 respectively. Therefore the diameter of G +++
e +++(G)

is 2 except G is K1 and P2.
�

Theorem 2.2. If G is a graph of n vertices with vertex set {vi; 1 ≤ i ≤ n}, m edges, t
number of triangles and each vertex vi has degree di and G 6= K1, G 6= P2 then number of
diametral paths in the extended transformation graph G +++

e +++(G) is

(
∑n

i=1

(
di
2

)
)− 3t + m(2n − 5 ) + n(n−1 )(n2−3n+3 )

2 .

Proof. Since G +++
e +++(G) ∼= G⊕1L(Kn) and the diameter of G +++

e +++(G) is 2 except G is K1

and P2. So we determine the number of diametral paths in G +++
e +++(G) for G 6= K1, G 6= P2

as follows:
(i) Number of diametral paths between vertices of G through a vertex in G

= Number of shortest paths of length 2 in G = (
∑n

i=1

(
di
2

)
)− 3t .

(ii) Number of diametral paths between vertices of G through a vertex in L(Kn) =
(nC2 −m)× 1 = (nC2 −m).

(iii) Number of diametral paths between vertices of G and L(Kn) through a vertex in
G =

∑n
i=1 di(n− 2) = (n− 2)

∑n
i=1 di = 2m(n− 2).

(iv) Number of diametral paths between vertices of G and L(Kn) through a vertex in
L(Kn) = n× (nC2 − (n− 1))× 2 = n(n− 1)(n− 2).

(v) Number of diametral paths between vertices of L(Kn) through a vertex in L(Kn)
[Since through a vertex in G is not possible] = nC2 × (nC2 − (2n − 2 − 1)) × 4 × 1

2 =
n(n− 1)(n− 2)(n− 3)

2
.

Hence total number of diametral paths in G +++
e +++(G) is∑n

i=1

(
di
2

)
−3t+(

(
n
2

)
−m)+2m(n−2 )+n(n−1 )(n−2 )+ n(n−1 )(n−2 )(n−3 )

2 = (
∑n

i=1

(
di
2

)
)−

3t + m(2n − 5 ) + n(n−1 )(n2−3n+3 )
2 for G 6= K1, G 6= P2 .

�

Corollary 3. The number of diametral paths in total graph of complete graph T (Kn) is
n(n−1)(n2−n−2)

2 .

Proof. If G is Kn in G +++
e +++(G) then we have (

∑n
i=1

(
di
2

)
) − 3t = 0 and m = nC2 in

Theorem 2.2. Since G +++
e +++(Kn) ∼= T (Kn). So the number of diametral paths in T (Kn) is
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=0 + (
(
n
2

)
−n C2) + 2

n(n− 1)

2
(n− 2) + n(n− 1)(n− 2) + n(n−1)(n−2)(n−3)

2

= n(n− 1)(n− 2)(2 + n−3
2 ) = (n+1)n(n−1)(n−2)

2 = n(n−1)(n2−n−2)
2 .

�

Corollary 4. If G is a graph of n vertices, m edges, G has vertex set {vi; 1 ≤ i ≤ n} such
that each vertex vi has degree di, t number of triangles in G and G 6= K1, G 6= K1 ∪K1

then number of diametral paths in G −++
e +++(G) is

(
∑n

i=1

(
di
2

)
)− 3t −m(2n − 5 ) + (n+1 )n(n−1 )(n−2 )

2

Proof. From Proposition 2, we replace m by (
(
n
2

)
−m) in Theorem 2.2 and also the number

shortest paths of length 2 is taken in G in place of G in Theorem 2.2. In this way, we get
the required result.

�

Proposition 3. If |V (G)| = n then G ++−
e +−+(G) ∼= G⊕2 L(Kn).

Proof. The proof is obvious from the definition of G ++−
e +−+(G) and the definition of oper-

ation ⊕2. �

Theorem 2.3. Let G be a graph of n vertices then the extended transformation graph
G ++−

e +−+(G) is semi-complete for n ≥ 4.

Proof. Since G ++−
e +−+(K1) ∼= K1, G ++−

e +−+(K1∪K1) ∼= K1∪K1∪K1, G ++−
e +−+(K2) ∼= K1∪P2

and if |V (G)| = 3 then there does not exist a third vertex, which is adjacent to both the
vertices vi and vjk (i 6= {j, k}) in G ++−

e +−+(G). Therefore, G ++−
e +−+(G) is not semi-complete

for |V (G)| = n ≤ 3. Now using Proposition 3 in G ++−
e +−+(G) for |V (G)| = n > 3, we

determine the semi-complete property by analysing the following cases:
Case1− : Let vi, vj ∈ V (G) then vkl ∈ V (L(Kn)) (i 6= j 6= k 6= l). Therefore between
any two vertices in G, there always exists a third vertex vkl, which is adjacent to both the
vertices vi and vj .
Case2− : Let vij , vkl ∈ V (L(Kn)),
Since from Theorem IV.7 of Rao & Raju [12], line graph L(G) is semi-complete if and only
if G is complete. So between any two vertices of L(Kn), we always have a third vertex in
L(Kn) which is adjacent to both the vertices of L(Kn).
Case3− : Let vi ∈ V (G) and vjk ∈ V (L(Kn)) then consider the following two subcases:
Subcase 3.1 -: If i = j then vi ∈ V (G) and vik ∈ V (L(Kn)). Now third vertex vkl ∈
V (L(Kn))(i 6= k 6= l), which is adjacent to both the vertices vi and vik.
Subcase 3.2 -: If i 6= {j, k} then vi ∈ V (G) and vjk ∈ V (L(Kn)). Now third vertex
vkl ∈ V (L(Kn)) (i 6= j 6= k 6= l), which is adjacent to both the vertices vi and vjk.

Therefore, between any two vertices in G ++−
e +−+(G) for |V (G)| = n ≥ 4, there always exists

a third vertex, which is adjacent to both the vertices.
Hence, G ++−

e +−+(G) is semi-complete for n ≥ 4.
�

Proposition 4. The equation G −+−
e +−+(G) ∼= G ++−

e +−+(H) holds if and only if G is comple-
ment graph of H.

Proof. Similar proof as in Proposition 2. �

Corollary 5. Let G be a graph of n vertices then the extended transformation graph
G −+−

e +−+(G) is semi-complete for n ≥ 4.

Proof. The proof follows from Theorem 2.3 and Proposition 4. �
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Corollary 6. Diameter of the extended transformation graph G ++−
e +−+(G) of a graph G is

2 except G is K1, K1 ∪K1, P2, K1 ∪K1 ∪K1 and K1 ∪ P2.

Proof. Similar proof as in corollary 2. �

Theorem 2.4. If G is a graph of n vertices with vertex set {vi; 1 ≤ i ≤ n}, m edges,
t number of triangles and each vertex vi has degree di and G 6= K1, G 6= K1 ∪ K1, G 6=
P2, G 6= K1 ∪ K1 ∪ K1, G 6= K1 ∪ P2 then number of diametral paths in the extended

transformation graph G ++−
e +−+(G) is (

∑n
i=1

(
di
2

)
)−3t− m(n−2 )(n−7 )

2 + n(n−1 )(n−2 )(n2−n+2 )
8 .

Proof. Since G ++−
e +−+(G) ∼= G ⊕2 L(Kn) and the diameter of G ++−

e +−+(G) is 2 except G is

K1, K1 ∪K1 and P2. So we determine the number of diametral paths in G ++−
e +−+(G) for

G 6= K1, G 6= K1 ∪K1 and G 6= P2 as follows:
(i) Number of diametral paths between vertices of G through a vertex in G

= Number of shortest paths of length 2 in G = (
∑n

i=1

(
di
2

)
)− 3t .

(ii) Number of diametral paths between vertices of G through a vertex in L(Kn) =

(
(
n
2

)
−m)×

(
n−2
2

)
(iii) Number of diametral paths between vertices of G and L(Kn) through a vertex in

G =
∑n

i=1 di(n− 2) = (n− 2)
∑n

i=1 di = 2m(n− 2)
(iv) Number of diametral paths between vertices of G and L(Kn) through a vertex in

L(Kn) = 3×
(
n
3

)
× 2 = n(n− 1)(n− 2)

(v) Number of diametral paths between vertices of L(Kn) through a vertex in G =

(n− 4)×
(
n
4

)
× 3 = n(n−1)(n−2)(n−3)(n−4)

8
(vi) Number of diametral paths between vertices of L(Kn) through a vertex in L(Kn)

= nC2 × (nC2 − (2n− 2− 1))× 4× 1
2 =

n(n− 1)(n− 2)(n− 3)

2
.

Hence total number of diametral paths in G ++−
e +−+(G) is

(
∑n

i=1

(
di
2

)
)−3t+(

(
n−2
2

)
−m)×

(
n−2
2

)
+2m(n−2 )+n(n−1 )(n−2 )+n(n−1 )(n−2 )(n−3 )(n−4 )

8 +
n(n−1 )(n−2 )(n−3 )

2 .

= (
∑n

i=1

(
di
2

)
)− 3t − m(n−2 )(n−7 )

2 + n(n−1 )(n−2 )(n2−n+2 )
8 . for G 6= K1, G 6= K1 ∪K1, G 6=

P2, G 6= K1 ∪K1 ∪K1, G 6= K1 ∪ P2.
�

Corollary 7. If G is a graph of n vertices, m edges, G has vertex set {vi; 1 ≤ i ≤ n}
such that each vertex vi has degree di, t number of triangles in G and G 6= K1, G 6=
K1 ∪K1, G 6= P2, G 6= K3, G 6= P3 then number of diametral paths in G −+−

e +−+(G) is

(
∑n

i=1

(
di
2

)
)− 3t + m(n−2 )(n−7 )

2 + n(n−1 )(n−2 )(n2−3n+16 )
8 .

Proof. The proof follows from Theorem 2.4 and Proposition 4. �

Proposition 5. If |V (G)| = n then G +−+
e −+−(G) ∼= G⊕1 L(Kn).

Proof. The proof is obvious from the definition of G +−+
e −+−(G) and the definition of oper-

ation ⊕2. �

Theorem 2.5. Let G be a graph of n vertices then the extended transformation graph
G +−+

e −+−(G) is semi-complete if and only if G is K1,K2,K3 and Kn for n ≥ 6.

Proof. Since G +−+
e −+−(K1) ∼= K1 , G +−+

e −+−(K1 ∪ K1) ∼= P3, G +−+
e −+−(K2) ∼= K3 and if

|V (G)| = 3 then only G +−+
e −+−(K3) is semi-complete. Therefore, if |V (G)| = n ≤ 3 then

G +−+
e −+−(G) is semi-complete if and only if G is K1,K2,K3. Now using Proposition 3 in

G ++−
e +−+(G) for |V (G)| = n > 3, we determine the semi-complete property by analysing
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the following cases:
Case1− : Let vi, vj ∈ V (G) then vij ∈ V (L(Kn)). Therefore between any two vertices in
G, there always exists a third vertex vij , which is adjacent to both the vertices vi and vj .

Case2− : Let vij , vkl ∈ V (L(Kn)), then consider the following two subcases:

Subcase 2.1 -: If i = k then vij , vil ∈ V (L(Kn)). Now third vertex vi ∈ V (G), which is
adjacent to both the vertices vij and vil.

Subcase 2.2 -: If i 6= j 6= k 6= l then vij , vkl ∈ V (L(Kn)). Now for n ≥ 6, there exist a

third vertex vab ∈ V (L(Kn)) (a 6= b 6= i 6= j 6= k 6= l) , which is adjacent to both the
vertices vij and vkl. Since there does not exist a third vertex in vertex set V (G), which is
adjacent to both the vertices vij and vkl. Therefore n 6= 4, n 6= 5 and n ≥ 6 .

Case3− : Let vi ∈ V (G) and vjk ∈ V (L(Kn)) then consider the following two subcases:

Subcase 3.1 -: If i = j then vi ∈ V (G) and vik ∈ V (L(Kn)). Now there does not exist a

third vertex in vertex set V (L(Kn)), which is adjacent to both the vertices vi and vik. So
to have third vertex in vertex set V (G) for each pair of vi and vik, G should be a complete
graph.
Subcase 3.2 -: If i 6= {j, k} then vi ∈ V (G) and vjk ∈ V (L(Kn)). Now third vertex

vil ∈ V (L(Kn)) (i 6= j 6= k 6= l), which is adjacent to both the vertices vi and vjk.
Since from Subcase 2.2, n 6= 4, n 6= 5 and n ≥ 6 and from Subcase 3.1, G should be a
complete graph. Therefore G +−+

e −+−(G) is semi-complete if and only if G is K1,K2,K3 and
Kn for n ≥ 6. �

Proposition 6. The equation G −−+
e −+−(G) ∼= G +−+

e −+−(H) holds if and only if G is comple-
ment graph of H.

Proof. Similar proof as in Proposition 2. �

Corollary 8. Let G be a graph of n vertices then the extended transformation graph
G +−+

e −+−(G) is semi-complete if and only if G is empty graph on 1 vertex, empty graph on
2 vertices, empty graph on 3 vertices and empty graph on n ≥ 6 vertices.

Proof. The proof follows from Theorem 2.5 and Proposition 6. �

Corollary 9. Diameter of the extended transformation graph G +−+
e −+−(G) of a graph G is

2 except G is K1, P2, K1 ∪K1 ∪K1 and K1 ∪ P2 .

Proof. If |V (G)| = n ≤ 3 then the G +−−
e −−−(G) has diameter 2 if and only if G is K1 ∪K1,

P3 and K3. From Theorem 2.7, vij and vkl are adjacent in Subcase 2.2 and vi and vik are
adjacent in Subcase 3.1. Hence diameter of G +−+

e −+−(G) of a graph G is 2 except G is K1,
P2, K1 ∪K1 ∪K1 and K1 ∪ P2 . �

Theorem 2.6. If G is a graph of n vertices with vertex set {vi; 1 ≤ i ≤ n}, m edges, t
number of triangles and each vertex vi has degree di and G 6= K1, G 6= P2, G 6= K1 ∪K1 ∪
K1, G 6= K1 ∪ P2 then number of diametral paths in the extended transformation graph
G +−+

e −+−(G) is

(
∑n

i=1

(
di
2

)
)− 3t + m(2n− 5) + n(n−1)(n3−7n2+18n−14)

4 .

Proof. Since diameter of G +−+
e −+−(G) is 2 except G is K1, P2, K1 ∪K1 ∪K1 and K1 ∪ P2 .

So we determine the number of diametral paths in G ++−
e +−+(G) for G 6= K1, G 6= P2, G 6=

K1 ∪K1 ∪K1, G 6= K1 ∪ P2 as follows:
(i) Number of diametral paths between vertices of G through a vertex in G

= Number of shortest paths of length 2 in G = (
∑n

i=1

(
di
2

)
)− 3t
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(ii) Number of diametral paths between vertices of G through a vertex in L(Kn) =
(nC2 −m)× 1 = (nC2 −m)

(iii) Number of diametral paths between vertices of G and L(Kn) through a vertex in
G =

∑n
i=1 di(n− 2) = (n− 2)

∑n
i=1 di = 2m(n− 2)

(iv) Number of diametral paths between vertices of G and L(Kn) through a vertex in

L(Kn) = n× (n− 1)× n−2C2 = n(n−1)(n−2)(n−3)
2

(v) Number of diametral paths between vertices of L(Kn) through a vertex in G =

n×n−1 C2 = n(n−1)(n−2)
2 .

(vi) Number of diametral paths between vertices of L(Kn) through a vertex in L(Kn)

= nC3 × 3×n−3 C2 = n(n−1)(n−2)(n−3)(n−4)
4

Hence total number of diametral paths in G +−+
e −+−(G) is

(
∑n

i=1

(
di
2

)
)−3t + (nC2−m) + 2m(n−2) + n(n−1)(n−2)(n−3)

2 + n(n−1)(n−2)
2 + n(n−1)(n−2)(n−3)(n−4)

4 .

= (
∑n

i=1

(
di
2

)
) − 3t + m(2n − 5) + n(n−1)(n3−7n2+18n−14)

4 for G 6= K1, G 6= P2, G 6=
K1 ∪K1 ∪K1, G 6= K1 ∪ P2.

�

Corollary 10. If G is a graph of n vertices, m edges, G has vertex set {vi; 1 ≤ i ≤ n}
such that each vertex vi has degree di, t number of triangles in G and G 6= K1, G 6=
K1 ∪K1, G 6= K3, G 6= P3 then number of diametral paths in the extended transformation
graph G −−+

e −+−(G) is

(
∑n

i=1

(
di
2

)
)− 3t - m(2n− 5) + n(n−1)(n−2)(n2−5n+12)

4

Proof. The proof follows from Theorem 2.6 and Proposition 6.
�

Proposition 7. If |V (G)| = n then G +−−
e −−−(G) ∼= G⊕2 L(Kn).

Proof. The proof is obvious from the definition of G +−−
e −−−(G) and the definition of oper-

ation ⊕2. �

Theorem 2.7. If G is a graph of n vertices then the extended transformation graph
G +−−

e −−−(G) is semi-complete for n ≥ 5.

Proof. If |V (G)| = n ≤ 3 then the G +−−
e −−−(G) is not semi-complete. Therefore using

Proposition 7 in G +−−
e −−−(G) for |V (G)| = n > 3, we determine the semi-complete property

by analysing the following cases:
Case1− : Let vi, vj ∈ V (G) then vkl ∈ V (L(Kn)) i 6= j 6= k 6= l. Therefore between any
two vertices in G, there always exists a third vertex vkl, which is adjacent to both the
vertices vi and vj .

Case2− : Let vij , vkl ∈ V (L(Kn)), then consider the following two subcases:

Subcase 2.1 -: If i = k then vij , vil ∈ V (L(Kn)). Now third vertex vs ∈ V (G) (i 6= j 6= l 6=
s), which is adjacent to both the vertices vij and vil.

Subcase 2.2 -: If i 6= j 6= k 6= l then vij , vkl ∈ V (L(Kn)). Since for n = 4, there does not
exist a third vertex which is adjacent to both the vertices vij and vkl. Therefore for n ≥ 5,

third vertex vm ∈ V (L(Kn)) (m 6= i 6= j 6= k 6= l), which is adjacent to both the vertices
vij and vkl.

Case3− : Let vi ∈ V (G) and vjk ∈ V (L(Kn)) then consider the following two subcases:

Subcase 3.1 -: If i = j then vi ∈ V (G) and vik ∈ V (L(Kn)). Now third vertex vlm ∈ V (G)
(i 6= k 6= l 6= m), which is adjacent to both the vertices vi and vik.
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Subcase 3.2 -: If i 6= {j, k} then vi ∈ V (G) and vjk ∈ V (L(Kn)). Since from Subcase 2.2

n ≥ 5. Therefore there exist a third vertex vlm ∈ V (L(Kn)) (i 6= j 6= k 6= l 6= m), which
is adjacent to both the vertices vi and vik.
Hence G +−−

e −−−(G) is semi-complete for n ≥ 5.
�

Proposition 8. The equation G +−−
e −−−(G) ∼= G +−−

e −−−(H) holds if and only if G is comple-
ment graph of H.

Proof. Similar proof as in Proposition 2. �

Corollary 11. If G is a graph of n vertices then the extended transformation graph
G −−−

e −−−(G) is semi-complete for n ≥ 5.

Proof. The proof follows from Theorem 2.7 and Proposition 8. �

Corollary 12. Let G be a graph of n vertices then diameter of the extended transformation
graph G +−−

e −−−(G) of a graph G is 2 for n ≥ 4.

Proof. If |V (G)| = n ≤ 3 then the G +−−
e −−−(G) does not have diameter 2. From Theorem

2.7, vij and vkl are adjacent in Subcase 2.2 and vi and vjk are adjacent in Subcase 3.2.

Hence diameter of G +−−
e −−−(G) is 2 for n ≥ 4. �

Theorem 2.8. If G is a graph of n vertices with vertex set {vi; 1 ≤ i ≤ n}, m edges, t
number of triangles and each vertex vi has degree di and n ≥ 4 then number of diametral
paths in the extended transformation graph G +−−

e −−−(G) is

(
∑n

i=1

(
di
2

)
)− 3t − m(n−2 )(n−7 )

2 + (n+1 )n(n−1 )(n−2 )(n−3 )
4 .

Proof. Since diameter of G +−−
e −−−(G) is 2 for n ≥ 4. So we determine the number of

diametral paths in G +−−
e −−−(G) for n ≥ 4 as follows:

(i) Number of diametral paths between vertices of G through a vertex in G

= (
∑n

i=1

(
di
2

)
)− 3t .

(ii) Number of diametral paths between vertices of G through a vertex in L(Kn) = (nC2−
m)×n−2 C2.

(iii) Number of diametral paths between vertices of G and L(Kn) through a vertex in G
=
∑n

i=1 di(n− 2) = (n− 2)
∑n

i=1 di = 2m(n− 2).

(iv) Number of diametral paths between vertices of G and L(Kn) through a vertex in

L(Kn)= n× (n− 1)×n−2 C2 = n(n−1)(n−2)(n−3)
2 .

(v) Number of diametral paths between vertices of L(Kn) through a vertex in G = nC3×
3× (n− 3) = n(n−1)(n−2)(n−3)

2 .

(vi) Number of diametral paths between vertices of L(Kn) through a vertex in L(Kn)

= nC3 × 3×n−3 C2 = n(n−1)(n−2)(n−3)(n−4)
4 .

Hence total number of diametral paths in G +−+
e −+−(G) is

(
∑n

i=1

(
di
2

)
)− 3t + (nC2−m)×n−2 C2 + 2m(n− 2) + n(n−1)(n−2)(n−3)(n−4)

4 + n(n− 1)(n−
2)(n− 3) =(

∑n
i=1

(
di
2

)
)− 3t − m(n−2 )(n−7 )

2 + (n+1 )n(n−1 )(n−2 )(n−3 )
4 for n ≥ 4.

�

Corollary 13. If G is a graph of n vertices, m edges, G has vertex set {vi; 1 ≤ i ≤ n}
such that each vertex vi has degree di, t number of triangles in G and n ≥ 4 then number
of diametral paths in the extended transformation graph G −−−

e −−−(G) is

(
∑n

i=1

(
di
2

)
)− 3t + m(n−2 )(n−7 )

2 + n(n−1 )(n−2 )(n2−3n+4 )
4 .
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Proof. The proof follows from Theorem 2.8 and Proposition 8.
�

3. Program of number of diametral paths in python

Walikar & Shindhe [13] have given an algorithm for determining diametral recheable
index of a vertex in a graph. Based on the algorithm [13], we have given a program in
FIGURE 2 for finding number of diametral paths in a simple, undirected and unweighted
graph. Since Iterative Deepening Depth First Search (IDDFS) works for infinite graph, so
we replace DFS by IDDFS in the algorithm [13].
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Figure 2. Program of number of diametral paths in python

4. Conclusion

In this paper, number of diametral paths in some of the extended transformation graphs
are determined and a program in python for finding the number of diametral paths has
given. Semi-complete property was developed to solve defence problems and it become
useful in various areas of IOT networks by creating TGO topology. In the similar way, we
will create a topology based on extended transformation graph. We will take use of these
results in future research and explore this work.
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