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IMPROVEMENTS ON SOME INEQUALITIES OF HERMITE
HADAMARD INEQUALITIES FOR FUNCTIONS WHEN A POWER
OF THE ABSOLUTE VALUE OF THE SECOND DERIVATIVE h AND
P-CONVEX

ERDAL UNLUYOL', SEREN SALAS?, GORKEM DALKUN?Z, §

ABSTRACT. In this paper, firstly we obtain some improvements of Hermite-Hadamard
integral inequalities via h and P-convex by using Hélder-i§can inequality. Secondly new
results are established. Thirdly, we determine some new inequalities for functions when
a power of the absolute value of second derivatives are h and P-convex. Finally they are
compared with the old ones.
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1. INTRODUCTION

The famous Young inequality for two scalars is the t-weighted arithmetic-geometric
means inequality. This inequality says that if z,y > 0 and ¢ € [0, 1], then

ahy' 7t <tr 4+ (1 -ty (1)
with equality if and only if x = y.
Definition 1.1. A function f: I CR — R is said to be convex if the inequality
flte+ (1 —=t)y) <tf(x) +(1—1)f(y)

valid for all x,y € I and t € [0,1]. If this inequality reverses, then f is said to be concave
on interval I.
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Definition 1.2. Let f: I CR — R be a convex function and a,b € I with a < b. The
following inequality

f(“*b / Flta+ ( 1—t)b)dt<w 2)

holds. This double inequality is known as Hermite-Hadamard integral inequality for conver
functions in the literature. You can see ([3]-[6]), for the results of the generalization,
improvement and extension of the famous integral inequality (2).

Definition 1.3. [7] Let I,J be intervals in R, (0,1) C J and h : J C R — R be a
non-negative function, h Z 0. A non-negative function f : I — R is called h-convex (or
that f € SX(h,I)), if for all z,y € I and t € (0,1):

[tz + (1 =t)y) < h(t)f(z) +h(1-1)f(y)

If the inequality is reversed then f is said to be h-concave and in this case f belongs to
the class SV (h,I).

Definition 1.4. [8] Let I C R be an interval. The function f : I — R is said to be
P-convez(or belong to the class P(I)) if it is non-negative function and, for all z,y € I
and t € (0,1), satisfies the inequality

fitz+ (1 =t)y) < f(z)+ f(y)

Lemma 1.1. [10, Lemma 1] Let f : I C R — R be a twice differentiable mapping on
I°a,b € I (I° is interior of I) with a < b and " € L'([a,b]), then the following equality

holds:
e 1 / ' Hayds 3)
o funfr (5 (e 5

Theorem 1.1. [11, Theorem 5] Let a,b € I witha < b and f € L*([a,b]). If f € SX(h, )
for0 <t <1 then

2ﬂé)da+b /.fm+ wquﬂw+fwnAWWMt (4)

Theorem 1.2. [11, Theorem 7| Let f : I C [0,00) — R be a twice differentiable function
7 1 . " . .

on I°, such that f* € L*([a,b]), where a,b € I° with a < b. If |f |7 for ¢ > 1 with p = qfql

is h-convex on [a,b], then for some fized t € (0,1) the following inequality holds:

0L ol o) 0] < o
[Qﬁ%@w (a;b) ) <u<>w+ (=90

Theorem 1.3. [11, Theorem 8| Let f : I C [0,00) — R be a twice differentiable function
on I°, such that f* € L'([a,b)), where a,b € I° with a < b. If |f"|9 for ¢ > 1 be an
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h-convez on [a,b] for some fized t € (0,1) the following inequality holds:

EOES I Ry
< “;6“)2(2)’1’[(/0 {a-enr @i (*5)

4 (/01{(1—t2)|f"(b)|q+t(2—t) ”(“‘2”’) }h(t)dt)l].

Theorem 1.4. [11, Theorem 9] Let f : I C [0,00) — R be a twice differentiable function
on I°, such that f* € L'([a,b)), where a,b € I° with a < b : If |f"|9 for ¢ > 1 be an
h-concave on [a,b] for some fized t € (0,1) the following inequality holds:

LCESORES L [ s

2
< St 0Ge) Gag) I ()= Gl ]

Theorem 1.5. [9, Theorem 2.4] Let f : I — R be a differentiable function on I°. Assume
that p € R, p > 1 such that |f" [P/~ is a P-convex on I. Suppose that a,b € I° with
a <band f" € L'([a,b]). Then the following inequality holds for % + % =1,

T L
< B (?)(w) (1@ | (*5°)

Theorem 1.6. [9, Theorem 2.6] Let f : I — R be a differentiable function on I°.
Assume that ¢ > 1 such that ]f”|q is a P-convex on I. Suppose that a,b € 1° with a < b
and f" € L'([a,b]). Then the following inequality holds:

‘f )+ f(b /f )z

< N K’f o | () s (o e (2]

Theorem 1.7. (Holder-Iscan Integral Inequality [1]). Let p > 1 and % + % =1. If f and

g are real functions defined on [a,b] and if |f|9, |g|? are integrable functions on |a,b] then
followings are held

o [l < 1L ( /ab<b—x>|f<x>|pdx)’l’( /ab<b—x>g<x>|mx); (10
+( [ - anera) : ([e- a)\g(m)!qd:c)é}

(6)

}h@dt)é

Q

(7)

3 =
Q=

9)

q>§+ <|f”(b)|q+'f~<a_;b q)é]

(8)
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{(/b (b—o)lf (@ \pdx>11)(/ab(b—x)|g(x)|qd:x>}l (11)
(/b (= a)lf@ ’pdwy(/ab<x—a>|g<x>\qu>‘lf}
< ( / |f<x>|pdw);( / b(b—a?)fg(xﬂqdac).

Theorem 1.8. (Improved power-mean integral inequality [2]). Let ¢ > 1 and % + é =1.

If f and g are real functions defined on [a,b] and if |f|?, |g|? are integrable functions on
interval [a,b] then followings are held

/ agolds < = { /ab<b—x>rf<x>|dx)l_é< /ab<b—m>|f<m>|rg<x>|wx)é<12>
+( b(x—a>|f<x>|dx)l_;( / b<x—a>|f<x>|g<w>|(1dm)é}

ii.) bfa{< Lb(b_xﬂf(x)ux)lé( /ab(b—x)lf(x)\lg(fvﬂqdfﬂ); )
o ([ @)‘d%)l_;( / b(xa)lf(f)llg(x)lqu>;}
([ i) ([ totorar)

We note that, the Beta and Gamma function (see[12] pp. 908-910)) is defined as follow:

1 o)
Blx,y) = / " 11—t 2,y >0, T(z) = / e 't x>0
0 0

['(z)l'(y)
I(x +y)

; thus we can obtain below equality,

And, B(z,x) = 217228 <;,CE>, B(z,y) =

1
1,q +1) = 21-2(a+D) <1, 1> _ g2 PRI+ 1)
oty gt '3+
and I(3) = . T(n+ 1) = nl(n) =

2. MAIN RESULT

Theorem 2.1. Let f: I C [0,00) — R be a twice differentiable function on I°, such that
f" e L'([a,b]), where a,b € I° with a < b. If |f"|9 for ¢ > 1 with p = q%’l is a h-convex
on [a,b], then for some fized t € (0,1) the following inequality holds:

f(a);f(b)—bia/abf(x)dx' < <b]6a)2[<§/3(;,p+1)_;il>;+<;<pil>>;]
K/O {W e ‘f <a+b> }h(t)dt)é
([ foror ool (57) o]

X

+
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Proof. By using Lemma 1.1 and Hélder-Iscan’s inequality,

’f )+ f(b) /f e
b Lo (e 5 (55 )
Lo (o)
s (fooolr (et )]
g )</<1 em) ([ (e 59 )
+</oltf<” 1”")\ H
Since |f"|4 € SX(h,I), we obtained for L +1 =
ECESIN Ry
(bIaa)2</(Jl<1 ey -0) < [( [a-ofuorr @ or (<20 Va)’
o(ffu-ofsororea-ofr (472) o)
o O framem) < [(f e om-cun ol (45 o)

1

w( [ fens o na-ol ()] Ja)]

IN

IN

IN

and
@210 L [ s
o) b (Lol (1))
b

[ Bh

+(/<1 DRI 1r+th (5 dt” 1

o) ([ oo a-omole (52) )
+</0 BOLE O+ (- Oh(o)] <§b>‘dt>]
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Now we calculate fol(l —t2)P(1 — t)dt and fol(l — t2)Ptdt. For t2 = m, we get
1

dt = §m_%dm.

Namely,

1 —tHP(1 - _1 1 —m)P(m — m—1 1 —mpﬂ”f%—1 1 —m)P
/0(1 t°)P(1 t)dt—2/0(1 )P( 1)d —2/0(1 ) 2/0(1 )P

If we get the following fact that

[a-era=1(1) [fowa= 0o

/Oth(l—t)dt:/o (1= t)h(t)dt

then proof of the theorem is completed. O

and

Theorem 2.2. Let f: 1 C [0,00) — R be a twice differentiable function on I°, such that
f e L([a,b]), where a,b € I° with a < b. If |f"|9 for ¢ > 1 be a h-convex on [a,b] then
for some fizred t € (0,1) the following inequality holds:

ECES ISR 7
(”]6“)2(152) ([ {(1—t2 1-1lf (a )\q+<1—(1—t)2)tf”<?;rb)
+(/0 {(1—1t2><1 Ol @l - - (45 q}h(t)dt)q]

w O ([ {a-oas @i a-a-ona-a) ()

+</01{(1—t2)t\f()\q F (1= (1—1)?) 1—t'f <a+b> }h(t)dt) ]

Proof. By using Lemma 1.1 and improved power-mean inequality,

LOESCR ’ f(o)da

(bzb,a)z /01(1—t2){ ,,<1;1ta+1;1tb) +f”<1;ta+ 1;rtb>'}dt-

(b 16“)2</01(1—t2)(1—t)>p x [(/01 f”(l—ti)(l—t)<l2ﬂ +12b>

+(/01<1—t2><1—t> f(12t +1”b) dtﬂ

e (oo
+</01(1—t2)t "<I;ta th) dt)q]

IN

itoar)
q}h(t)dt)

Q=

Q|

IN

IN

0\
dt)

¢ N
dt)
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Since |/"[7 € SX (h. T), we obtained

LOESIERY P

(bIﬁa)2(/o<1 #)(1 - t)) <[([a-ea-ofworr @p+an-ols(® +b>‘}dt>é

+( [a-ma-of 1()\f()\ rua-olr (50 }dt>1] |

w O (La-en) < [( [ a-ondors @ +lh<1—t>\f”<“2”)]q}dt)q
+( [ a-endnorsor+ra-ol ()] Ja)]

‘ 2 b—a /f
S
+</01<1 t1>< DRI (b)) Hz)’ H 1
w CSE Q) ([ a-mmon @r s a-a-ga-onels (40 @)’

+( = P B+ (1 - (- 7)1 t)h(t)'f” (“3") \th) ‘q

1 1
/(1—t2)(1—t)h(1—t)dt:/ (1= (1 = 2)th(t)dt
0 0

IN

IN

and ) 1
/ (1 —tHth(l — t)dt = / (1—(1—=1))(1 —t)h(t)dt
0 0
O

Theorem 2.3. Let f: 1 C [0,00) — R be a twice differentiable function on I°, such that
£ e LY([a,b)), where a,b € I° with a < b. If |f"|? for ¢ > 1 be a h-concave on [a,b] then
for some fized t € (0,1) the following inequality holds:

'f(a);f(b) - bia/:f(x)dx‘ < (b;;)Q(%t )>; (15)
Gy aen)  GG)) I ()l ()]
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Proof. By using Lemma 1.1 and Hélder-Iscan’s inequality,

‘f(a)-;f(b)_ 1 /” Fa)da

(bIé”z/ s {‘f <1+t +126>+f~<12—t _|_12+tb>‘}dt.

o [aepa-n) ([ P (e 0w

+ /01(1—t)f"<12ta+mb> dt q]

PO (fomem) < [([ o )
+</01tf,,<1;ta 1+tb> dt)é}

Since |f"|? € SV (h,I); therefore by inequality Theorem 1.1

IN

IN

(1—-1)

1+t —l—l_tb

g+
2 2

1 " ]_-i-t 1—t q 1 " a+3b q
tf< a+b) _ f( )

/0 2 2 4h(3) 4

1 1—t 1+¢ 1 v 3a+b\ 4
t a+—b)| =

/of<2 2> 4h<;>f<4>

1 (14t 1—t\|? 1 w(a+3b\|?
/o(l_t)f< 2 “2b> ‘4h<;>f< 1 )

1 nf{ 1+t 1—t a 1 " 3a+b a
fa-olr (et _4h<;>f< )

Thus, proof is completed. O

Theorem 2.4. Let f : I — R be a twice differentiable function on I°. Assume that
q > 1 such that ]f//]q 18 a P-convex function on I1°. Suppose that a,b € 1° with a < b and
f" e L'([a,b]). Then the following inequality holds:

et [ o< (R )+ (o)

e p e < 2D

| /\

(16)
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Proof. By assumption, Lemma 1.1 and Hoélder-Iscan’s inequality, we have

V )+ f(b) _a/ f o

 wr [l (e 50 (e ) Jae
< O fanerno) [ funolr (e ) a)

([0l (5t )
o O ([ (e )
+<Lfyﬂ<12t +1+t0 dQ;}

. 7" . .
Since |f |7 is P-convex, we obtained

'f a) + f(b —a/f o

w;;V(Ail )1—t> [<Olliwﬂfww
(focafrone ()
2 foen) <[ [ fror-
() ol () Ja) ]

where %4— % = 1. Now we calculate fol(l —t2)P(1 —t)dt and fol(l —t2)Ptdt. For t? = m,
we get

0\
dQ

IN

ap|f (a ;L b) q}dt>q

" (I+b q %
()

dt = im*%dm.

Namely,

' 2yp(] _ 1 )P (m s — m—l ' —mpm_%—l ' —m)P
[a=era-vi=3 [a—mpmt—nam =3 [a-m 5 a=m

And we rewrite the above by using property of 5 as follow,

1 3 1 41 1 1
27\ 2P 2p+1°
If we get the following fact that

1 1/ 1
1 —t2)Ptdt = —( —— ).
A( ) 2<p+1>
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LCESLNER [ oy
f “;?([( et si]) <G lrerr(+5)
(o (457))] |
-G <p+1)) |Gl (5))
(ol (59))]

Thus, the proof is completed. (|

)

Theorem 2.5. Let f : I — R be a twice differentiable function on I°. Assume that
q > 1 such that ]f//]q 18 a P-convez function on I1°. Suppose that a,b € 1° with a < b and

"

f € L'([a,b]). Then the following inequality holds:

He i bia [

< 25 (o))

Proof. By using Lemma 1.1 and improved power-mean inequality,

‘f(a);f(b) - bia/abf(m)dx

( Iﬁa)z /01(1—t2){ "(1;ta+1;tb>+f"<1;ta 1+tb>‘}dt.
IGG)Z(/ab(l_tQ)(l_t)>; X [(/01(1—t2)(1—t) (1"2H +126)

+(/01(1—t2)(1—t)’f”<12_t +1+tb> dt>;]

G Iﬁay </ab(1 —t2)t); x K/Ol(l — )t f”<12+ta+1;tb> th>;
([ (e L) thﬂ

IN

b
(b

IN

¢ N
dt>
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Since |f"|? € P(I), we reach

‘f )+ f(b ! /f
< W(g)pr/o(l—t)l—t?{]f +‘f”<“;b>
o([a-na-efir o] (=) Na)]

i (bIaa)Z)@X[(/Olt<1—t2>{\f”<a>|q+ (‘2”9)
+</01t(1—t2){\f"(b)\q+ ”(“‘2”’) q}dtﬂ

If we do necessary operation, then the proof is completed. ]

q}dt)é
)

3=

Corollary 2.1. If we take ¢ = 2 in the inequality (17), then The inequality (18) coincides
with the inequality (9) in Theorem 8, namely

’f )+ f(b) —a/f i

< C (1w | (450 2)‘1’+(rf”<b>12+
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