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SOLUTION OF COMPLEX PARTIAL DERIVATIVE EQUATIONS
WITH CONSTANT COEFFIENTS VIA ELZAKI TRANSFORM
METHOD

M. DUZ, §

ABSTRACT. In this study, the Elzaki Transform method is applied for general nth order
complex equations with constant coefficients.
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1. INTRODUCTION

In R?, general solutions of some equations, especially of elliptic types, cannot be found.
A real partial differential equation system, of which number of independent variables is
even, can be transformed to a complex partial differential equation system. Solving a
complex equation can be easier with complex methods. For example,

Ugy + Uyy = 0
Laplace equation doesn’t have general solution in R?, but it can be written as
Uz =0
and the solution of this equation is

u=f(z)+g()

where f is analytic, g is anti analytic arbitrary function [1]. The most elementary works in
the theory of complex differential equations are ” Theory of Pseudo Analytic Functions” [3],
and ” Generalized Analytic Functions” by [4]. First order linear complex differential equa-
tions can be solved by using Elzaki transform, Fourier Transform and Laplace transform
[1,2,5]. Higher order linear complex differential equations can be solved by approximate
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solution methods like Taylor and Chebyshev expansion method [6,7]. In this study, to
obtain a solution for equations in the form (1) is studied.
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where w is dependant variable, z, Z are independant variables and A4; ; (1 <i <n,1 < j <n)
are real constants. Elzaki transform has been used for the solution of (1). This study
presents generalization of [1,2,5]. This paper is organized as follows: In section 2, basic
definitions and theorems are given. In section 3, formulization is obtained to solve the n
th order complex differential equations with constant coefficients and some examples are
given.

2. BASIC DEFINITIONS AND THEOREMS

Definition 2.1. Let F(t) be a function for t > 0. Elzaki transform of F(t) is defined as
follows:

E(F(t)) :v/e_v () dt
0
Theorem 2.1. [8,9] Elzaki transforms of some functions are
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Theorem 2.2. [10]Elzaki transforms of first order partial derivatives of f(x,t) are

DE|S| = T s,
iz’)E[gﬂ = W, (2)

where T(x,v) = E [f(z,t)].

Lemma 2.1. [11]|Elzaki transforms of nth order partial derivatives of f(x,t) are
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Theorem 2.3. [11]Elzaki transforms of (n 4+ m)th order partial derivatives of f(x,t) are
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3. SOLUTION OF CONSTANT COEFFIENTS PARTIAL DERIVATIVE EQUATIONS FROM NTH
ORDER

Definition 3.1. Derivative operators

9 _1fo9 .90\ 9 1
0z 2\0x Oy) 0z 2

are called complex derivative operators.

Lemma 3.1. Let n and r be positive integer numbers and n > r, then

T () ()= ()

n nor
Lemma 3.2. Z aj Z bh = Z Z akbh
k=0 h=0 k=0h=0

Theorem 3.1. Let w = w (2) be a complex valued function with complex variables. Then,

O'w 1 - (_)k n "w
oz on e~ Uo\k Oxn—kdyk

Proof. Proof can be made by induction.
For n = 1, following equality can be written from the Definition 3.1

=3 G5 sl O o 515 (i

k=0

As a result, it is true for n = 1.
Assume that it is true for n = r. Therefore, following equality can be written.

Ow 1 : (—z)k r o"w
0zr 2 e k) Oxr—koyk

Then, accuracy of equality must be seen for n = r + 1.

ot w0 1 k[T 0"w
dzrtl T 9z 927 _aZQTkZ:o(_Z) (k) dxr—kdyk

10 1 YL J"w i 0 [ 1« k[T J"w

= 3% <2kzo( i) @ axrkayk) 395 <2k (=9 (k)W)
Ll e (T ot lw 0w

- 2r+1;}(—1) <k> <3xr+1—kayk o Zaaﬂ"—’fay’f“

1 ot lw B Ot T o lw . o Hw

o orl [\ gyl Z@x’”@y “\1 0x"dy Z@x”*lagﬂ

N 1 (_i>2 r o™t 1w _i o™t N +(_Z')T r 8r+1w_i8r+1w
2r+l 2) \0zr—1oy2  Oxr—20y3 r) \ Ozdy" Oyrt1




M.DUZ: SOLUTION OF COMPLEX PARTIAL DERIVATIVE EQUATIONS... 231

If the above equality takes the common multiplier in parenthesis, then the following
equality is obtained.
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As a result, proof is completed. O

Theorem 3.2. Let w = w(z,Z) be a complex valued function with complex variables.

Then,
w1~ 0w
=—)>) i —
oz 2n k) Oxn—koyk
k=0
Proof. Proof is similar to the proof of the previous theorem. O

Theorem 3.3. Let w = w(z,Z) be a complex valued function with complex variables.

Then,
It I o=, k() [ o trw
OandzT | ontr hgo;o (=i)" (h) (k) §rrtr—(htk) Gy btk

Proof. From Theorem 3.1 and Theorem 3.2, following equality is obtained
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From Lemma 3.2
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Theorem 3.4. A special solution of the following complex equation
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Proof. Using Theorem 3.3, the complex equation, which is stated in the theorem, can be
written as follows
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If elzaki transform is used for the equation above, the following equality is obtained by
using Theorem 2.4.
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In the equation above, the terms which are equal to sum of the indices can be written
under a single total symbol. If T (z,v) and its derivatives are added to the left side of the
equation and by using definition of A (z,v), the following equality is obtained.
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All terms can be written on the right and left side of the equation inside a single parenthesis
and the following equation is obtained.
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As a result, using the inverse operator method, by the definition of P (D) in theorem,
T (z,v) is obtained as follows

T (z,v) = E[Fy (z,y) + iF (z,y)]

n n—k n—k—l

T2 An-r-i

k=01=0

E[Fl ($,y) +iFy (.T,y)]

T (z,v) = P D)

n—k n—k—1 1
. . . an—l—m—hA ,
Z An—k—lﬁ Z Z (—Z>m 4" (n ,qlq k) (ZL)WM
=0 m=0 h=0
P (D)

Thus, solution of the equation is found from inverse elzaki transform as w (z,y) = E~' (T (z,v)).
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Example 3.1. Find the solution for the following differential equation
0w -
0207

with the conditions

w(z,0) = 5z +3z+2
ow
dy

Solution 3.1. Coefficients of the equation are Ay1 = 1,A20 = Ap2 = A1 = Ao =
Apo =0 and n = 2. Using theorem 3.4

(x,0) = i(2x—1)

1602 + 522 + 3z + 2 +iv(2x — 1)

T(.I,’U) = D2 n U%

w(z,y) = E~H(T (z,0))

1602 4 522 + 3z + 2 + iv(2z — 1)
D? + &
= E7'[? (1 —-0*D? +v'D* - ) (160 + 527 + 32 + 2 + iv(2z — 1))]
E~! [v? (160 + 527 + 3z + 2 + iv(2z — 1) — 100%)]
= 3y 4522 +3x4+2+i(20— 1)y
= 22442742247 +2

w(z,z) = E7!

Example 3.2. Find the solution for the following differential equation

d*w ow
— +2— =12 182+ 9
9.2 + 9z z+ 18zZ +



M.DUZ: SOLUTION OF COMPLEX PARTIAL DERIVATIVE EQUATIONS... 235

with the conditions

w(z,0) = 22°+32° 48z

ow

Jy

Solution 3.2. Coefficients of the equation are Asg =1,A01 =2, Agp = A11 = A1 =
Ao,1 = Ao,o =0 and n = 2. Using theorem 3.4

(z,0) = (62 — 62+ 2)

v2(1202 4 36) — 24iv3 + dv(122° + 422 — 18) — (22> + 322 + 8z)
21 6iv—1
D?+ (6 — 2)D + Sl

T(xz,v) =

w(z,y) = E7H(T (x,0))
Let us assume that,
A(x,v) = —24iv3 + 1200%x + 360 + 12iva® + 42iva — 18iv — 2% — 32% — 8z

Then, it can be written as,

A
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2 vt 2. \?
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LU B0 = 12) | [,” (3602 — 24iv — 4)
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2 4 3 ~
v 9 3 , 6v 8v° (6v — 21)]
+— 36v° — 245v° — 18iv) +
Giv—1 ) (6iv — 1) (6iv — 1)?
6v — 2 6v?
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w(z,z) = E7! [(2$3v2 - 121‘1}4431)2) z? — 60t + 8axv? i (61‘21}3 — 120° — 620 + 21}3)]

23— 6xy? + 322 — 3y® + 8z + i (6332y — 23 — 6y + 2y)
= 224372 +52+32

4. CONCLUSION

In this article, it can be seen that the most general linear constant coefficient complex
differential equations can be solved by Elzaki transformation. A formula for a specific
solution of such equations has been obtained. It can be seen that the results are consistent
with the literature.
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