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INITIAL BOUNDS FOR CERTAIN CLASSES OF BI-UNIVALENT

FUNCTIONS DEFINED BY THE (p, q)-LUCAS POLYNOMIALS

N. MAGESH1, C. ABIRAMI2, Ş. ALTINKAYA3, §

Abstract. Our present investigation is motivated essentially by the fact that, in Geo-
metric Function Theory, one can find many interesting and fruitful usages of a wide
variety of special functions and special polynomials. The main purpose of this article
is to make use of the (p, q)− Lucas polynomials Lp,q,n(x) and the generating function
GLp, q, n(x)(z), in order to introduce three new subclasses of the bi-univalent function class
Σ. For functions belonging to the defined classes, we then derive coefficient inequalities
and the Fekete-Szegö inequalities. Some interesting observations of the results presented
here are also discussed. We also provide relevant connections of our results with those
considered in earlier investigations.
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1. Introduction

Let R = (−∞,∞) be the set of real numbers, C be the set of complex numbers and

N := {1, 2, 3, . . .} = N0\ {0}
be the set of positive integers. Let also A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk ∆ = {z : z ∈ C and |z| < 1}. Further, by S we
shall denote the class of all functions in A which are univalent in ∆.

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ ∆)
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and

f(f−1(w)) = w(|w| < r0(f); r0(f) ≥ 1

4
),

where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + . . . .

A function f ∈ A is said to be bi-univalent in ∆ if both a function f and it’s inverse
f−1 are univalent in ∆. Let Σ denote the class of bi-univalent functions in ∆ given by (1).

In 2010, Srivastava et al. [24] revived the study of bi-univalent functions by their
pioneering work on the study of coefficient problems. Various subclasses of the bi-univalent
function class Σ were introduced and non-sharp estimates on the first two coefficients |a2|
and |a3| in the Taylor-Maclaurin series expansion (1) were found in the recent investigations
(see, for example, [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27])
and including the references therein. The afore-cited all these papers on the subject were
actually motivated by the work of Srivastava et al. [24]. However, the problem to find the
coefficient bounds on |an| (n = 3, 4, . . . ) for functions f ∈ Σ is still an open problem.

For analytic functions f and g in ∆, f is said to be subordinate to g if there exists an
analytic function w such that

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)) (z ∈ ∆).

This subordination will be denoted here by

f ≺ g (z ∈ ∆)

or, conventionally, by
f(z) ≺ g(z) (z ∈ ∆).

In particular, when g is univalent in ∆,

f ≺ g (z ∈ ∆) ⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

Let p(x) and q(x) be polynomials with real coefficients. The (p, q)-polynomials Lp,q,n(x),
or briefly Ln(x) are given by the following recurrence relation (see [8, 9]):

Ln(x) = p(x)Ln−1(x) + q(x)Ln−2(x) (n ∈ N \ {1}),
with

L0(x) = 2,
L1(x) = p(x),
L2(x) = p2(x) + 2q(x),
L3(x) = p3(x) + 3p(x)q(x),
...

The generating function of the Lucas polynomials Ln(x) (see [16]) is given by:

GLn(x)(z) :=
∞∑
n=0

Ln(x)zn =
2− p(x)z

1− p(x)z − q(x)z2
. (2)

Note that for particular values of p and q, the (p, q)−polynomial Ln(x) leads to various
polynomials, among those, we list few cases here (see, [16] for more details, also [3]):

(1) For p(x) = x and q(x) = 1, we obtain the Lucas polynomials Ln(x).
(2) For p(x) = 2x and q(x) = 1, we attain the Pell-Lucas polynomials Qn(x).
(3) For p(x) = 1 and q(x) = 2x, we attain the Jacobsthal-Lucas polynomials jn(x).
(4) For p(x) = 3x and q(x) = −2, we attain the Fermat-Lucas polynomials fn(x).
(5) For p(x) = 2x and q(x) = −1, we have the Chebyshev polynomials Tn(x) of the

first kind.
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We want to remark explicitly that, in [3] Altınkaya and S. Yalçin, first introduced a sub-
class of bi-univalent functions by using the (p, q)−Lucas polynomials. This methodology
builds a bridge between the Theory of Geometric Functions and that of Special Functions,
which are known as different areas. Thus, we aim to introduce several new classes of bi-
univalent functions defined through the (p, q)−Lucas polynomials. Furthermore, we derive
coefficient estimates and Fekete-Szegö inequalities for functions defined in those classes.

2. Coefficient Estimates and Fekete-Szegö Inequalities

In this section, we introduce three new subclasses S∗Σ(α, x),MΣ(α, x),LΣ(α, x) of the
bi-univalent function class Σ.

A function f ∈ Σ of the form (1) belongs to the class S∗Σ(α, x), α ≥ 0 and z, w ∈ ∆, if
the following conditions are satisfied:

zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
≺ GLn(x)(z)− 1

and for g = f−1

wg′(w)

g(w)
+ α

w2g′′(w)

g(w)
≺ GLn(x)(w)− 1.

Note that S∗Σ(x) ≡ S∗Σ(0, x) was introduced and studied by [3].
A function f ∈ Σ of the form (1) belongs to the classMΣ(α, x), 0 ≤ α ≤ 1 and z, w ∈ ∆,

if the following conditions are satisfied:

(1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ GLn(x)(z)− 1

and for g = f−1

(1− α)
wg′(w)

g(w)
+ α

(
1 +

wg′′(w)

g′(w)

)
≺ GLn(x)(w)− 1.

Note that the class MΣ(α, x), unifies the classes S∗Σ(x) and KΣ(x) like MΣ(0, x) ≡
S∗Σ(x) and MΣ(1, x) ≡ KΣ(x). For functions in the class MΣ(α, x), the following coeffi-
cient estimates and Fekete-Szegö inequality are obtained.

Next, a function f ∈ Σ of the form (1) belongs to the class LΣ(α, x), 0 ≤ α ≤ 1, and
z, w ∈ ∆, if the following conditions are satisfied:(

zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α
≺ GLn(x)(z)− 1

and for g = f−1 (
wg′(w)

g(w)

)α(
1 +

wg′′(w)

g′(w)

)1−α
≺ GLn(x)(w)− 1.

Now, for functions in the classes S∗Σ(α, x),MΣ(0, x),LΣ(α, x), the following coefficient
estimates and Fekete-Szegö inequality are obtained.

Theorem 2.1. Let f(z) = z +
∞∑
n=2

anz
n be in the class S∗Σ(α, x). Then

|a2| ≤
|p(x)|

√
|p(x)|√

|4α2p2(x) + 2q(x)(1 + 2α)2|
, |a3| ≤

|p(x)|
2 + 6α

+
p2(x)

(1 + 2α)2
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and for ν ∈ R

∣∣a3 − νa2
2

∣∣ ≤

|p(x)|
2 + 6α

, |ν − 1| ≤
∣∣2α2p2(x) + q(x)(1 + 2α)2

∣∣
2p2(x) (1 + 3α)

|p(x)|3 |ν − 1|
|4α2p2(x) + 2q(x)(1 + 2α)2|

, |ν − 1| ≥
∣∣2α2p2(x) + q(x)(1 + 2α)2

∣∣
2p2(x) (1 + 3α)

.

Proof. Let f ∈ S∗Σ(α, x) be given by Taylor-Maclaurin expansion (1). Then, there are two
analytic functions u and v such that

u(0) = 0, v(0) = 0,

|u(z)| =
∣∣u1z + u2z

2 + . . .
∣∣ < 1, |v(w)| =

∣∣v1w + v2w
2 + . . .

∣∣ < 1 (∀ z, w ∈ ∆).

Hence, we can write
zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
= GLn(x)(u(z))− 1

and
wg′(w)

g(w)
+ α

w2g′′(w)

g(w)
= GLn(x)(v(w))− 1.

Or, equivalently,

zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
= −1 + L0(x) + L1(x)u(z) + L2(x)[u(z)]2 + . . .

and
wg′(w)

g(w)
+ α

w2g′′(w)

g(w)
= −1 + L0(x) + L1(x)v(w) + L2(x)[v(w)]2 + . . . .

From the above equalities, we obtain

zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
= 1 + L1(x)u1z + [L1(x)u2 + L2(x)u2

1]z2 + . . . (3)

and
wg′(w)

g(w)
+ α

w2g′′(w)

g(w)
= 1 + L1(x)v1w + [L1(x)v2 + L2(x)v2

1]w2 + . . . . (4)

Additionally, it is fairly well known that

|uk| ≤ 1, |vk| ≤ 1 (k ∈ N). (5)

Thus upon comparing the corresponding coefficients in (3) and (4), we have

(1 + 2α) a2 = L1(x)u1 (6)

2 (1 + 3α) a3 − (1 + 2α) a2
2 = L1(x)u2 + L2(x)u2

1 (7)

− (1 + 2α) a2 = L1(x)v1 (8)

and
(3 + 10α) a2

2 − 2 (1 + 3α) a3 = L1(x)v2 + L2(x)v2
1. (9)

From (6) and (8), we can easily see that

u1 = −v1 (10)

and
2(1 + 2α)2a2

2 = [L1(x)]2(u2
1 + v2

1)

a2
2 =

[L1(x)]2(u2
1 + v2

1)

2(1 + 2α)2
. (11)
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If we add (7) to (11), we get

2 (1 + 4α) a2
2 = L1(x)(u2 + v2) + L2(x)(u2

1 + v2
1). (12)

By substituting (11) in (12), we reduce that

a2
2 =

[L1(x)]3 (u2 + v2)

2 (1 + 4α) [L1(x)]2 − 2L2(x)(1 + 2α)2
(13)

which yields

|a2| ≤
|p(x)|

√
|p(x)|√

|4α2p2(x) + 2q(x)(1 + 2α)2|
.

By subtracting (9) from (7) and in view of (10), we obtain

4(1 + 3α)a3 − 4(1 + 3α)a2
2 = L1(x) (u2 − v2) + L2(x)

(
u2

1 − v2
1

)
a3 =

L1(x) (u2 − v2)

4(1 + 3α)
+ a2

2. (14)

Then in view of (11), (14) becomes

a3 =
L1(x) (u2 − v2)

4(1 + 3α)
+

[L1(x)]2(u2
1 + v2

1)

2(1 + 2α)2
.

Applying (5), we deduce that

|a3| ≤
|p(x)|
2 + 6α

+
p2(x)

(1 + 2α)2
.

From (14), for ν ∈ R, we write

a3 − νa2
2 =

L1(x) (u2 − v2)

4(1 + 3α)
+ (1− ν) a2

2. (15)

By substituting (13) in (15), we have

a3 − νa2
2 =

L1(x) (u2 − v2)

4(1 + 3α)
+

(
(1− ν) [L1(x)]3 (u2 + v2)

2[(1 + 4α) [L1(x)]2 − L2(x)(1 + 2α)2]

)
= L1(x)

{(
Ω(ν, x) +

1

4 (1 + 3α)

)
u2 +

(
Ω(ν, x)− 1

4 (1 + 3α)

)
v2

}
,

(16)

where

Ω(ν, x) =
(1− ν) [L1(x)]2

2 (1 + 4α) [L1(x)]2 − 2L2(x)(1 + 2α)2
.

Hence, in view of (5), we conclude that

∣∣a3 − νa2
2

∣∣ ≤

|L1(x)|
2 + 6α

; 0 ≤ |Ω(ν, x)| ≤ 1

4 (1 + 3α)

2 |L1(x)| |Ω(ν, x)| ; |Ω(ν, x)| ≥ 1

4 (1 + 3α)

,

�

Analysis similar to that in the proof of the previous Theorem shows that

which evidently completes the proof of Theorem 2.1.
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Theorem 2.2. Let f(z) = z +
∞∑
n=2

anz
n be in the classMΣ(α, x). Then

|a2| ≤
|p(x)|

√
|p(x)|√

|α (1 + α) p2(x) + 2q(x)(1 + α)2|
, |a3| ≤

|p(x)|
2 + 4α

+
p2(x)

(1 + α)2

and for ν ∈ R

∣∣a3 − νa2
2

∣∣ ≤

|p(x)|
2 + 4α

, |ν − 1| ≤
∣∣α (1 + α) p2(x) + 2q(x)(1 + α)2

∣∣
p2(x) (2 + 4α)

|p(x)|3 |ν − 1|
|α (1 + α) p2(x) + 2q(x)(1 + α)2|

, |ν − 1| ≥
∣∣α (1 + α) p2(x) + 2q(x)(1 + α)2

∣∣
p2(x) (2 + 4α)

.

Theorem 2.3. Let f(z) = z +
∞∑
n=2

anz
n be in the class LΣ(α, x). Then

|a2| ≤
|p(x)|

√
2 |p(x)|√

|(α2 − 5α+ 4) p2(x) + 4q(x)(2− α)2|
, |a3| ≤

|p(x)|
6− 4α

+
p2(x)

(2− α)2

and for ν ∈ R

∣∣a3 − νa22∣∣ ≤

|p(x)|
6− 4α

, |ν − 1| ≤
∣∣(α2 − 5α+ 4

)
p2(x) + 4q(x)(2− α)2

∣∣
4p2(x) (3− 2α)

2 |p(x)|3 |ν − 1|
|(α2 − 5α+ 4) p2(x) + 4q(x)(2− α)2|

, |ν − 1| ≥
∣∣(α2 − 5α+ 4

)
p2(x) + 4q(x)(2− α)2

∣∣
4p2(x) (3− 2α)

.
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