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KEYWORDS Abstract The novel coronavirus (COVID-19) could be described as the greatest human challenge
COVID-19; of the 21st century. The development and transmission of the disease have increased mortality in all
Pneumonia; countries. Therefore, a rapid diagnosis of COVID-19 is necessary to treat and control the disease. In
GANE; this paper, a new method for the automatic identification of pneumonia (including COVID-19) is
X-ray Images; presented using a proposed deep neural network. In the proposed method, the chest X-ray images
CNN; are used to separate 2-4 classes in 7 different and functional scenarios according to healthy, viral,
LSTM; bacterial, and COVID-19 classes. In the proposed architecture, Generative Adversarial Networks
Transfer learning (GANSs) are used together with a fusion of the deep transfer learning and LSTM networks, without

involving feature extraction/selection for classification of pneumonia. We have achieved more than
90% accuracy for all scenarios except one and also achieved 99% accuracy for separating COVID-
19 from healthy group. We also compared our deep proposed network with other deep transfer
learning networks (including Inception-ResNet V2, Inception V4, VGG16 and MobileNet) that
have been recently widely used in pneumonia detection studies. The results based on the proposed
network were very promising in terms of accuracy, precision, sensitivity, and specificity compared
to the other deep transfer learning approaches. Depending on the high performance of the proposed

method, it can be used during the treatment of patients.
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1. Introduction

The novel coronavirus (COVID-19) became an epidemic in
Wuhan, China, in December 2019 [1]. Today, the virus has
become a serious public health problem worldwide [2]. The
virus is also known as the SARS-COV-2 virus [3]. According
to global health statistics, more than three million people
worldwide are infected with the COVID-19 (until May 2020).
In addition, more than 135,000 people have so far died from
the virus [2,3]. Due to high virus infection, it is essential to con-
trol the disease, including rapid diagnosis and timely quaran-
tine. Coronaviruses are a broad family of four types of
viruses, including alpha-coronavirus, beta-coronavirus, coron-
avirus delta and gamma-coronavirus [4]. Up to now, seven out
of 40 different species have been found capable of spread to
humans in the Coronavirus family resulting in diseases such
as common cold [5]. Past experiments have shown that both
SARS and MERS viruses are passed on to humans from cats
and camels. COVID-19 is believed to have been transmitted to
humans from bats and anteaters [5].

The virus causes pneumonia to patients. Pneumonia infec-
tion in the lungs makes it difficult for the patient to breathe
and causes the patient to die as the virus spreads. According
to the latest guidelines published by the World Health Organi-
zation (WHO), reverse transcription-polymerase chain reac-
tion (RT-PCR) or gene sequence for respiratory or blood
samples must validate the diagnosis of coronavirus as the main
indicator for hospitalization [6]. But it takes a long time for the
relevant kits to detect a virus, in addition to the high time
required for diagnosis, they are also less sensitive to the detec-
tion of the virus [7]. In addition, previous studies have shown
that most doctors and nurses have been infected with the
COVID-19 during salvia sampling based on RT-PCR kits
[8]. These kits are also limited in the world and require trans-
port costs. According to the content, the diagnosis based on
these RT-PCR kits exposes doctors and nurses to the
COVID-19 virus and is ultimately not cost-effective. There-
fore, rapid diagnosis of COVID-19 is necessary to treat and
control the disease [9].

The chest scan is another method used during the treatment
of this diseases [10]. Computerized tomography (CT) and Dig-
ital Radiography (or standard 2D X-ray) scans are among the
methods of chest imaging. DR is used to scan the body for the
diagnosis of fractures, lung infections, pneumonia and tumors.
CT is an advanced DR that provides clearer images of organs,
bones, and tissue. However, CT scans are not available in all
medical centers and are not as affordable as DR. For this rea-
son, today physicians usually use DR in the first step of diag-
nosis. Using X-ray is a faster, easier, more affordable and
more harmful method than CT [10]. After taking chest X-ray
images, the doctor should visually diagnose bacterial, viral,
COVID-19 and etc. infections. Due to exhaustion and the need
for expert personnel, visual examination-based diagnosis is
unpleasant, time-consuming and incorrect often results in
low diagnosis accuracy. Also, the image consistency of chest
X-ray has certain flaws, such as low contrast, overlapping
organs and blurred boundary, which has a significant impact
on the identification of chest X-ray pneumonia [11]. Based
on the above-mentioned facts, automatic detection of the virus
type (including COVID-19) based on chest images has gained a
lot of attention in recent researches. Automatic detection of

COVID-19 not only causes a fast diagnosis but also reduces
the workload of doctors and is useful for timely treatment
and patient mortality reduction.

Recently, various computational methods based on deep
learning have been developed for the observation and analysis
of the automatic detection of COVID-19 used X-Ray images,
which will be discussed below.

Deep Learning is a fusion of methods for machine learning,
primarily aimed at automatically extracting and classifying
images while its applications are mostly encountered in the
areas of medical image recognition, segmentation, and classifi-
cation. The creation of deep learning applications in the last
five years enables researchers to conduct a simple and pro-
found analysis of the X-Ray scans [12].

Fie et al. [13] provided an automated algorithm based on
deep learning approach for detecting infectious points in the
lungs. Xiawi et al. [14] provided an initial screening model to
distinguish between COVID-19 and viral pneumonia using
CT imaging based on deep learning methods. Narin et al.
[15] used X-ray images to automatically detect pneumonia
based on three deep transfer learning networks (Inception
V3, ResNet 50, Inception-ResNet V2). The ResNet 50 model
has performed best among the other networks offered. The
reported accuracy for the 2-stage classification of their pro-
posed algorithm is 98%. Loannis et al. [16] used 1427 X-ray
images to automatically classify three types of pneumonia (vi-
ral, bacterial and COVID-19). They used five deep transfer
learning networks (VGG, MobileNet V2, Inception, Xception,
ResNet V2) to classify three types of pneumonia. Their
research shows that the VGG network has performed better
than the other networks. The accuracy for 2-class (healthy
and COVID-19) and 3-class (viral, bacterial and COVID-19)
classification was also reported as 98.75 and 93.48, respec-
tively. Loannis et al. [17] used deep convolutional neural net-
works to automatically classify pulmonary infections from
X-ray images. The classification accuracy for 2-class and 7-
class of pulmonary infections based on MobileNet is 99.18%
and 87.66%, respectively. Pabira et al. [18] used a deep neural
network approach to the automatic detection of MERS,
SARS, and COVID-19 diseases from chest X-ray images. They
used the ResNet 50 with Support Vector Machine (SVM) in
their proposed model and achieved 95% accuracy in the clas-
sification of diseases. Khalifa et al. [19] used Generative Adver-
sarial Networks (GANs) with fine-tuned deep transfer learning
infections for automated detection of pneumonia from chest
X-ray imagery. In their research, AlexNet, GoogleNet,
SqueezNet, and ResNet18 were selected as deep transfer learn-
ing models for the automatic detection of pneumonia. The
accuracy reported by these researchers for classifying 2-class
of pneumonia is approximately 99%. Huaiguang et al. [11]
used deep neural networks in the fusion with random forest
to automatically classify 2-class of pneumonia. They also used
an adaptive median filter to remove the noise from the X-ray
images. The final accuracy reported by these researchers for
the classification of 2-class of pneumonia is 97%. Chuchan
et al. [20] used X-ray images to automatically detect of pneu-
monia. In their proposed model, the researchers used five deep
transfer learning networks (AlexNet, DenseNet, Inception V3,
ResNet 18, and GoogleNet) and data augmentation tech-
niques. The final accuracy reported by these researchers for
the classification of 2-class of pneumonia is 96%. Stephen
et al. [21] proposed an efficient deep learning model for
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Table 1 The number of images used for each group (healthy, covid-19, bacterial and viral).
Groups Healthy COVID-19 Bacterial Viral
Number of Images 2923 371 2778 2840
Fig. 1 The Chest X-ray images for four healthy, bacterial, viral, and COVI-19 groups (from left to right) respectively.
classifying pneumonia from chest X-ray images. Their network
architecture consisted of 4-convolutional layers and 2-dense Table 2 Scenarios considered in this work.
layers. The researchers found 93.7.% accuracy in class%fying Case Account
two classes, healthy and pneumonia. Liang et al. [22] intro-
duced a transfer learning method with a deep residual network ! Healthy vs COVID-19° .
. . . . 11 Healthy vs Pneumonia (Viral, Bacterial and COVID19)
to automatically classify two classes of pneumonia. Their pro- . .
. R 111 Healthy vs COVID-19 vs Viral and Bacterial
posed deep network consisted of 49-convolutional layers and v N AL O e ]
2-dense layers. Eventually, the researchers achieved 96.70% v Healthy vs Covid-19 vs Viral
accuracy and 92.7% f-1 score. Noor et al. [23] Used deep learn- VI COVID-19 vs Bacterial vs Viral
ing networks to automatically detect 3 classes of pneumonia VII Healthy vs COVID-19 vs Bacterial vs Viral

(viral, COVID-19, and, normal) based on chest X-ray images.
Their proposed model for the feature extraction section con-
sisted of 5 convolutional layers. The researchers also used
the SVM, the K-nearest neighbors (KNN), and the decision
tree for the classification section of their proposed network.
The best performance of their proposed network based on
SVM classifier was 98.97%, 89.39%, and 99.75%, and 96.72
accuracy, sensitivity, and specificity respectively. Brunese
et al. [24] used X-ray images to automatically detect the
COVID-19. They used an improved VGG16-transfer learning
network to diagnose the two healthy and COVID-19 classes.
The final accuracy reported by these researchers is about
98%. Also, the detection time based on their proposed modi-
fied network is about 2.49 s. Loannis et al. [25] introduced a
new deep neural network to automatically detect COVID-19
based on chest X-ray images. They used a database of 1427
chest X-ray images to evaluate their algorithm. The best accu-
racy, sensitivity, and specificity achieved by these researchers
for the classification of three different groups of healthy,
COVID-19, and Pneumonia, were 96.78%, 98.66%, and
96.46% respectively. Wang et al. [26] used COVIDnet (based
on CNN) to automatically detect COVID-19 using X-ray
images. The researchers used the CXR database, containing
13,975 X-ray images of the chest, to evaluate their algorithm.
The final accuracy achieved by these researchers was 93.3%.
Foysal et al. [27] used three different models of CNN networks
to automatically detect COVID-19 using X-Ray images. A
database of 5863 X-ray images was used to evaluate their algo-
rithm. The best performance (accuracy and precision) of the
proposed method by these researchers was 97.56% and
95.34% respectively. Ardakani et al. [28] used deep transfer
learning networks based on CT images to diagnose between

two classes of COVID-19 and non-COVID-19. They used 10
deep transfer learning networks, including ResNet-50, VGG-
16, SqueezeNet, ResNet-101, MobileNet-V2, AlexNet, VGG-
19, Xception, ResNet-18, and GoogleNet, and achieved
promising results based on the Xception network. The final
accuracy reported by these researchers based on the Xception
network is about 99%. Jaiswal et al. [29] used chest CT images
to automatically diagnose between the two classes (COVID-19
and non-COVID-19). In their research, they used a combina-
tion of a deep DenseNet transfer learning with convolutional
networks. The final accuracy reported by these researchers
for separating the two classes is reported to be about 96%.
Horri et al. [30] used 3 types of medical imaging (X-ray, Ultra-
sound, and CT) to automatically detect the two classes of
COVID-19 and healthy. In their research, they used an opti-
mized deep VGG transfer learning network. The precision of
their classification for three different imaging modes (X-ray,
CT, and Ultrasound) was reported to be 86%, 84%, and
100% respectively.

As is evident, most of the previous studies have used deep
transfer learning approaches to classify between the two classes
of pneumonia and healthy, and have achieved promising
results. However, as can be seen, most of the previous research
focused only on classifying the two healthy and pneumonia
classes from the chest X-ray images (The number of studies
conducted in a binary study for the automatic detection of
COVID-19 is much higher than those based on multi-class
studies). Obviously, in order to enter into recent research in
the field of medical application, it is necessary to examine more
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Fig. 2 The basic architecture of LSTM network.

comprehensive scenarios for the classification of different
pneumonia states. In this study, 7 different scenarios of viral,
bacterial, and COVID-19 from the chest X-ray images will
be examined, provided that high accuracy is achieved in order
to separate classes from each other.

In contrast to other methods that rely solely on transfer
learning approaches or traditional handcrafted techniques to
achieve remarkable classification performance, In the pro-
posed method GAN networks are used together with a fusion
of the deep transfer learning and LSTM networks (proposed
DNN model) to train and separate 2 to 4 classes in 7 different
and functional scenarios according to healthy, viral, bacterial,
and COVID-19 groups. In the proposed DNN, at first pre-
processing operations are performed on the chest X-ray images
based on GANSs; then a fusion of a deep transfer learning (base
part) and LSTM (head part) network is used to train and clas-
sify different groups of pneumonia. The proposed DNN can
be viewed as an end-to-end classifier in which there is no need
for a process of selection/extraction of features and the neces-
sary features of each class would be learned automatically with
a proposed DNN.

The remainder of the paper is divided as follows: Section 2
outlines the specifics of the related database based on the chest
X-ray image and the underlying mathematical context of the
GAN, CNN, and LSTM networks. In Section 3, the suggested
method is presented. The results of the simulation and compar-
ison of the proposed method with the other conventional
methods are set out in Sections 4 and 5; the conclusion is
finally set out in Section 6.

2. Materials and methods

In this section, the database used is first described based on the
chest X-ray images, then the mathematical background related
to the deep networks including CNN, LSTM, and GANs will
be provided.

2.1. Chest X-ray databases

For the experiment, six different reputable and reliable data-
bases based on chest X-ray images were used. Recently, these
databases have been widely used in studies involving automatic

detection of COVID-19 [31-36]. These datasets consist of the
posterior-anterior chest image of patients with pneumonia.
These chest X-ray images include four different categories of
healthy, viral pneumonia, bacterial pneumonia, and COVID-
19 pneumonia. The number of each X-ray images in each
group is shown in Table 1. Fig. 1 shows four different cate-
gories of the chest X-ray images. As can be seen from Fig. 1,
there is no noticeable difference between viral groups and
COVID-19, and this is not visually recognizable.

In this study, we have considered seven different scenarios
for the chest X-ray images to separate 2 to 4 classes according
to healthy, viral, bacterial, and COVID-19 groups. The scenar-
ios considered in the study are shown in Table 2. These scenar-
ios are very useful in the field of medicine.

2.2. Convolutional neural network (cnn)

CNNs are one of the most important deep learning methods in
which several layers are trained in a powerful way. These net-
works are highly efficient and are now recognized as one of the
most common methods for various applications of machine
vision and medical image processing. In general, a convolu-
tional neural network consists of three main layers: the convo-
lution layer, the pooling layer, and the fully connected (FC)
layer which different layers perform different tasks. Details
of each layer are provided below [37,38]:

e Convolution layer: using some imaging techniques such as
sharpening, smoothing, noise cancellation and edge detec-
tion, the image is used as input and extracts its specific
specifications.

e Pooling layer: reduces the dimension of the feature matrix
and retains important features.

e Fully connected layer: injects the result of the flattening
layer into one or more neural layers to make a classification
prediction [39-42].

2.3. Long short-term memory (Istm)

Recurrent neural networks (RNNs) are powerful deep learning
networks that are commonly used for sequential data. These
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Fig. 4 The block diagram related to the proposed DNN model.

networks were first used for the processing and recognition of
natural languages. In fact, language data can be thought of as
sequences such as words (sequence of particles), phrases (se-
quence of words), and documents (sequence of sentences).
RNNs have two main advantages that have been used in the
proposed architecture: first, these networks have benefits in
the analysis of nonlinear time series compared to other linear
methods. Second, with the efficient architecture of RNNs,
the data input dimension can be reduced, ultimately reducing
the computational load of the algorithm and facilitating the
process of using the algorithm for real-time systems. Some
applications need only new information for training, while
others may request more information from the past. In learn-

ing, the standard RNNs lag as the distance between the previ-
ous knowledge needed and the point of requirement increases
to a large extent. But luckily, long short-term memory (LSTM)
Networks, a special type of RNN are able to learn such scenar-
ios. These networks were introduced by Hochreiter and Sch-
midhuber in 1997. The LSTM is good at remembering
information for a long time. As previous information may fur-
ther affect the accuracy of the model, the use of LSTM has
become a widely used choice for researchers [43-46]. Fig. 2
shows the basic architecture of LSTM network.

Module LSTM has four layers of neural networks that
interact with each other in a unique way. As shown in
Fig. 2, the LSTM module has three gate activation functions
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and two output activation functions. The symbols (7) and ()
represent the multiplication and addition of elements, respec-
tively. The concatenation operation is also indicated in the
symbol (e) bullet. The basic component of the LSTM module
is its cell state; the memory line running from the previous
block (S,.;) to the current block (S,). This allows information
to flow down the line directly. The network can also determine
the amount of the previous information flow that is controlled
through the first layer (o;). The operation performed in this
layer is described in Equation (1). The new information stored
in the cell state is calculated using two layers of the network. A
sigmoid layer (o,) that decides to update the values (;) in
Equation (2) and tanh layer (¢;) that develops the vector of
the new candidate values (S;) as shown in Equation (3). In this
state, a combination of both is added. Finally, cell status is
updated using Equation (4) [44-46].

cf, = 01 (W [0, x, + byl) (1)
I, = 0,(W1.[0,-1 x,) + 1)) (2)
S, = tanh(W,.]0,1.x, + by)) (3)
Se=cf, xS, +1, x Sy (4)

In this research, a combination of CNN and LSTM net-
works was used to automatically detect pneumonia (healthy,
viral, bacterial and COVID-19) from chest X-ray images.

2.4. Generative adversarial networks (GANS)

GANSs were first introduced by Lan Goodfellow in 2014 [47].
In recent years, these networks have received a great deal of
attention in the field of deep learning. GANs using convolu-
tional neural network architecture can learn the dataset (such
as the chest X-Ray images) used in experiments and generate a
new and real dataset that is not available in the previous data-
set. Among the applications of this network in the field of
machine vision, we can mention the production of video and
video content, feature extraction in the form of unsupervised
learning, image coding and super-resolution imaging, analysis,
and synthesis of speech.

The GANSs consist of two main generator (G) and discrim-
inator (D) networks. These two components are acting exactly
opposite each other. The generator starts its work by creating
noisy images from input data. The generator has a duty to pro-
duce images as natural and as real as possible. The discrimina-
tor is responsible for distinguishing the images from the
artificial images. For example, in the present study, the

Fig. 5 Aurtificial images generated by the GAN networks in order to balance the samples of the COVID-19 group.
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discriminator must look at the chest X-ray images produced by
the generator in order to determine if these images look natu-
ral enough. In these networks, D indicates the probability that
the input is part of the original data. Network D is taught in
order to maximize the accuracy of distinguishing the original
data from the generated data. On the other, the G network
is simultaneously trained to mislead the D network, which
minimizes the following function:

log(1 = D(G(z)) (5)
Finally, the following function is minimized:

min max

. V(G,D) = E\_pauallogD(x)] + Eszm [log(1 — D(G(2))]

(6)

According to the above Equation, D is extracted in such a
way that it can correctly distinguish between real and artificial
data. This Equation cannot be resolved as a closed-form and
must be resolved by means of repetitive and numerical meth-
ods [47]. Fig. 3 shows the described contents graphically.

In this paper, samples from each group of the X-ray images
are balanced using GAN networks at first; Then, we used a
fusion of deep transfer learning (base part) and LSTM (head
part) networks to automatically classify the pneumonia
(healthy, viral, bacterial and COVID-19) from chest X-ray
Images. We'll see that these two networks’ fusion will increase
the accuracy and decrease the oscillation. In Section 3, details
of each move will be clarified.

3. Suggested DNN model

In this section, the specifics of the suggested model will be pre-
sented based on deep networks for the automatic classification
of pneumonia. This section is organized into three subsections,

including pre-processing, proposed network architecture and
data allocation. Fig. 4 displays the block diagram of the sug-
gested DNN model. According to the proposed block dia-
gram, the chest X-ray images first enter the pre-processing
stage. Operations such as normalization and resizing are per-
formed on images in this part. In the second step, the data will
be entered into the GAN network in order to balance the data
of each class. The data is then entered into the proposed DNN
for automatic feature selection/extraction and classification.
Finally, according to the proposed DNN, the chest X-ray
images will be classified into four classes: healthy, COVID-
19, viral and bacterial. In the following, more detail will be
provided on each step of the proposed method.

3.1. Pre-processing

In this section, the pre-processing operations on chest X-ray
images are described in four different steps. Due to the fact
that original X-ray images received from six different data-
bases had different colors and formats, first all images have
been normalized between zero and 1. Second, the images have
been resized to a size of 224 x 224 pixels. The resize is done to
facilitate experimentation as it allows for a considerable
decrease in computational time. As shown in Table 1, the num-
ber of chest X-ray images of each group is not equal due to the
limitation of the COVID-19 samples. This imbalance of classes
will lead to over-fitting problems and poor classification per-
formance. The GAN networks were used to overcome this
problem in the third step. Due to the small number of
COVID-19 samples in Table 1, GAN networks were used to
artificially increase the number of samples in the COVID-19
group. This process helps to solve the problems of over-
fitting and enhances the ability to generalize the model during
training. The generator network takes a vector of 100 random

Table 3 The Number of X-ray images before and after using GAN networks.

Groups Healthy COVID-19 Bacterial Viral
Before GANs are Used 2923 371 2778 2840
After GANs are Used - 2471 - -
Total 2923 2842 2778 2840
Table 4 Details of the modified part of training phase of the proposed deep neural network architecture.

L Layer type Activation function Output Shape Size of Kernel and Pooling Strides Number of filters padding
0-1 Average Pooling 2-D  — (None, 2048, 1, 1) 4 x 4 Ix1 - no

1-2 Convolutionl-D Leaky ReLU (None, 256, 16) 120 x 1 x1 16 yes

2-3 Max-Poolingl-D - (None, 128, 16) 2 x 1 2x1 - no

34 Convolutionl-D Leaky ReLU (None, 128, 32) 3x1 Ix1 32 yes

4-5 Max-Poolingl-D - (None, 64, 32) 2 x 1 2x1 - no

5-6 Convolutionl-D Leaky ReLU (None, 64, 32) 3x1 Ix1 32 yes

67 Max-Poolingl-D - (None, 32, 32) 2 x 1 2x1 - no

7-8 Convolutionl-D Leaky ReLU (None, 32, 64) 3 x 1 I x1 64 yes

8-9 Max-Poolingl-D - (None, 16, 64) 2 x 1 2x1 - no

9-10 LSTM Leaky ReLU (None, 100) - -

10-11 LSTM Leaky ReLU (None, 100) - - -

11-12  Fully-connected Leaky ReLU (None, 80) = = =

12-13  Fully-connected Softmax (None, 2-3-4) - - -
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Table 6 The X-ray images data allocation in the proposed
DNN model for training, validation, and test sets.

Table 5 Number of parameters and samples in the proposed Scenarios  No. of Samples ~ No. of Samples  No. of Samples
DNN model for each scenario. for Training for Validation for Testing
(70%) (10%) (20%)

Scenarios No. of Samples No. of Parameters I 4035 576 1153

I 5765 23,070,030 1 4092 584 1169

I 5845 23,070,030 I 6081 868 1738

I 8687 23,070,131 v 5980 854 1709

v 8543 23,070,131 \% 6024 860 1721

A% 8605 23,070,131 VI 5922 846 1692

VI 8460 23,070,131 VII 7968 1138 2277

VII 11,383 23,070,232
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Fig. 7  The results of the confusion matrix for each of the scenarios.

entities from a uniform distribution as input and outputs a sig-
nal of size 50,176 (224 x 224). The network architecture con-
sists of four dense fully-connected layers (256, 512, 1024, and
50,176) where each layer is followed by a Dbatch-
normalization layer. We used Leaky-Relu as the activation
function in hidden layers and tanh activation function at the
end of the network. The discriminator network takes the input
of size 50,176 and outputs a decision (if the images are real or
fake). In this network, four dense fully-connected layers are
used (1024, 512, 256, and 1), where each layer is followed by
a dropout layer. We used Leaky-Relu as the activation func-

tion in hidden layers and the sigmoid activation function at
the end of the network. The training process is performed by
Mean Squared Error (MSE) [48] cost function and binary
cross entropy optimizer [49] with a learning rate of 0.0002
and batch size 10 for 1000 epochs in GAN network. Fig. 5
shows the artificial images generated by the GAN networks
for the COVID-19 group. Table 3 shows the number of chest
X-ray images before and after using the GAN networks.
According to Table 3, after using GAN networks, the number
of samples in the COVID-19 group is almost equal to that of
other groups. In the fourth step, all images are converted to
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an RGB format; so, all images have been resized to a size of
224 x 224 x 3.

3.2. Proposed architecture

In the suggested architecture, a model was designed based on
the pre-trained Inception V4 network to improve the overall
the Inception V4 [50] network structure for feature extraction.
We improved the Inception V4 network and fine-tuned with
pre-trained weights the new Inception network. During the
training process, the original Inception part (base part) was

not trained, and only the improved part (head part) was
trained.

In the proposed network, the pre-trained Inception V4 net-
work fusion with a modified part contains 3 convolution 1D, 2
LSTM, and 2 fully connected layers. For the implementation
of the suggested DNN, a cross-library in Python programming
language is used. The architecture of the improved component
has also been selected as follows: I. An Average Pooling layer
that followed by batch normalization and dropout layers. II. A
convolutional layer with a nonlinear Leaky-Relu function,
followed by batch normalization and dropout layers with a
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Fig. 8 The bar-chart diagram for the classification of the all scenarios (I-VII).
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Fig. 9 The Accuracy of the proposed network for the classification of first and seventh scenarios for training and validation data in 200
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max-pooling layer. III. The Architecture of the previous phase
is repeated 2 times. IV. The previous output of the architecture
connects to the 2 LSTM layers with nonlinear Leaky-Relu
functions that are accompanied by batch normalization and
dropout layers. V. A 2D matrix is attached to the output of
the previous architecture. VI. To access the output layer, two
fully-connected layers are used. Table 4 displays the specifics
about the suggested architecture of the DNN. As shown in
Table 4, the reduction in the dimensionality of the hidden lay-
ers continued from 224 x 224 x 3 to 80. Finally, the selected
feature vector was linked with the nonlinear Softmax function
to the fully connected layer. The proposed DNN model is
influenced by two main interferences, the wide kernel in the
first convolution layer and the small kernels in the remaining
updated component layers. The first interference is more cap-
able of removing high-frequency noises compared to small ker-
nels, and the second interference is more capable of reflecting
the input features; thus, enhancing the overall network effi-
ciency. Fig. 6 shows the graphical architecture of the proposed
deep neural network.

3.3. Training and evaluation

All hyper-parameters for the proposed DNN model are care-
fully modified to achieve the best convergence rate and to eval-
uate these hyper-parameters, the trial-and-error process is
followed. Finally, the training process is carried out with a
learning rate of 0.001 and batch size 10 through the Mean
Squared Error (MSE) cost function and RMSProp optimizer.
Table 5 shows the total number of parameters and samples for
each of the scenarios. Also, Table 6 shows samples for train-
ing, validation, and test sets for each scenario. According to
Table 6, 80 percent are randomly chosen for training and the
remaining 20 percent are selected as the test set. In addition,

10 percent of the data are used for validation for the training
collection.

4. Simulation results

In this section, the results of the suggested DNN model for
automatic classification of pneumonia will be presented. Then,
the results of the proposed method will be compared with
recent methods. All experiments were performed on the Goo-
gle Collaboratory system using 14 GB of RAM and the Tesla
K80 GPU graphics card. Fig. 7 shows the confusion matrix of
all scenarios. According to Fig. 7, the accuracy of all scenarios
is more than 90%, except one of them. According to Fig. 7, the
classification accuracy of the proposed algorithm for two
groups (healthy vs COVID-19) is above 99%. As can be seen
from the confusion matrix in Fig. 7, for the first scenario,
which is related to the classification of two classes of
COVID-19 and healthy, 564 samples of COVID-19 from the
test set were correctly identified by the proposed network,
while only 2 samples were misdiagnosed. Furthermore, Fig. 8
shows the bar-chart diagram of sensitivity, precision, speci-
ficity, and accuracy for classification of all scenarios. In addi-
tion to the accuracy obtained, the precision, sensitivity and
specificity values for classification of all scenarios are very
promising, as shown in Fig. 8. It is also observed that the
results obtained in terms of accuracy, sensitivity, accuracy,
and specificity for the separation of the healthy group from
COVID-19 pneumonia (scenario I) are approximately 99%:;
This indicates the perfect performance of the proposed algo-
rithm. Also, Fig. 9 shows the accuracy of the proposed net-
works for the classification of scenarios I and VII for
training and validation data in 200 iterations. As can be seen
from Fig. 9, the accuracy of the classification for the first
and seventh scenarios reaches 99% and 91%, respectively. It
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Fig. 10  The network error of the proposed network for the classification of first and seventh scenarios for training and validation data in

200 iterations.
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is also observed the steady-state value for the classification
accuracy of the first and seventh scenarios from about 80th
and 100th iteration, respectively. Fig. 10 shows the loss func-
tion for the classification of the first and seventh scenarios.
As we can see from Fig. 10. The network error for first sce-
nario classification decreases as the number of iterations rises
and approaches its steady-state value from about the 80th iter-
ation. According to Fig. 10 the network error for scenario I
will eventually be reduced from 0.098 to 0.0052. Also, it can
be seen from Fig. 10 the steady-state value for classification
of seventh scenario from about 95th iteration. According to
Fig. 10 the network error for scenario VII will eventually be
reduced from 0.08 to 0.03. To further analyze the proposed
method, the t-SEN diagram for the classification of all scenar-
ios for the last FC layer is shown in Fig. 11. As shown in
Fig. 11, almost all of the COVID-19 samples were separated
from the healthy ones in the first scenario.

This is evidence of the high performance of the proposed
DNN architecture. The number of positive and negative vali-
dation set samples used for evaluating the efficiency of the
model is unbalanced; Therefore, the Receiver Operating Char-

acteristic (ROC) curve analysis of our model for the classifica-
tion of all scenarios is shown in Fig. 12 in order to determine
the high performance of the suggested method.

For further analysis, the performance of the proposed
DNN model is compared to other deep transfer learning net-
works that have recently been used in pneumonia diagnostic
studies. From deep transfer learning networks including Mobi-
leNet [51], VGGI16 [52], Inception V4 [53] and Inception-
ResNet V2 [54] have been used for comparison purposes for
classification of seventh scenarios. The networks selected for
comparison have been used as a proposed algorithm in recent
studies for the identification of COVID-19. According to
Fig. 13, the reliability of the proposed DNN, MobileNet,
VGG16, InceptionV4, and Inception-ResNetV2 reaches
91%, 87.7%, 84.6%, 82.4, and 87.5%, respectively after 200
iterations. Fig. 14 also shows the network error of the pro-
posed DNN as compared to the MobileNet, VGG16, Incep-
tion V4, and Inception-ResNet V2 networks. According to
Fig. 13 and 14, it is observed that the proposed DNN has
the highest accuracy and the lowest error compared to other
networks for the classification of pneumonia. The confusion
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matrix, the ROC analysis and the t-SEN chart of the last layer
of each of the compared networks for the seventh scenario
classification are also shown in Fig. 15. According to
Fig. 15, it can be seen that the compared networks have been
able to differentiate between COVID-19 samples with lower
accuracy than the proposed DNN model, but these networks
have not been very successful in separating other pneumonia,
including bacterial from viral samples. Also, Fig. 16 shows
the bar-chart diagram of specificity, precision, sensitivity,
and accuracy for each of the compared deep transfer learning
networks. Therefore, according to the above facts, the pro-
posed DNN model has been able to provide the best perfor-
mance compared to the other networks for classification of
the pneumonia (including COVID-19) from the chest X-ray
images.

Table 7 shows the computational complexity of the running
time for the training and testing process of the proposed DNN
for each of the scenarios. The computational complexity for
the classification of the seventh scenario for each of the com-
parative networks in 200 iterations is also shown in Table 8.
According to Table 8, the proposed network does not have
the lowest test running time compared to the other networks,
but given the good performance of the proposed network in
terms of accuracy, precision, sensitivity and specificity, the test
running time for the proposed network is still promising.

White Gaussian noise was applied to raw chest X-ray
images in different SNRs to test the proposed algorithm
against observation noise. The noise added to the images in
the various SNRs (—4 to 20 dB) is shown in Fig. 17. The accu-
racy of the classification of each network (proposed DNN
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Table 7 The X-ray images data allocation in the proposed
DNN model for training, validation, and test sets.

Case Train (for each iteration) Test (for all of the data)
1 15s 3s
11 14s 3s
I 23s Ss
v 21's 5s
\4 23 s Ss
VI 2l's 5s
VII 29 s 7s

model, MobileNet, VGG16, Inception V4 and Inception-
ResNet V2) for each SNR is reported in Fig. 18. As can be
seen, the classification accuracy of the proposed DNN is con-
siderably robust to the measurement noise in a wide range of
SNR, so that the accuracy is still more than 80% for SNR
0-20 dB; This is due to the fact that in the proposed network
architecture, the wide kernel in the first convolution layer and
small kernels in the remaining modify part have been used.
Based on the available evidence, the proposed algorithm may
also be used for low-contrast and noisy X-ray images.
Despite the good performance of the proposed method for
the classification of pneumonia based on chest X-ray images,
this work, like other studies, also has limitations. Due to the
limitations of the COVID-19 samples, a clinical validation
study based on a larger dataset with more COVID-19 samples
is needed to check the performance of the proposed network.
Furthermore, with a realistic review, in order to include the

MobilNet V2
Deep Transfer Learning Networks

VGG 16

The sensitivity, accuracy, precision and specificity for the classification of seventh scenarios for each of the compared networks.

proposed method in the field of application, it is necessary to
examine several scenarios, including SARS and MERS dis-
eases, unfortunately, have not been carried out due to lack
of access to these databases. However, with the extension of
the suggested method, this method can be used in the near
future as a medical assistant to diagnose a variety of diseases
(including COVID-19) from chest X-ray images with an accu-
racy of more than 90%. As a result, the use of the proposed
method will be reducing the use of expert human resources,
reduce the error of visual recognition, reduces infection with
the virus, and reduces mortality.

5. Discussion

The advantages and disadvantages of the proposed method are
examined in this section. Table 9 compares the performance of
the proposed method with recent research. As can be seen from
Table 9, the suggested method is superior to recent methods in
terms of the number of classes classified and the scenarios
studied.

The distribution of data for training and evaluation sets is
the same in all previous studies. However, due to variations in
datasets, techniques, and different simulation environments, it
is important to be aware that a one-to-one comparison is not
feasible. According to available evidence, many people have
been infected with COVID-19 so far, however, the number
of X-ray samples of people infected with COVID-19 is small
and there is no comprehensive database for chest X-ray images
of COVID-19. Based on the review and description of the
experimental data related to this study and other studies, it

Table 8 Comparison of the proposed network’s computational complexity with MobileNet V2, Inception-ResNet V2, InceptionV4,
and VGG16 for classification of the fourth scenario (Healthy, COVID-19, Bacterial and Viral) in 200 iterations.

P-M MobileNet V2 Inception-Resnet V2 Inception V4 VGG16
Case Train Test Train Test Train Test Train Test Train Test
VIII 5800 7s 2200 3s 10,800 14s 4800 6s 6600 8s
1 3000 3s 1200 1.5s 5200 7s 2400 3s 3000 4s
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Fig. 17 White Gaussian noise added to chest X-ray images in the different ranges of SNR.
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Fig. 18 Comparison of the proposed DNN model robustness
with the compared networks in terms of accuracy against additive
white Gaussian noise.

is noted that researchers need to use a number of data sets in
combination to eliminate the defect; however, the lack of
COVID-19 samples is still evident. In this study, GAN net-
works have been used to address the lack of COVID-19 sam-
ples; these networks have recently been used extensively in
the field of machine learning and are highly reliable. In the
proposed architecture, we also used a modified deep pre-
trained network in combination with LSTM networks. The
modified pre-trained deep network consisted of two compo-
nents, including the base and the head which only the head sec-
tion has been trained from the beginning. Also, as seen from
the results section, LSTM networks combined with pre-
trained networks have reduced oscillation, increased speed

and convergence, and increased the accuracy of the algorithm.
In addition, the proposed model works in accordance with the
end-to-end learning principle and does not use handcrafted
features. As a result, an efficient, fast, and reliable model has
been built and promising results have been achieved. Of
course, it should not be forgotten that our proposed model
has still been evaluated on the scale of several small COVID-
19 databases. However, this is not a cause for concern, as we
anticipate that, given the nature of the proposed deep network,
only training time will increase as the size of the database
increases.

6. Conclusion

In this work, an automatic method for classifying pneumonia
(including COVID-19) using chest X-ray images based on the
proposed DNN was presented. The chest X-ray images were
used in the proposed method to separate 2—4 classes into 7
specific and functional scenarios according to healthy, viral,
bacterial, and COVID-19 groups. We have achieved an accu-
racy of more than 90% in all scenarios except one, which is
very promising compared to recent research. We also com-
pared our proposed DNN with other deep transfer learning
networks (Including Inception-ResNet V2, Inception V4,
VGGI16, and MobileNet) that have recently been used in pneu-
monia studies and we achieved very promising results. Fur-
thermore, the classification accuracy of the proposed DNN is
considerably robust to the measurement noise in a wide range
of SNR. Due to the good performance of the proposed algo-
rithm, it can be used as a smart computer assistant in the field
of medicine for rapid diagnosis of pneumonia types (including
COVID-19). It is also expected that the use of the suggested
automatic method will reduce medical costs, reduce the inci-
dence of nurses and doctors to the COVID-19 during swab
sampling, and reduce future mortality in the future.
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Table 9 Comparison of the proposed network performance with recent studies.

Methods Dataset # of classes Acc (%) Se (%) Sp (%)
Khalifa et al. [19] Private 2 99 - -
Huaiguang et al. [11] Private 2 97 - =
Chuchan et al. [20] Public 3 96.39 - -
Stephen et al. [21] Public 2 95 = =
Liang et al. [22] Public 2 90 - -
Noor et al. [23] Public 3 98.97 89.39 99.75
Brunese et al. [24] Public 2 96 96 98
Loannis et al. [16] Public 2 93.48 92.85 98.75
Ardakani et al. [25] Private 2 99.02 98.04 100
Jaiswal et al. [26] Public 2 96.25 9629 96.21
Ucar et al. [54] Public 3 98.26 99.13 -
Narin et al. [15] Public 2 98 - -
Proposed DNN Model Public 4 class / 7scenarios 99.5 100 99.02
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