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FIXED POINTS AND ITS APPLICATIONS IN C∗−ALGEBRA VALUED

PARTIAL METRIC SPACE

A. TOMAR1, M. JOSHI1, A. DEEP2, §

Abstract. We familiarise with the concepts of contractiveness and expansiveness in
a C∗−algebra valued partial metric space and create an environment for the existence
of fixed point in it. We solve an integral equation and an operator type equation as
an application of main result. Further we give some examples to elaborate C∗−algebra
valued partial metric space and show that there exist situations when a partial metric
result can be applied, while the standard metric one cannot.
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1. Introduction

A C∗−algebra is frequently used to explain a physical system in quantum field theory
and statistical mechanics and consequently has emerged as an important area of research
(see for instance [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [17] and references there
in). Recently Chandok et al. [5] familiarised with the idea of C∗−algebra valued partial
metric space combining the notions of partial metric spaces introduced by Matthews [11]
and C∗−algebra valued metric spaces introduced by Ma et al. [10]. Motivated by the fact
that the expansion of metric fixed point theory essentially rely on improving the existing
contractive conditions or obtaining some variant of a metric space, we introduce the con-
cepts of contractiveness and expansiveness in a C∗−algebra valued partial metric space
like: C∗−algebra valued contractive map, C∗−algebra valued expansive map, C∗− algebra
valued Chatterjea-type contractive map and C∗−algebra valued Kannan-type contractive
map and obtain some interesting fixed point results. The basic idea comprises in utilising
the set of all positive elements of a unital C∗−algebra as an alternative to set of real
number. Our outcomes are magnificent improvements and extensions of the existing fixed
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point results in metric spaces over the set of reals. We also present some examples to elab-
orate C∗−algebra valued partial metric space and to validate our results. Applications to
integral and operator type equations concludes the paper.

2. Prelimaries

Definition 2.1. [5] A C∗−algebra valued partial metric is a function p : X ×X −→ A on
a non-empty set X if:

(i) θ � p(u, v) and p(u, u) = p(v, v) = p(u, v) iff u = v, where θ is zero element of A;
(ii) p(u, u) � p(u, v);

(iii) p(u, v) = p(v, u);
(iv) p(u, v) � p(u,w) + p(w, v)− p(w,w), u, v, w ∈ X .

In this case (X ,A, p) is a C∗−algebra valued partial metric space.
For details on C∗−algebra one may refer to [13] and [17]. Now we give an example of

C∗−algebra valued partial metric space.

Example 2.1. Let F (X ) be collection of balls such that Nρ(u) = {v : d(u, v) ≤ ρ, ρ > 0, u, v ∈ X}
and A = Mn(C) be the C∗−algebra of complex matrices.
If A = [aij ] ∈ A then A∗ = [āji] is non-zero element of A.
Norm is defined as, ‖A‖ = sup {‖Aα‖2 : α ∈ Cn, ‖α‖2 ≤ 1}, where ‖.‖2 is the usual l2−norm
on Cn.
Define p : F (X )× F (X ) −→ A by p[Nρ(u), Nσ(v)] = |u− v|AA∗ + max {ρ, σ} I.
Then p is a C∗−algebra valued partial metric but is neither C∗−algebra valued metric nor
standard partial metric, since p[Nρ(u), Nρ(u)] = ρ 6= θ and

p[Nρ(u), Nτ (v)] = |u− v|AA∗ + max {ρ, τ} I
� [|u− w|+ |w − v|]AA∗ + [max {ρ, σ}+ max {σ, τ} − σ]I
= p[Nρ(u), Nσ(w)] + p[Nσ(w), Nτ (v)]− p[Nσ(w), Nσ(w)].

If A = R, then the C∗−algebra valued partial metric reduces to the standard partial
metric.

Lemma 2.1. [10] Let A be a unital C∗−algebra with a unit I.
(i) If α ∈ A+ and ‖α‖ ≤ 1

2 then I − α is invertible and
∥∥α(I − α)−1

∥∥ ≤ 1.
(ii) If α, β ∈ A, α, β � θ and αβ = βα, then αβ � θ .

Remark 2.1. [8] It is worth mentioning that u � v implies ‖u‖ ≤ ‖v‖ , ∀u, v ∈ A+.

Definition 2.2. [5] Let A be a unital C∗−algebra, then a continuous function Ω : A+ ×
A+ −→ A is a C∗−class function if:
(i) Ω(ξ, ϕ) � ξ;
(ii) Ω(ξ, ϕ) = ξ implies either ξ = θ or ϕ = θ, ξ, ϕ ∈ A.

Let ψ denote the set of all continuous functions ψ : A+ −→ A+ such that:
(i) ψ is continuous and non decreasing;
(ii) ψ(T ) = θ iff T = θ.

3. Main Results

Following Ma et al. [10], first we familiarize with the notions of contractiveness and
expansiveness in C∗−algebra valued partial metric space (X ,A, p) and then utilize these
notions to establish unique fixed point. In the following section A∗ denotes set of non-zero
operator of A.
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Definition 3.1. A self-map T of (X ,A, p) is called C∗−algebra valued contractive map if
there exists an A ∈ A∗, ‖A‖ < 1, satisfying p(Tu, Tv) � A∗p(u, v)A for all u, v ∈ X .

Example 3.1. Let X = C and A = M2(C) with ‖A‖ = maxi

{
Σj |aij |2

}
, i, j = 1, 2.

Define T : X → X and a C∗−algebra valued partial metric as:

Tu = u
4 and p(u, v) =

[
max {|u| , |v|} 0

0 max {|u| , |v|}

]
, u, v ∈ X .

Now
p(Tu, Tv) = p(u4 ,

v
4 )

=

[
max

{∣∣u
4

∣∣ , ∣∣v4 ∣∣} 0
0 max

{∣∣u
4

∣∣ , ∣∣v4 ∣∣}
]

=

[
1
2 0
0 1

2

] [
max {|u| , |v|} 0

0 max {|u| , |v|}

] [
1
2 0
0 1

2

]
= A∗p(u, v)A,

where A =

[
1
2 0
0 1

2

]
and ‖A‖ = 1

4 < 1. Hence T is a C∗−algebra valued contractive map.

Definition 3.2. A self-map T of (X ,A, p) is called C∗−algebra valued expansive map if
there exists an invertible element A ∈ A∗, satisfying
(i) T (X ) = X .
(ii) p(Tu, Tv) � A∗p(u, v)A, for all u, v ∈ X and

∥∥A−1∥∥ < 1.

Example 3.2. Let X = C and A = M2(C) with ‖A‖ = max {|a11, | , |a12| , |a21| , |a22|}.
Define T : X → X and a C∗−algebra valued partial metric as:

Tu = 4u and p(u, v) =

[
|u− v − 1| 0

0 |u− v − 1|

]
, u, v ∈ X .

Now
p(Tu, Tv) = p(4u, 4v)

=

[
|4(u− v)− 1| 0

0 |4(u− v)− 1|

]
= 4

[∣∣u− v − 1
4

∣∣ 0
0

∣∣u− v − 1
4

∣∣]
� 4

[
|u− v − 1| 0

0 |u− v − 1|

]
=

[
2 0
0 2

] [
|u− v − 1| 0

0 |u− v − 1|

] [
2 0
0 2

]
= A∗p(u, v)A,

where A =

[
2 0
0 2

]
and

∥∥A−1∥∥ = 1
2 < 1. Hence T is a C∗−algebra valued expansive map.

Definition 3.3. A self-map T of (X ,A, p) is called C∗−algebra valued Chatterjea-type
contractive map if there exists an A ∈ A∗, K ∈ A+ and ‖K‖ < 1

2 satisfying
p(Tu, Tv) � K(p(Tu, v) + p(Tv, u)) for all u, v ∈ X .

Example 3.3. Let X = [0,∞) and B(X ) is set of all bounded operators, f ∈ B(X ) then
B(X ) becomes a C∗−algebra with ‖f(u)‖ = supu∈X |f(u)|.
Define T : X → X and a C∗−algebra valued partial metric as:
Tu = u

2 and p(u, v) = α(u+ v)f , 0 ≤ α < 1
2 , u, v ∈ X .

Let f be any constatnt function. Now
p(Tu, Tv) = p(u2 ,

v
2 )

= α(u2 + v
2 )f
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� α(u2 + v + v
2 + u)f

= α(p(Tu, v) + p(Tv, u)).
Hence T is C∗−algebra valued Chatterjea-type contractive map.

Definition 3.4. A self-map T of (X ,A, p) is called C∗−algebra valued Kanan-type con-
tractive map if there exists an A ∈ A∗, K ∈ A+ and ‖K‖ < 1

2 satisfying
p(Tu, Tv) � K(p(Tu, u) + p(Tv, v)) for all u, v ∈ X .

Example 3.4. Let X = [0,∞) and M2(X ) with ‖A‖ = σmax(A), where σmax(A) represents
largest singular value of A. Define T : X → X and a C∗−algebra valued partial metric as:

Tu = u
4 and p(u, v) = β

[
u+ v 0

0 u+ v

]
, 0 ≤ β < 1

2 , u, v ∈ X .

Now
p(Tu, Tv) = p(u4 ,

v
4 )

= β

[
u
4 + v

4 0
0 u

4 + v
4

]
� β

[
u
4 + u 0

0 u
4 + u

]
+ β

[
v
4 + v 0

0 v
4 + v

]
= β(p(Tu, u) + p(Tv, v)).

Hence T is C∗−algebra valued Kanan-type contractive map.

Remark 3.1. In view of Examples 3.1, 3.2, 3.3 and 3.4, we point out that any contactive
or expansive map in C∗−algebra valued partial metric space is not a contractive or expan-
sive map ([1], [2], [3] and others existing in literature) in a standard metric space, partial
metric space or C∗−algebra valued metric space.

Now we discuss the convergence of the sequence when it converges to zero element of
(X ,A, p) and introduce definitions related to it.

Definition 3.5. (i) A sequence {un}n∈N is called a Cauchy sequence in (X ,A, p) if
limn,m−→∞ p(xn, xm) exists with respect to A and is finite.

(ii) (X ,A, p) is complete if every Cauchy sequence {un}n∈N in X converges, with re-
spect to A, to a point u ∈ X and satisfy

limn,m→∞ p(un, um) = limn→∞ p(un, un) = p(u, u).

(iii) The sequence {un}n∈N in (X ,A, p) θ−converges to a point u ∈ X if
limn→∞ p(un, u) = limn→∞ p(un, un) = p(u, u) = θ.

(iv) A sequence {un}n∈N is θ−cauchy if limn,m→∞ p(um, un) = θ.
(v) (X ,A, p) is said to be θ− complete if every θ−Cauchy sequence converges to a point

u ∈ X and p(u, u) = θ.

Remark 3.2. It is worth mentioning here that if a sequence θ−converges to some point
then its self-distance as well as the self-distance of that point is equal to zero element of
C∗−algebra valued partial metric space .

Example 3.5. Define p(u, v) = I, if u = v and p(u, v) = 2I, otherwise.
If X is a Hausdorff space and B(X ) is the set of all bounded functions , then B(X ) be-
comes a C∗−algebra with ‖f(u)‖ = supu∈X |f(u)|.
Here the sequence {un} = a, n ≥ 1 is not θ−Cauchy as it converges to a. However {un}
is a Cauchy sequence.
Implying there by that every θ−Cauchy sequences in (X ,A, p) is a Cauchy sequence how-
ever the reverse implication is not necessarily true.
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Theorem 3.1. If T is a C∗−algebra valued contractive map of a θ−complete C∗−algebra
valued partial metric space (X ,A, p) then T has a unique fixed point u∗ ∈ X and Picard
sequence of iterates {Tnu0} converge, for u0 ∈ X , to u∗ and p(u∗, u∗) = θ.

Proof. If A = θ, T maps the X into a single point. So let A 6= θ. Choose u0 ∈ X and
define un+1 = Tun = Tn+1u0, n = 1, 2, . . . and B = p(u1, u0).
Since
p(un+1, un) = p(Tun, Tun−1) � A∗p(un, un−1)A

� (A∗)2p(un−1, un−2)(A
2)

� . . .
� (A∗)np(u1, u0)A

n

= (A∗)nBAn.
Now
p(un, um) � p(un, un−1)+p(un−1, un−2)+. . .+p(um+1, um)−p(un−1, un−1)−p(un−2.un−2)−

· · · − p(um+1, um+1)
� p(un, un−1) + p(un−1, un−2)+. . . +p(um+1, um)
� (A∗)n−1B(An−1) + (A∗)n−2B(An−2)+. . . +(A∗)mB(A)m

=
∑n−1

k=m(A∗)kB(A)k

=
∑n−1

k=m(A∗)kB
1
2B

1
2 (A)k

=
∑n−1

k=m(B
1
2A)∗(B

1
2A)

=
∑n−1

k=m

∣∣∣(B 1
2 )Ak

∣∣∣2
�
∥∥∥∥∑n−1

k=m

∣∣∣(B 1
2 )Ak

∣∣∣2∥∥∥∥ I
�
∑n−1

k=m

∥∥∥B 1
2

∥∥∥2 ∥∥Ak∥∥2 I
�
∥∥∥B 1

2

∥∥∥2∑n−1
k=m ‖A‖

2k I

�
∥∥∥B 1

2

∥∥∥2 ‖A‖2m1−‖A‖I → θ as m→∞.

i.e., limn→∞ p(un, um) = θ.
Therefore {un} is a θ− Cauchy sequence with respect to A.
Since, (X ,A, p) is θ− complete. So there exists u∗ ∈ X , satisfying
limn,m→∞ p(un, um) = limn→∞ p(un, un) = limn→∞ p(un, u

∗) = p(u∗, u∗) = θ(since θ �
p(un, un) � p(un, um), so limn→∞ p(un, un) = θ).
Next, we assert that p(u∗, Tu∗) = θ.
Now,
θ � p(u∗, Tu∗) � p(u∗, Tun) + p(Tun, Tu

∗)− p(Tun, Tun)
� p(u∗, un+1) + p(Tun, Tu

∗)
� p(u∗, un+1) +A∗p(un, u

∗)A.
Letting n→∞, p(u∗, Tu∗) � θ, a contradiction. So p(u∗, Tu∗) = θ.
Now θ � p(Tu∗, Tu∗) � p(u∗, Tu∗) implies p(Tu∗, Tu∗) = θ.
Hence p(u∗, Tu∗) = p(Tu∗, Tu∗) = p(u∗, u∗) = θ implies Tu∗ = u∗.
To conclude the proof, let u∗ and z are two distinct fixed points of T . So
p(u∗, w) = p(Tu∗, Tw) � A∗p(u∗, w)A, a contradiction. Hence p(u∗, w) = θ.
Thus, p(u∗, u∗) = p(u∗, w) = p(w,w) = θ, i.e., u∗ = w.
Now limn→∞ T

nu0 = limn→∞ Tun−1 = limn→∞ un = u∗, i.e., Picard sequence of iterates
{Tnu0} coverges to u∗. �

Example 3.6. Let I be a collection of bounded intervals in R and I = {[a, b] : a � b}.
For [a, b], [c, d] ∈ I, let a C∗−algebra valued partial metric p : I × I −→ A be defined as
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p([a, b], [c, d]) = [max {b, d} −min {a, c}]KK∗, where K ∈ A∗ and T : I −→ I be defined
as T (a, b) = 1

2(a, b).

Clearly T is a C∗−algebra valued contractive map with contractive constant ‖A‖ = 1√
2
.

On taking {un} =
{

1
n ,

1
2n

}
, limn→∞ T

nu0 = limn→∞ un = (0, 0), for all u0 ∈ I and
(I,A, p) is θ−complete, where A is defined as in Example 2.1. Hence all the hypothesis of
Theorem 3.1 are verified and (0, 0) is unique fixed point of T and p((0, 0), (0, 0)) = (0, 0).
===+

Remark 3.3. On taking T (a, b) = (a, b), T satisfies a contractive condition for ‖A‖ = 1
and has infinite fixed points. If T (a, b) = (1, 1)− (a, b) then also T satisfies a contractive
condition for ‖A‖ = 1, however in this case T has unique fixed points. This shows that
the condition ‖A‖ < 1 is optimum to ensure uniqueness of fixed point, otherwise map may
or may not have a uique fixed point.

Theorem 3.2. Let T be a C∗−algebra valued expansive map on a θ− complete C∗−algebra
valued partial metric space (X ,A, p). If T is surjective then T has a unique fixed point
u∗ ∈ X and Picard sequence of iterates {Tnu0} converges for every u0 ∈ X , to u∗ and
p(u∗, u∗) = θ.

Proof. Suppose that for any u, v ∈ X and u 6= v, if Tu = Tv, then T (X ) ⊆ X , a
contradiction, since T is surjective. So Tu 6= Tv. Thus T is injective.
Since T is invertible, substituting u = T−1u and v = T−1v in C∗−algebra valued expansion
map

p(u, v) � A∗p(T−1u, T−1v)A,
i.e., (A∗)−1p(u, v)A−1 � p(T−1u, T−1v),
i.e., p(T−1u, T−1v) � (A∗)−1p(u, v)A−1.

Using Theorem 3.2., u∗ is unique fixed point of T−1. So T−1u∗ = u∗ or Tu∗ = u∗, i.e., u∗

is unique fixed point of T . Also Picard sequence of iterates {Tnu0} coverges to u∗ and
p(u∗, u∗) = θ.

�

Example 3.7. Let X be a set of all points of unit circle. Define p : X × X → A and
T : X → X be defined as:

p(u, v) = |u− v − 1|KK∗ and Tu = T (exp(iθ)) =

{
exp(iθ + 2), θ 6= (4n+ 1)π2
i, θ = (4n+ 1)π2

, u, v ∈

X , θ ∈ R.
Taking u = eiθ, v = eiφ, θ, φ 6= (4n+ 1)π2 ,

p(Tu, Tv) =
∣∣e2(eiθ − eiφ)− 1

∣∣KK∗
= e2

∣∣eiθ − eiφ − 1
e2

∣∣KK∗
� e2

∣∣eiθ − eiφ − 1
∣∣KK∗

= A∗p(u, v)A.
Clearly T is a C∗−algebra valued expansive map with

∥∥A−1∥∥ = 1
e < 1. Hence all the

hypothesis of Theorem 3.2 are verified and i is unique fixed point of T .

Now we establish our next result for C∗−algebra valued Chatterjea-type contractive
map via C∗−class function that covers an extensive class of contractive conditions.

Theorem 3.3. If T is a self-map of a θ− complete C∗−algebra valued partial metric space
(X ,A, p) satisfying

ψ(p(Tu, Tv)) � Ω(ψK[p(u, Tv) + p(v, Tu)], φK[p(u, Tv) + p(v, Tu)]) (1)
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where u, v ∈ X , K ∈ A+, ‖K‖ < 1
2 , φ, ψ ∈ψ and Ω is a C∗−class function. Then T has

a unique fixed point and Picard sequence of iterates {Tnu0} converges, for every u0 ∈ X ,
to u∗ and p(u∗, u∗) = θ.

Proof. Using ψ(p(Tu, Tv)) � Ω(ψ(p(u, Tv) + p(v, Tu))), φ(K(p(u, Tv) + p(v, Tu)))
� ψ(K(p(u, Tv) + p(v, Tu)).

Since ψ is non-decreasing function, so

p(Tu, Tv) � K(p(u, Tv) + p(v, Tu)). (2)

If K = θ, T maps the X into a single point. So, let K 6= θ. Take an arbitrary u0 ∈ X .
Define
un+1 = Tun = Tn+1u0, n = 0, 1, 2, . . .

If un = un+1, then un is a fixed point of T . Hence proof is complete.
Let K 6= θ, then K(d(Tu, v) + d(Tv, u)) is also a positive element since K ∈ A+. Suppose
that un 6= un+1, n = 0, 1, 2, . . . Taking u = un+1 and v = un+2 in (2) we obtain
p(un+1, un+2) = p(Tun, Tun+1)

� K[p(un, Tun+1) + p(un+1, Tun)]
� K[p(Tun−1, Tun+1) + p(Tun, Tun)]
� K[p(Tun−1, Tun) + p(Tun, Tun+1)− p(Tun, Tun) + p(Tun, Tun)]
� K[p(Tun−1, Tun) + p(Tun, Tun+1)]
� K[p(un, un+1) + p(un+1, un+2)],

i.e., (I −K)p(un+1, un+2) � Kp(un, un+1). (3)

Since K ∈ A, ‖K‖ < 1
2 , then I −K is an invertible operator and (I −K)−1 ∈ A+.

Furthermore (I −K)−1K ∈ A+ and
∥∥(I −K)−1K

∥∥ < 1.

By (3), p(un+1, un+2) � hp(un, un+1), where h = (I −K)−1K.
Now
p(un, um) � p(un, un−1)+p(un−1, un−2)+· · ·+p(um+1, um)−p(un−1, un−1)−p(un−2, un−2)−
· · · − p(um+1, um+1)

� p(un, un−1) + p(un−1, un−2) + · · ·+ p(um+1, um)
� (hn−1 + hn−2 + · · ·+ hm)p(u1, u0)

=
∑n−1

i=m h
iB

=
∑n−1

i=m h
i
2h

i
2B

1
2B

1
2

=
∑n−1

i=m(B
1
2h

i
2 )∗(B

1
2h

i
2 )

=
∑n−1

i=m

∣∣∣B 1
2h

i
2

∣∣∣2
�
∥∥∥∥∑n−1

i=m

∣∣∣B 1
2h

i
2

∣∣∣2∥∥∥∥ I
�
∑n−1

i=m

∥∥∥B 1
2

∥∥∥2 ∥∥∥h i
2

∥∥∥2 I
� ‖B‖

∑n−1
i=m ‖h‖

i I

= ‖B‖ ‖h‖
m

1−‖h‖I −→ θ as m→∞.

Therefore {un}is a θ− Cauchy sequence in X with respect to A. Since (X ,A, p) is θ−
complete, there exists u∗ ∈ X , satisfying
limn,m→∞ p(un, um) = limn→∞ p(un, un) = limn→∞(un, u

∗) = p(u∗, u∗) = θ.
Now, we assert that p(u∗, Tu∗) = θ.
So, p(Tu∗, u∗) � p(Tu∗, Tun) + p(Tun, u

∗)− p(Tun, Tun)
� K[p(u∗, Tun) + p(un, Tu

∗)] + p(Tun, u
∗)− p(Tun, Tun)

� K[p(u∗, Tun) + p(un, u
∗) + p(u∗, Tu∗)− p(u∗, u∗)] + p(Tun, u

∗)− p(Tun, Tun)
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i.e., (I−K)p(Tu∗, u∗) � K[p(u∗, un+1)+p(un, u
∗)−p(u∗, u∗)]+p(un+1, u

∗)−p(un+1, xn+1)
i.e., p(Tu∗, u∗) � K(I−K)−1[p(u∗, un+1)+p(un, u

∗)−p(u∗, u∗)]+(I−K)−1[p(un+1, u
∗)−

p(un+1, un+1)],
i.e., ‖p(Tu∗, u∗)‖ < ‖p(u∗, un+1) + p(un, u

∗)− p(u∗, u∗)‖+1
2 ‖p(un+1, u

∗)− p(un+1, un+1)‖.
Now as n→∞, ‖p(Tu∗, u∗)‖ < ‖p(u∗, u∗)‖,
i.e., ‖p(Tu∗, u∗)‖ = ‖p(u∗, u∗)‖
i.e., p(Tu∗, u∗) = p(u∗, u∗) = θ.
So
p(Tu∗, Tu∗) � K[p(u∗, Tu∗) + p(Tu∗, u∗)] = θ implies p(Tu∗, Tu∗) = θ.
Hence P (u∗, Tu∗) = p(Tu∗, Tu∗) = p(u∗, u∗) = θ implies Tu∗ = u∗.
To conclude the proof, let u∗, v are two distinct fixed point of T . Now
p(u∗, v) = p(Tu∗, T v) � K[p(u∗, T v) + p(v, Tu∗)]

� K[p(u∗, v) + p(v, u∗)]
� 2Kp(u∗, v),

which gives ‖K‖ > 1
2 , a contradiction. Therefore u∗ = v.

Also limn→∞(Tnu0) = limn→∞ Tun−1 = limn→∞ un = u∗, i.e., Picard sequence of iterates
{Tnu0} coverges to u∗ and p(u∗, u∗) = θ. �

Example 3.8. If H is a complex Hilbert space with inner product 〈., .〉. The collec-
tion of bounded linear operators B(H) is a C∗−algebra with usual operator norm and
p : R × R −→ B(H) defined by p(u, v) = max {‖u‖ , ‖v‖} I, u, v ∈ X is a C∗−algebra
valued partial metric.
Let T : R −→ R be defined by-

Tu =

{
u
2 , u ≥ 0

0, u < 0.

For any U, V ∈ B(H)+, define Ω : B(H)+ × B(H)+ −→ B(H) by Ω(U, V ) = U − V
and φ, ψ : B(H)+ −→ B(H)+ are continuous and non-decreasing functions such that
φ(U) = U

4 and ψ(U) = U
2 , U ∈ B(H)+. Clearly, T satisfies condition (1), with I

4 � K �
I
2

and 1
4 < ‖K‖ <

1
2 .

On taking {un} =
{

1
n+1

}
, limn→∞ T

nu0 = limn→∞ un = 0. So (R, B(H), p) is a θ−complete

C∗−algebra valued partial metric space. All the hypothesis of Theorem 3.3 are verified.
Consequently, T has unique fixed point 0 and p(u∗, u∗) = θ.

Remark 3.4. It is interesting to see that following similar arguments Theorem 3.3 remains
true even if we replace C∗−algebra valued Chatterjea-type contractive map by C∗−algebra
valued Kanan-type contractive map.

Remark 3.5. Here we point out that Examples 3.6, 3.7 and 3.8 are not covered by existing
Theorems in a standard metric space, partial metric space or C∗−algebra valued metric
space. Moreover T is discontinuous map in Example 3.8.

Here it is merits noticing that on varying the elements of C∗−class function reasonably,
extended / improved versions of variety of contractions existing in the literature can be
found. In particular Theorem 3.4. remains true even if one replaces inequality (1) by any
one of the following:
(i) ψ(p(Tu, Tv) � ψ(K[p(u, Tv) + p(v, Tu)]− φ(K[p(u, Tv) + p(v, Tu)], taking Ω(A,B) =
A−B.
(ii) ψ(p(Tu, Tv) � φ(K[p(u,Tv)+p(v,Tu)]−ψ(K[p(u,Tv)+p(v,Tu)]

I+ψ(K[p(u,Tv)+p(v,Tu)] , taking Ω(A,B) = B−A
I+A .

(iii) ψ(p(Tu, Tv) � ψ(K[p(u,Tv)+p(v,Tu)]
I+φ(K[p(u,Tv)+p(v,Tu)] , taking Ω(A,B) = A

I+B .



A. TOMAR, M. JOSHI, A. DEEP: FIXED POINTS AND ITS APPLICATIONS IN C∗−ALGEBRA ... 337

(iv) ψ(p(Tu, Tv) � log φ(K[p(u,Tv)+p(v,Tu)]+Mψ(K[p(u,Tv)+p(v,Tu)]

I+ψ(K[p(u,Tv)+p(v,Tu)] , taking Ω(A,B) = log B+MA

I+B , ‖M‖ >
1.

(v) ψ(p(Tu, Tv)) � (ψ(K[p(u, Tv) + p(v, Tu)] + I)
I

I+φ(K[p(u,Tv)+p(v,Tu)] , taking Ω(A,B) =

(A+ I)
I

I+B .
(vi) ψ(p(Tu, Tv)) � ψ(K[p(u, Tv)+p(v, Tu)] logM+φ(K[p(u,Tv)+p(v,Tu)]M , taking Ω(A,B) =

A logM+BM, ‖M‖ > 1.
(vii) ψ(p(Tu, Tv)) � Kψ(K[p(u, Tv) + p(v, Tu)], taking Ω(A,B) = KA, 0 < ‖K‖ < 1.

4. Applications

Now we solve an integral equation and an operator equation to demonstrate the appli-
cability of C∗−algebra valued contractive map.

Theorem 4.1. Consider the integral equation u(t) =
∫
EK(t, y, u(y))dy+q(t), where t, y ∈

E, a Lebesgue measurable set, K : E×E×R −→ R and q ∈ L∞(E) such that there exist a
continuous function φ : E×E −→ R and η ∈ [0, 1) satisfying |K(t, y, u(y))−K(t, y, v(y))| <
k |φ(t, y)(u− v)|, u, v ∈ R and supt∈E

∫
E ‖φ(t, y)‖ dy < 1. Then the integral equation has

a unique solution u∗ ∈ L∞(E).

Proof. Let L∞(E) be the set of bounded measurable functions on E and H = L2(E), be a
Hilbert space. The set of bounded linear operators L(H) is a C∗−algebra with the usual
operator norm.
Define p : L∞(E) × L∞(E) −→ L(H) by p(u, v) = π|u−v|+I , where πh : H −→ H is
the multiplication operator defined by πh(φ) = h.φ, φ ∈ H. Then (L∞(E), L(H), p) is a
complete C∗−algebra valued partial metric space.
Let T : L∞(E) −→ L∞(E) be defind as Tu(t) =

∫
E(K(t, y, u(y))dy + q(t), t ∈ E.

Now the solution of integral equation is equivalent to finding fixed point of T .
Suppose, A = ηI, then A ∈ L(H) and ‖A‖ = η < 1. For h ∈ H,
‖p(Tu, Tv)‖ = sup‖h‖=1(π[|Tu−Tv|+I]h, h)

= sup‖h‖=1

∫
E([|Tu− Tv|+ I])h(t)h(t)dt

= sup‖h‖=1

∫
E

∫
E(|K(t, y, u(y))−K(t, y, v(y))|+ I)dyh(t)h(t)dt

< sup‖h(t)‖=1

∫
E

∫
E |K(t, y, u(y))−K(t, y, v(y))| dy ‖h(t)‖2 dt+‖I‖ sup‖h(t)‖=1

∫
E

∫
E dy ‖h(t)‖2 dt

< sup‖h(t)‖=1

∫
E

∫
E η |φ(t, y)(u(y)− v(y))| dy ‖h(t)‖2 dt+ 1

< η ‖u− v‖∞ supt∈E
∫
E ‖φ(t, y)‖ dy + 1

< η(‖u− v‖∞ + 1)
= ‖A‖ . ‖p(u, v)‖.

Hence all the hypothesis of a Theorem 3.1 are verified and consequently, the integral
equation has a unique solution u∗ ∈ L∞(E). �

Example 4.1. Consider the nonlinear functional integral equation:

u(t) =
e−t

2
sinu(t)

3 + |sinu(t)|
+

∫ 1

0

e−(y+3)

7
|cosu(y + 3)|dy. (4)

The above integral equation is a special case of Theorem 4.1 with q(t) = e−t
2
sinu(t)

3+|sinu(t)| and

K(t, y, u(y)) = e−(y+3)

7 |cosu(y + 3)|.

The function q(t) is continuous and bounded such that |q(t)| = | e
−t2sinu(t)
3+|sinu(t)| | ≤ 1.

Again, we see that K(t, y, u(y)) is continuous and
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|K(t, y, u(y))−K(t, y, v(y))| = | e−(y+3)

7 |cosu(s+ 3)| − e−(y+3)

7 |cosv(y + 3)||
≤ 1

7(e−(y+3)|cosu(y + 3)− cosv(y + 3)|),
≤ 1

7(e−(y+3)|u(y)− v(y)|).
Here η = 1

7 < 1 and φ(t, y) = e−(y+3) such that supt∈E
∫
E ‖φ(t, y)‖ dy < 1.

Hence all the conditions of Theorem 4.1 are satisfied and hence the nonlinear integral
equation has a unique solution in L∞(E).

Example 4.2. Consider the nonlinear functional integral equation:

u(t) =
e−tsinu(t)

5 + |cosu(t)|
+

∫ 1

0

e−(y+1)

10
|arctanu(y + 1)|dy. (5)

The above integral equation is a special case of Theorem 4.1 with q(t) = e−tsinu(t)
5+|cosu(t)| and

K(t, y, u(y)) = e−(y+1)

10 |arctanu(y + 1)|.
The function q(t) is continuous and bounded such that |q(t)| = | e

−tsinu(t)
5+|cosu(t)| | ≤ 1.

Again, we see that K(t, y, u(y)) is continuous and

|K(t, y, u(y))−K(t, y, v(y))| = | e−(y+1)

10 |arctanu(y + 1)| − e−(y+1)

10 |arctanv(y + 1)||
≤ 1

10(e−(y+1)|arctanu(y + 1)− arctanv(y + 1)|)
≤ 1

10(e−(y+1)|u(y)− v(y)|).
Here η = 1

10 < 1 and φ(t, y) = e−(y+1) such that supt∈E
∫
E ‖φ(t, y)‖ dy < 1.

Hence all the conditions of Theorem 4.1 are satisfied and hence the nonlinear integral
equation has a unique solution in L∞(E).

Theorem 4.2. Let L(H) be the set of linear bounded operators on a Hilbert space H. Let

B1, B2, B3, . . . , Bn ∈ L(H) satisfy
∑∞

n=1 ‖Bn‖
2 < 1. Then the operator equation

U −
∑∞

n=1B
∗
nUBn = −Q, U ∈ L(H) and Q ∈ L(H)+

has a unique solution in L(H).

Proof. Let ξ =
∑∞

n=1 ‖Bn‖
2. Then ξ = 0 implies Bn = θ for all n ∈ N and the equation

has unique solution in L(H).
Now, let ξ > 0 and A ∈ L(H) be a positive operator. Define

p(U, V ) = max {‖U‖ , ‖V ‖}AA∗, U, V ∈ L(H).

Then (L(H), L(H), p) is a complete C∗−algebra valued partial metric with respect to
usual operator norm. Define a map T : L(H) −→ L(H) by

T (U) =
∑∞

n=1B
∗
nUBn −Q.

Then p(T (U), T (V )) = max {‖T (U)‖ , ‖T (V )‖}AA∗
= max(‖

∑∞
n=1B

∗
nUBn −Q‖ , ‖

∑∞
n=1B

∗
nV Bn −Q‖)AA∗

=
∑∞

n=1 ‖B∗nUBn −Q‖AA∗ (say)
� ‖
∑∞

n=1B
∗
nUBn‖AA∗

� ‖U‖
∑∞

n=1 ‖Bn‖
2AA∗

� ξ ‖U‖AA∗ = ξmax {‖U‖ , ‖V ‖}AA∗

� (ξ
1
2 I)∗p(U, V )(ξ

1
2 I), where

∥∥∥ξ 1
2 I
∥∥∥ < 1.

Hence all the hypothesis of a Theorem 3.1 are verified and consequently, the operator
equation has a unique solution U ∈ L(H). �
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Example 4.3. Consider the following matrix equation

U −
m∑
n=1

(Bn)∗UBn = −Q, (6)

where Q is a positive definite matrix and B1, B2, B3, . . . , Bm are arbitrary n×n matrices.
Using Theorem 4.2, matrix equation (6) has a unique solution.

5. Conclusions

Acknowledging the notion of C∗−algebra valued partial metric space, we introduced
contractiveness and expansiveness to elicit the fixed point theorems in the most generalized
enviroment. In the sequel we also demonstrated the applicability of C∗−algebra valued
partial metric space for a significant C∗−class functions introduced initially by Ansari [4]
(also see Chandok et al. [5] and Tomar et al. [16]) that cover a large class of contractive
conditions. Our results generalize, improve and unify several existing results. In the end,
we utilised obtained results to solve integral and operator equations.
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[14] Radenović, S., Vetro, P., Nastasi, A. and Quan, L. T., (2017), Coupled fixed point theorems in

C∗−algebra-valued b−metric spaces, Scientific publications of the state University of Novi Pazar, Ser.
A: Appl. Math. Inform. and Mech., 9, (1), pp. 81-90.

[15] Segal, I., (1947), Irreducible representations of operator algebras, Bull. Amer. Math. Soc. (N.S.), 53,
(2), pp. 73-88.



340 TWMS J. APP. ENG. MATH. V.11, N.2, 2021

[16] Tomar, A., Sharma, R. and Ansari, A. H., (2019), Strict coincidence and common strict fixed point
of a faintly compatible hybrid pair of maps via C−class function and applications, Palestine J. Math.
in press.

[17] Xu, Q. H., Bieke, T. E. D. and Chen, Z. Q., (2010), Introduction to Operator Algebras and Non
commutative Lp−Spaces, Science Press, Beijing, (In Chinese).

Anita Tomar is an associate professor and the head of the Department of Math-
ematics, V.S.K.C. Government P.G. College Dakpathar (Dehradun) Uttarakhand,
India. She is an alumnus of H.P.U. Shimla and Gurukula Kangri Vishwavidyalaya,
Haridwar. Her research interest in fixed point theory and its applications have led to
a considerable number of high quality publications. She has presented papers, deliv-
ered invited talks and chaired technical sessions in various national and international
conferences. She is always looking forward to collaborations from similar ambitions.

Meena Joshi graduated and postgraduated from Kumaun University, Nainital (Ut-
tarakhand), India. She is a research scholar in the Department of Mathematics,
V.S.K.C. Government P. G. College Dakpathar, Uttrakhand, India, affiliated to
Hemwati Nandan Bahuguna Garhwal University, India. She is CSIR JRF-NET, SET
and GATE. Her field of research is fixed point theory and its applications. She
has presented 3 papers in international conferences and attended Anual Foundation
School-I (HRI 2019) in Algebra, Complex Analysis and Topology.

Amar Deep is a research scholar in the Department of Natural Science , PDPM IIIT
DM Jabalpur. He received his M.Sc. degree in 2011 from C.C.S University, Meerut.
His research interests are analysis of integral equation, measure of noncompactness
and fixed point.


