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V L INDEX AND BOUNDS FOR THE TENSOR PRODUCTS OF F−
SUM GRAPHS

T. DEEPIKA1, §

Abstract. In QSAR/QSPR study, topological indices are exploited to a presumption
of the bioactivity of chemical compounds. Inspired by the work of Zagreb indices, we
propound here a new topological index, namely Veerabhadraiah Lokesha (V L(G)) index
of a graph G. The V L(G) index shows a good correlation with the physical properties of
octane isomers and polychlorinated biphenyl (PCB). In this article, the bounds on graph
operations of the tensor product are studied.
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1. Introduction

The mathematical measure identify with chemical nature purporting for correlation of
chemical structure with various physical properties, chemical reactivity or biological ac-
tivity is known as Topological index (grasping of oldest topological indices see in [8], [15]).
In an explicit phrase, if Gr denotes the class of all finite graphs then a topological index is
a function Top from Gr into real numbers with the property that Top(G) = Top(H), if G
and H are isomorphic. Obviously, the number of vertices and the number of edges are two
basic parameters in topological indices. In recent decades, a large number of topological
indices have been defined and utilized for chemical documentation, isomer discrimination,
study of molecular complexity, chirality, similarity/dissimilarity, QSAR/QSPR (for more
details refer [1],[3] ), drug design and database selection, lead optimization, etc.
Chemical reactions cause changes in entropy and entropy plays an important role in de-
termining in which direction a chemical reaction spontaneously proceeds.
The role of Enthalpy of Vaporization is to transform the quantity of a substance from
a liquid into a gas at a given pressure. Furthermore physical properties of octane and
Polychlorinated biphenyl (PCB) has their vital roles in the chemical application (details
about structure-activity correlation assigned in [1], [16]).
Two of the most useful topological graph indices are the first and second Zagreb indices
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that have been introduced by Gutman and Trinajstic in [7]. They are denoted by M1(G)
and M2(G) and were defined as

M1(G) =
∑

u∈V (G)

[d(u)]2 =
∑

uv∈E(G)

[d(u) + d(v)]

and

M2(G) =
∑

uv∈E(G)

d(u).d(v).

Alternatively, the first Zagreb index M1(G) is equal to the sum of squares of the degrees
of the vertices, and the second Zagreb index M2(G) is equal to the sum of the products
of the degrees of pairs of adjacent vertices of the underlying molecular graph G.

Bountiful of researchers are working on the Zagreb indices (some good work on Zagreb
indices are noticed in [12],[13]). Their extended versions became the most interesting part
of the research because of its applications in the field of chemical sciences.

Inspired by the works of Zagreb indices, the V L index is defined as;

V L(G) =
1

2

∑
uv∈E(G)

[de + df + 4],

where de = du + dv− 2 and df = (du× dv)− 2, such that du and dv are the degree vertices
of u and v in G, respectively.

The target of this article is to introduce a new topological index named as Veerabhadra-
iah Lokesha (V L(G)) index and study bounds on tensor products of V L(G) index of F−
sum graph.
The following Table 1 shows the correlation between the physical properties of Octane
isomers and PCB and V L index respectively. The correlation coefficient (R) is a measure
of how strongly a pair of variables are related. More time on treadmill the calories burned
can be given examples of this. It usually varies between −1 and +1 and if it’s closer to
1 then variables are said to be highly linearly proportion and if close to −1 then highly
linearly inversely proportional. If R is close to 0, then there is no relation (as we can
observe in Table 1, the physical properties of octane isomers with V L index is inversely
proportional i.e., closer to −1 value).

Table 1. Correlation between isomers and topological indices

Physical Property of Octane isomers R
Entropy Value (S) -0.961

Enthalpy of Vaporization (HVAP) -0.806
Standard Enthalpy of Vaporization (DHVAP) -0.878

Acentric Factor (Acent Fac) -0.99

Physical Property of PCB R
Relative Retention Time (RRT) 0.946
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The following Figure 1 shows the graph that variables coincident with each other. Here
the coefficient of determination (R2) is a measure of how variance in y (entropy) is ex-
plained by the regression model. Often if a model traces close to the actual values then
Coefficient of Determination is high (0.85− ∼ 0.9999) else the model needs to be improved
upon. Below Figure 1 will help in understanding the case.
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Figure 1. Correlation of physical properties with the V L index

2. Some fundamental definitions and properties

Throughout this paper G will denote a simple, connected and finite graph with vertex
set V (G) = {u1, u2, u3, ..., un}, edge set E(G) = {e1, e2, e3, ...em} of order | V (G) |= p and
size of | E(G) |= q. An edge e ∈ E(G) with end vertices ui and uj is denoted by uiuj .
The vertices having an edge between them are called adjacent. The number of vertices
adjacent to the vertex u is called the degree of u in G and is denoted by dG(u) or du. The
minimum and maximum degrees of graph G is denoted by δG and ∆G, respectively.

Definition 1: [10] The tensor product G⊗H of graphs G and H is the graph with the
vertex set V (G)× V (H), two vertices (ui, vj) and (uk, vj) being adjacent in G×H if and
only if uiuj ∈ E(G) and vivj ∈ E(H). The tensor product of P3 and C5 is illustrated in
below Figure 2.

The tensor product was introduced by Alfred North Whitehead and Betrand Russell
in (1912). It is also equivalent to the Kronecker product of the adjacency matrices of
the graphs [6]. The cross symbol shows visually the two edges resulting from the tensor
product of two edges [2]. The tensor product is also known as direct product, categorical
product, cardinal product, relational product, Kronecker product, weak direct product, or
conjunction.

For a connected graph G, let us define four related graphs S(G), R(G), Q(G) and T (G)
(see [9]-[13]) as follows:

• S(G) (subdivision graph) is the graph acquired by including an additional vertex
in each edge of G. Equivalently, each edge of G is replaced by a path of length 2.
• R(G) is obtained from G by appending a new vertex corresponding to each edge

of G, and then joining each new vertex to the end vertices of the corresponding
edge.
• Q(G) is obtained from G by inserting a new vertex in to each edge of G, and then

joining with edges those pairs of new vertices on adjacent edges of G.
• T (G) (total graph) has as its vertices the edges and vertices of G. Adjacency in
T (G) is defined as adjacency or incidence for the corresponding elements of G.
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Figure 2. The tensor product of P2 ⊗ C5

It is clear from the above definitions that,

V (S(G)) = V (R(G)) = V (Q(G)) = V (T (G)) = V (G) ∪ E(G),

E(R(G)) = E(G) ∪ E(S(G)),

E(Q(G)) = E(L(G)) ∪ E(S(G)),

E(T (G)) = E(G) ∪ E(L(G)) ∪ E(S(G)),

where E(G), E(L(G)), E(S(G)) are mutually disjoint.

The four operations on graph S(G), R(G), Q(G), T (G) are illustrated in below Figure
3.

Definition 2: [4, 5] F−sum graph G+F H for F ∈ {S,R,Q, T} define as

V (G+F H) = (V1 ∪ E1)× V2
E(G+F H) = aijakl : i = k and vjvl ∈ E2 ∨ j = l and uiuk ∈ E(F (G))

∪ bijbkj : eiek ∈ E(F (H)) ∪ bijakj : eiuk ∈ E(F (G)),

where aij = (ui, vj) and bij = (ei, vj) ( refer to aij as a black vertices and bij as a white
vertices).

Suppose that G and H are two connected graphs. Based on these above operations,
four new operations on the graphs C4 +F C5 are shown in Figure 4.

Lemma 2.1. [10] Let G1 and G2 be graphs of order p1 and p2 and size q1 and q2, respec-
tively. Then we have

(i) | V (G1 ⊗G2) =| V (G1) | . | V (G2) | and | E(G1 ⊗G2) |= 2 | E(G1) | . | E(G2) |.

(ii) dG1⊗G2(u, v) = dG1(u).dG2(v).

(iii) The tensor product is commutative and associative.
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Figure 3. The graphs G = C3, S(G), R(G), Q(G) and T (G)

Figure 4. The graphs P2 +S C4, P2 +R C4, P2 +Q C4 and P2 +T C4

Lemma 2.2. Let G be a graph. Then the V L index is defined as
q

2
[3dmax + 2] ≤ V L(G) ≤ q

2
[3dmin + 2]
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such that equality holds iff G is regular graph.

Proof. Let G be a graph with |V (G)| = p and |E(G)| = q. Then

V L(G) =
∑

uv∈E(G)
de+df+4

2

= 1
2(
∑

uv∈E(G) du + dv + dudv)

= 1
2 [
∑

uv∈E(G)(du + dv) +
∑

uv∈E(G)(dudv)]

≤ 1
2 [q(dmax + 2) + 2qdmax]

≤ q
2 [3dmax + 2].

Using similar arguments, we have

V L(G) ≥ q

2
[3dmin + 2].

�

3. Bounds on new topological indices of tensor product of graph
operations

In this section, we will determine bounds for the V L index of tensor products of the
F− sum on graphs in terms of their factor graphs. Let W,X, Y, Z be simple, connected
graphs such that |V (W )| = p1, |V (X)| = p2, |V (Y )| = p3, |V (Y )| = p4, |E(W )| = q1,
|E(X)| = q2, |E(Y )| = q3, |E(Z)| = q4.

In the following theorem, we will compute the lower and upper bounds for the V L index
of tensor products of F− sum on graphs for F = S,R,Q, T .

Theorem 3.1. Let G = W +S X and H = Y +S Z. Then α1 ≤ V L(G⊗H) ≤ β1, where

α1 = (q1p2 + 2p1q2)(q3p4 + 2p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4]

and

β1 = (q1p2 + 2p1q2)(q3p4 + 2p3q4)[(∆e(W ) + ∆e(X)).(∆e(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].

Proof. The vertex sets ofG andH are {a1, a2, a3, ..., ap1(p2+q2)} and {b1, b2, b3, ..., bp3(p4+q4)},
respectively. Then by definition, we have

V L(G⊗H) =
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H)

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

=
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H),i 6=k,j 6=l

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]. → (1)

Since, by Lemma 2.1 part (ii),

de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4 = de(G)(ai).de(H)(bj) + df(G)(ak).df(H)(bl) + 4.

Since, for a graph G, for all a ∈ V (G), dG(a) ≤ ∆G and dG(a) ≥ δG. Therefore, using
these facts, we have

de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4 ≤ ∆e(G).∆e(H) + ∆f(G).∆f(H) + 4. → (2)



T. DEEPIKA: V L INDEX AND BOUNDS FOR THE TENSOR PRODUCT OF F− SUM GRAPHS 381

Using inequality (2), in Equation (1), we have

V L(G⊗H) =
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H),i 6=k,j 6=l

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

=
1

2

∑
aiak∈E(G)

∑
bjbl∈E(H)

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

≤ E(G).E(H)[∆e(G).∆e(H) + ∆f(G).∆f(H) + 4].

Since | E(G) |= q1p2 + 2p1q2, | E(H) |= q2p4 + 2p3q4, and ∆e(G) = ∆e(W ) + ∆e(X),
∆H = ∆f(Y ) + ∆f(Z).

V L(G⊗H) ≤ (q1p2 + 2p1q2)(q2p4 + 2p3q4)[∆e(G).∆e(H) + ∆f(G).∆f(H) + 4]

≤ (q1p2 + 2p1q2)(q2p4 + 2p3q4)[(∆e(W ) + ∆e(X)).(∆f(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].

Using similar arguments with ∆G ≥ δG,

V L(G⊗H) ≥ (q1p2 + 2p1q2)(q2p4 + 2p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4].

�

Theorem 3.2. Let G = W +QX and H = Y +Q Z. Then α3 ≤ V L(G⊗H) ≤ β3, where

α3 = 4(q1p2 + p1q2)(q3p4 + p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4]

and

β3 = 4(q1p2 + p1q2)(q3p4 + p3q4)[(∆e(W ) + ∆e(X)).(∆e(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].

Proof. The vertex sets ofG andH are {a1, a2, a3, ..., ap1(p2+q2)} and {b1, b2, b3, ..., bp3(p4+q4)},
respectively. Then by definition, we have

V L(G⊗H) =
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H)

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

=
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H),i 6=k,j 6=l

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]. → (1)

Since, by Lemma 2.1 part (ii),

de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4 = de(G)(ai).de(H)(bj) + df(G)(ak).df(H)(bl) + 4.

Since, for a graph G, for all a ∈ V (G), dG(a) ≤ ∆G and dG(a) ≥ δG. Therefore, using
these facts, we have

de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4 ≤ ∆e(G).∆e(H) + ∆f(G).∆f(H) + 4. → (2)

Using inequality (2), in Eq. (1), we have
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V L(G⊗H) =
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H),i 6=k,j 6=l

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

=
1

2

∑
aiak∈E(G)

∑
bjbl∈E(H)

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

≤ E(G).E(H)[∆e(G).∆e(H) + ∆f(G).∆f(H) + 4].

Since | E(G) |= 2(q1p2 + p1q2), | E(H) |= 2(q3p4 + p3q4), and ∆e(G) = ∆e(W ) + ∆e(X),
∆H = ∆f(Y ) + ∆f(Z).

V L(G⊗H) ≤ 4(q1p2 + p1q2)(q3p4 + p3q4)[∆e(G).∆e(H) + ∆f(G).∆f(H) + 4]

≤ 4(q1p2 + p1q2)(q3p4 + p3q4)[(∆e(W ) + ∆e(X)).(∆f(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].

Using similar arguments with ∆G ≥ δG,

V L(G⊗H) ≥ 4(q1p2 + p1q2)(q3p4 + p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4].

�

Theorem 3.3. Let G = W +T X and H = Y +T Z. Then α4 ≤ V L(G⊗H) ≤ β4, where

α4 = (q1p2 + 4p1q2)(q3p4 + 4p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4]

and

β4 = (q1p2 + 4p1q2)(q3p4 + 4p3q4)[(∆e(W ) + ∆e(X)).(∆e(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].

Proof. The vertex sets ofG andH are {a1, a2, a3, ..., ap1(p2+q2)} and {b1, b2, b3, ..., bp3(p4+q4)},
respectively. Then by definition, we have

V L(G⊗H) =
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H)

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

=
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H),i 6=k,j 6=l

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]. → (1)

Since, by Lemma 2.1 part (ii),

de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4 = de(G)(ai).de(H)(bj) + df(G)(ak).df(H)(bl) + 4

Since, for a graph G, dG(a) ≤ ∆G and ∆G ≥ δG for all a ∈ V (G). Therefore, using these
facts, we have

de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4 ≤ ∆e(G).∆e(H) + ∆f(G).∆f(H) + 4. → (2)
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Using inequality (2), in Eq. (1), we have

V L(G⊗H) =
1

2

∑
(ai,bj)(ak,bl)∈E(G⊗H),i 6=k,j 6=l

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

=
1

2

∑
aiak∈E(G)

∑
bjbl∈E(H)

[de(G⊗H)(ai, bj) + df(G⊗H)(ak, bl) + 4]

≤ E(G).E(H)[∆e(G).∆e(H) + ∆f(G).∆f(H) + 4].

Since | E(G) |= q1p2 + 4p1q2, | E(H) |= q3p4 + 4p3q4, and ∆e(G) = ∆e(W ) + ∆e(X),
∆H = ∆f(Y ) + ∆f(Z).

V L(G⊗H) ≤ (q1p2 + 4p1q2)(q3p4 + 4p3q4)[∆e(G).∆e(H) + ∆f(G).∆f(H) + 4]

≤ (q1p2 + 4p1q2)(q3p4 + 4p3q4)[(∆e(W ) + ∆e(X)).(∆f(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].

Using similar arguments with ∆G ≥ δG,

V L(G⊗H) ≥ (q1p2 + 4p1q2)(q3p4 + 4p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4].

�

The ensuing Corollary 3.1 results intending to path and cycle graphs of tensor product
of graph operations and in Corollary 3.2 results applicable to the applications in nanos-
tructures.

Corollary 3.1. Let Cn, Cm, Pn and Pm be the cycles and paths. Then,

V L(Cn ⊗ Cm) = 24mn.

V L(Pn ⊗ Pm) = 24mn− 20(m+ n) + 18.

V L(Cn ⊗ Pm) = 4n(6m− 5).

Corollary 3.2. Let N1 and N2 are the nanotube and nanotorus of TUC4C8 molecular
graph. Then the V L index of tensor product of two molecular graphs is given by

V L(N1 ⊗N2) = 18(A− 5p)(A+ p) + (B − 21p)(B + 9p),

where A = 6pq + q and B = 54 + 9q.

4. Bounds on new topological indices of tensor product of F− sum on
graphs for F = {SQ, ST,RQ,RT,QT}

The below consecutive theorems, the proof execution are analogous to preceding Section
3.

Theorem 4.1. Let G = W +S X and H = Y +Q Z. Then α5 ≤ T (G×H) ≤ β5, where

α5 = 2(q1p2 + 2p1q2)(q3p4 + p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4]

and

β5 = 2(q1p2 + 2p1q2)(q3p4 + p3q4)[(∆e(W ) + ∆e(X)).(∆e(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].
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Theorem 4.2. Let G = W +S X and H = Y +T Z. Then α6 ≤ T (G×H) ≤ β6, where

α6 = (q1p2 + 2p1q2)(q3p4 + 4p3q4)[(δe(W ) + δe(X)).(δe(Y ) + δe(Z))

+ (δf(W ) + δf(X)).(δf(Y ) + δf(Z)) + 4]

and

β6 = (q1p2 + 2p1q2)(q3p4 + 4p3q4)[(∆e(W ) + ∆e(X)).(∆e(Y ) + ∆e(Z))

+ (∆f(W ) + ∆f(X)).(∆f(Y ) + ∆f(Z)) + 4].

Theorem 4.3. Let G = W +R X and H = Y +Q Z. Then α7 ≤ T (G×H) ≤ β7, where

α7 = 2(q1p2 + 3p1q2)(q3p4 + p3q4){(δW + δX)2(δY + δZ)2

+ 2[(δW + δX)(δY + δZ)]}

and

β7 = 2(q1p2 + 3p1q2)(q3p4 + p3q4){(∆W + ∆X)2(∆Y + ∆Z)2

+ 2[(∆W + ∆X)(∆Y + ∆Z)]}.

Theorem 4.4. Let G = W +R X and H = Y +T Z. Then α8 ≤ T (G×H) ≤ β8, where

α8 = (q1p2 + 3p1q2)(q3p4 + 4p3q4){(δW + δX)2(δY + δZ)2

+ 2[(δW + δX)(δY + δZ)]}

and

β8 = (q1p2 + 3p1q2)(q3p4 + 4p3q4){(∆W + ∆X)2(∆Y + ∆Z)2

+ 2[(∆W + ∆X)(∆Y + ∆Z)]}.

Theorem 4.5. Let G = W +Q X and H = Y +T Z. Then α9 ≤ T (G×H) ≤ β9, where

α9 = 2(q1p2 + p1q2)(q3p4 + 4p3q4){(δW + δX)2(δY + δZ)2

+ 2[(δW + δX)(δY + δZ)]}

and

β9 = 2(q1p2 + p1q2)(q3p4 + 4p3q4){(∆W + ∆X)2(∆Y + ∆Z)2

+ 2[(∆W + ∆X)(∆Y + ∆Z)]}.

5. Conclusion

In this paper, the molecular structure data set of 18 octane isomers and 209 PCB were
given by the International Academy of Mathematical Chemistry (IAMC), using this it is
shown good correlation with the newly proposed index name as V L index this is highly
correlated with physical properties of 18 octane isomers such as entropy, enthalpy, standard
enthalpy of vaporization and Acentric factor and physical property of 209 PCB chemical
structure such as relative retention time as shown in Table 1 and Figure 1. Further, we
determined the bounds for tensor product of F− sum of graphs.
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