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A NOVEL FINITE DIFFERENCE SCHEME FOR TIME FRACTIONAL
DIFFUSION-WAVE EQUATION WITH SINGULAR KERNEL

K. BOUGUETOF!, K. HAOUAM!, §

ABSTRACT. In this paper, we suggest a novel numerical approximation of the Caputo-
Fabrizio fractional derivative of order a (1 < a < 2). Our novel discretization is found

(a=D)(tx—t 1)
by using discret fractional derivative at ¢ = t;, with new coefficients e 2—a —
(a=D)(tp—t 1)
_ 2 . . -,
e 2=a . Also, we prove that the difference scheme is unconditionally stable.
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1. INTRODUCTION

In recent years, fractional differential equations have interested in real-life phenomena.
It describes diverse phenomena in the sciences and engineering fields. They appear nat-
urally in viscoelasticity, porous media, chemistry, electromagnetism physics[6], mechanics
and biology[3]. So more applications have been found. The solution of non -integer order
partial differential equations (PDE) has important property, it describes future and present
states. But in many cases, it is difficult to find the solution. Therefore, several researchers
have suggested numerical methods for studying PDE with fractional order: finite element
methods[5, 7], mixed finite element methods[9, 10], finite difference methods[13, 14], finite
volume methods[4]. In 2015, Caputo and Fabrizio[l] proposed a new derivative. This
derivative is a product of convolution of f(¢) (derivative of function f(¢)) and exponential

function (eﬁt) where 0 < a < 1.

The fractional diffusion -wave equation plays an important role to modeling the dif-
fusion and wave in fluid flow, oil strata..ect. In recent years, many eminent researchers
innovated some numerical methods to study this kind of equations. In 2005, Sun and
Wu[15] showed a novel finite difference discret scheme for a diffusion-wave system. They
proved the stability and Lo, convergence by using the energy method.

Our target is to extend diffusion-wave equation to the scope of fractional calculus using
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Caputo-Fabrizio derivative with fractional order and we give a novel discretization for this
new equation.

The paper is organized as follows. In section 2, we recall some definitions of fractional
calculus. Section 3 is concerned to study the existence and uniqueness of solution. sec-
tion 4, we give the novel finite difference discretization scheme. Section 5, we discuss the
stability of the fractional numerical scheme and we give some numerical examples.

2. PRELIMINARY DEFINITIONS

In this section, we present certain relevant definitions of fractional derivatives and anti-
derivatives. For more details, we refer to [1, 2, 11].

Definition 2.1. Let f € L'(0,00), and a € (0,1) then, the Caputo derivative is defined
as

DG f(t) = r(11a)/0 (t - T)aa‘g(:)dﬂ W

where I' is the gamma function.

The anti- derivative of Caputo derivative is given in the following definition.

Definition 2.2. Consider a function f : [0,00) — R. The Riemann-Liouville fractional
integral is defined by

I = e | (=P (2)

fort >0 and 0 < a < 1.
We recall the new definition of the Caputo fractional derivative.

Definition 2.3. Let f € H'(0,00) and o € (0,1) then, the definition of the new Caputo
derivative (Caputo -Fabrizio) is given as

1 ' ai-n 0
D, £(t) = 1_@/0 e 5—a>=’(;(:)df. 3)

The anti- derivative of the Caputo- Fabrizio derivative is recalled as

Definition 2.4. Let 0 < o < 1. The fractional integral of a function f is given as
t
ongjtf(t) =(1-a)f(t)+ a/ f(r)dr. (4)
0

Lemma 2.1 ([1]). Let 0 < o < 1, then

(1) CFI9,D8,1(t) = £(t) — £(0),
(2) Dg,D"f(t) = DI (1).

3. DIFFUSION WAVE EQUATION WITH CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE

In this section, we apply Picard-Lindelof method to prove the existence and the unique-
ness of the solution.
We consider the following time-fractional diffusion-wave equation

O*u(w,t)

Dg\tu<x7t) = Ox2

+ q(z,1). (5)
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Over region 2 = [0, L] x [0,T], 1 < a < 2 with the initial conditions

u(z,0) = f(z), Diu(x,t) i =0, (6)

and homogeneous boundary conditions

u(0,t) = u(L,t) = 0. (7)
Obviously, the Caputo-Fabrizio operator ]D)S‘l , is the composition of ID)S‘lt_1 and Dy, i.e.
Dgju(z,t) = Dg‘letu(w, t).
Setting v = Dyu, we have the following formulation
_ 8%u(z,
D ol t) = 5 + gl 1), -
v(x,t) = Diu(z,t), v(x,0)=0.

CFra
IO|t

o(z,8) = (2 — a) x {W?f;”m(:ﬁ,w} Fa—1) x /Ot{(w+q(x,y)}dy. ()

For simplicity, let us put

By applying the anti- derivative operator on the both side of Eq.(8), we get

u(x,t) = F(t).

Then, equation (9) can be re-write as

2 t 2
v(x,t):(z—a)x{aaigt)+q(x,t)}+(a—1)x/o {a;;gy)Jrq(m,y)}dy. (10)

For more simplicity, we defined the operator H as following

82F(t)

Let
Cle,v] = [to — ¢, to + ¢ x [Fo —v, Fo +v], L =sup|H(F,t)|c(e
[F()llec = sup  [F()]. (11)
tE[to—C,t0+C]

We define the Picard’s operator P : C[c,v] — Clc,v] as
P(DF,t) = (2 — a)H(F,t) + (o — 1) /Ot H(F,y)dy.
First, we prove P is well posed. By using (11) we have
IPOFO) < 2= ) [HED] + (a1 | (o) ldy
<(2—-a)L+ (a—1)cL.

We choose ¢ small enough such that

(2—a)L+ (a—1)cL < L.
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Second, we show that P is a contraction map. For DF, D;G € C|c,v], we have

|PDEF() = PG = |2 - ) HED) - HG0) + (@~ 1) [ {H(F) - H(G y)}dyH

<@ a)|HED - HGOI+@-1) [ 1#(Fy) - H(G,y>de

<SM{(2—-a)+ (a—1)c}|F-G|.
Due to the following inequality
IH(F,t) — H(G,t)|| < M||F - G|
We choose ¢ such that
M{2-a)+ (a—1)c} <1

Therefore, P is a strict contraction on C/e, v]. According to the Banach fixed point theorem,
then problem (5) — (7) admits a unique solution.

x 10”°  Numerical simulation for alpha=1.5

u(x,t)
o

0 0.2 0.4 0.6 0.8 1

X 10178 Numerical simulation for a=1.2

u(x,t)

0 0.2 0.4 0.6 0.8 1
X

4. A NOVEL FINITE DIFFERENCE SCHEME

In this section, we investigate the approximate numerical solution of problem (5),
using implicit finite differences. To achieve this aim, we need to numerically approximate
to the Caputo-Fabrizio derivative.

For some positive integers N, M, the gird sizes in time for finite difference technique
is defined by K = ﬁ, the grid points in the time interval [0,7] are labeled t; = jK,j =
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0...T'M, while the grid points in the space interval [0, L] are numbers x; = ih where h = %

it is grid sizes in the space. Denotes uf the approximate value of u(z;,t;) and ft is the
value of f(z;). Define

Oplh; 1 — Ol 1 n n—1
U — Uj—1 T4 TH—5 u u
59:%_%: : hz 02wy = 2 h 2 and S = =
The standard central difference scheme
k+1 Iﬁ_l_ k
’UZ-+2 — % +O(K2) (12)

The approximate numerical of Caputo-Fabrizio derivative Dg“glv(x,t) obtained by the
following formula

1 U (a=D)(x=7) 9 )
DY (g, ty) = / R e T) |
0

o[t 2 — « or
1 e (a=Dp=7) Qu(x;, T bl (a=D(t=7) Qu(zy, T
— / e S ( (3] )d7-+ 2 e P« ( (3] )dT
2—al )t | or t or
k-3 1
b1 (a=De=1 Ju(x;, T
_|_/ 2 e—za(“)dT]
0 87'
k—1
1 e (=107 Jv(zy, T b+l (a=D(t=7) Qu(xi, T
= e P Ov(i 7) )dT—i— Z ‘e P Ov(i 7) )dT
2—al); | or t or
k7§ m=0 m—3
0
(e=D)Cr—=7) Qv(x;, T
[ R du(z,T)
¢ or

et
1 1 1 _1
: Z / e N £ O T
2—a ) K or K
m-=3
(13)
Denote that u;l = u? — KU? for ¢ > 0. Then
5 ug - ui_l 2 0 2
v,? = +—"—+0(K*%) =v; + O(K?). (14)
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Substituting (12) and (14) into (13), we get

uf — 2u + u e (a=1)(tp—7) 1 0 (a=D(tp—m
Dgjpu(ws, t) = 5 [ ] / e 2= dr — 5 e 2-a O(K)dr
tk,% t
k—1 um+1 _ 2U + Um 1 m+% B (a—1)(t),—7)
Z e 2-adr
- m=0 t'mf%
k—1 t m+% mf%
miy VoD (Ou(xi,T) vt v J (15)
— T.
-« t or K
m=0 _
Setting
a—1)(t—t a—1)(t—t a—1)(t—t
1 , _( )(Qk k—%) ; _( )(; m+%) _( )(; m_%)
SK = w == — € —a = | e —a —e o
K (Oé — 1)K2 ) k,a ) m,o )

1
1 . flerd D@ (Ou(x,T) v 2 —
R = 7a 7)Y i dr.
T 2 /t ¢ ( ar K T

Therefore
k—1
]D)8‘|tu(xi, tk) = Sk (uiC — 2uf_1 + uf_2>wk7a + <K Z (u;nﬂ —2u" + um_l)dm,a
m=0
+ O(K3*™*) + R. (16)
Also, the second partial derivative with respect to x at the grid point (i, k) given as
Pulwi,ty) iy —2uf +uf 2
4 = O(h?). 17
" UL o) (1)
Using (16) and (17) to discretize problem (5) at point (z;,%;) as
k-1
Sk (uf — 2uf_1 + uf_2> Wh,o + SK Z (u?”l —2u" + uzm_l> dmo + R
m=0
k k k
U — 2uf +ug _
=+ 3 +gfF oK+ %), (18)
The first initial condition, can be written as
u(:vi,O) = f(xz) = fz i =0...N. (19)
Approximating the second initial condition, we obtain
0_,-1
Du(zity)| =~ % =0, i=0..N. (20)

to=0

Similarly method used in [8]. We denote |R| = O(K3~%).

5. STABILITY ANALYSIS

In this section, we etablish the stability of the numerical method by using Fourier
method.



K. BOUGUETOF, K. HAOUAM: A NOVEL FINITE DIFFERENCE SCHEME... 687

Let Bli = uz -U ,i where U, ,i is the approximate of uz Assume that the Bi is written
as follows

Bj, = &get™", (21)
where & = |B%], w real number and g = v/—1. We will prove the following result.

Theorem 5.1. Let 1 < a < 2, the numerical method described in (18) to address the
solvability of problem (5) — (6), is unconditionally stable.

Proof. Substituting (21) into (18), we obtain

e

-1

Wia (€ — 2601+ E2) + 3 Emst — 2m + Em1)dm.a = —:lK € sin? <wh>
0

3
|

By a simple calculation, we get

4 wh
fk |:h2§]( Sln2 (2> —+ (wk:,a + dk:—l,a):|

k—2
= (gk—Z - 2€k’—1)(wk,a + dk—l,a) + (£m+1 - 2£m + gmfl)dm,a- (22)
m=0
Then
gk _ (_ék—2 + 2§k—1)(wk,a + dk—l,a) + anfo(_fm—&-l + 2£m - gm—l)dm,a
h24§K sin? <w2h> + (wk,a + dkfl,a)
For k =1, then

4 h
w1 ,q + dO,a & <& W10 + d(),a + PG sin? w _ g Wi+ d07a .
h SK 2

For k = 2, we get
(w2, +d1,a)é2 < &o(W2,a + di,a)-
Repeating the process until N we obtain
Ev < &o- (23)
Note that
18] = & < &0 = |fil-
Consequently, [|5]|zz < [|f[|.z-

6. CONCLUSION

In this work, we consider a novel finite difference discretization scheme to solve
numerically the diffusion-wave equation involving a Caputo- Fabrizio fractional derivative
supplemented with initial and boundary conditions. Also, we prove this new scheme is
unconditionally stable in L2.
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