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THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THE INVERSE

TIME-DEPENDENT PERFUSION COEFFICIENT PROBLEM

F. S. SHAHSAHEBI1, J. DAMIRCHI1, A. JANMOHAMMADI1, §

Abstract. This paper deals with an inverse problem associated with the bio-heat equa-
tion in living tissue in the human body. The inverse problem consists of the identification
of time-dependent perfusion coefficient when the exact and noisy measurements of tem-
perature at a fixed space point x∗ are specified. The numerical method for the retrieval
of the unknown perfusion coefficient is based on the method of fundamental solutions
(MFS). By introducing the fundamental solution of the heat equation and theoretical
properties of these solutions, the MFS is used in conjunction with the Tikhonov regular-
ization method. The choice of the regularization parameter is based on L-curve criteria to
obtain a stable solution. Our numerical approach for numerical differentiation of discrete
noisy data is focused on the iterated Tikhonov method due to ill-posedness of problem.
Numerical results show the efficiency and applicability of the proposed algorithm in
approximation of unknown perfusion coefficient.

Keywords: Inverse Parabolic Problem, Ill-Posed Problem, Regularization Method, The
MFS Method.

AMS Subject Classification: 35A08 ,35R30 , 65F22, 65M80.

1. Introduction

The mathematical model between tissue temperature and blood perfusion has been
the point of interest for many studies in medicine and mathematics. During the past
two decades, some numerical approaches have been applied for studying the heat transfer
models in living tissues in a human body [1, 3, 5, 8, 16].

In the current investigation, the time-dependent coefficient identification problem in-
cluding determination of the pairs

(
p(x), u(x, t)

)
in inverse parabolic problem is consid-

ered. Estimation of the unknown time-dependent coefficient is based on inexact input
data contain small noise. So noise in data may lead to a large error in the solution and
so the problem is ill-posed. Therefore, regularization techniques like Tikhonov regular-
ization method and other methods have been applied to remove the instability [15]. Our
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numerical method has been developed to deal with this inverse problem is the method of
fundamental solution.

Blood perfusion is the local fluid flow through the capillary network and extracellu-
lar spaces of living tissue. It is characterized as the volumetric flow rate per volume of
tissue. Blood perfusion is vital for normal tissue physiology and waste products. Blood
perfusion is principle part of the thermal system of the body. Since the blood perfusion
is so important in maintaining normal physiologic conditions, there is a vital need to be
able easily and accurately measure it and so the measurement of this quantity is valuable.
The mathematical modeling between the relation of temperature and blood perfusion has
introduced by Pennes in 1948[12], which is defined by the following equation

uxx(x, t)− p(t)u(x, t) = ut(x, t), (x, t) ∈ (0, L)× (0, T ], (1)

where T is a final time of interest, u is the temperature of the tissue, (0, L) is the spatial
solution domain and the perfusion coefficient

p(t) =
ωbcbl

2

kt
, (2)

where ωb is the blood perfusion rate, cb is the specific heat of the blood, l is the reference
length of the biological body and kt is the thermal conductivity of the tissue.

In section 2, the mathematical formulation of the inverse time-dependent coefficient
identification problem in tissue is introduced. Section 3 is devoted to a review of the
method of fundamental solutions. In section 4, the fundamental solution method is in-
troduced and applied to the inverse problem. Due to the large condition number of the
resultant matrix A, the regularization technique should be applied. In our computations,
the random errors to be considered in input data to investigate the role of noisy data
in output time-dependent coefficient. In section 5, an efficient method is introduced for
computing of numerical differentiation with discrete noisy data. In section 6, some test ex-
amples are considered to show the accuracy and validity of the presented method. Finally,
conclusions are drawn in section 7.

2. Problem Formulation

In this section, we consider the following inverse problem of determining the temperature
u(x, t) and the time-dependent perfusion cofficient p(t) in the parabolic heat equation

uxx(x, t)− p(t)u(x, t) = ut(x, t) 0 < x < 1, 0 < t ≤ T. (3)

We have to solve the Eq. (3) subject to the initial temperature

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (4)

and boundary conditions

u(0, t) = f0(t), 0 ≤ t ≤ T, (5)

u(1, t) = f1(t), 0 ≤ t ≤ T. (6)

and a permanent interior temperature measurement at a fixed space point x∗ ∈ (0, 1):

u(x∗, t) = g(t), 0 ≤ t ≤ T. (7)

Let define

r(t) = exp(

∫ t

0
p(s)ds), t ∈ [0, T ]. (8)

The change of variable
v(x, t) = r(t)u(x, t), (9)
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transforms the time-dependent problem (3)-(7) into a constant coefficient heat equation
problem, as follows

vxx(x, t) = vt(x, t), 0 < x < 1, 0 < t ≤ T, (10)

v(x, 0) = u0(x), 0 ≤ x ≤ 1, (11)

v(0, t) = r(t)f0(t), 0 ≤ t ≤ T, (12)

v(l, t) = r(t)f1(t), 0 ≤ t ≤ T, (13)

v(x∗, t) = r(t)g(t), 0 ≤ t ≤ T. (14)

We assume that all the functions appearing in heat Eq. (1) and initial and boundary
conditions are measurable in order to obtain uniqueness solution for the inverse problem.
In the following subsection, we will demonstrate the unique solvability of solution under
suitable assumptions. To guarantee the existence and uniqueness of a solution to (3)–(7),
we impose the following compatibility conditions of order zero

f0(0) = u0(0), f1(0) = u0(1), g(0) = u0(x
∗). (15)

Further, we need compatibility conditions up to first-order which require condition (15)
be satisfied and in addition

f ′0(0) = u′′0(0) +
u0(0)

(
g′(0)− u′′0(x∗)

)
u0(x∗)

,

f ′1(0) = u′′0(1) +
u0(1)

(
g′(0)− u′′0(x∗)

)
u0(x∗)

, g(0) = u0(x
∗) > 0. (16)

2.1. Existence of Unique Solution for the Inverse Problem. The solvability of the
inverse problem (3)-(7) in spaces Lk+α, with α fixed in (0, 1) and k ∈ N, of continuous
functions with Holder continuous derivatives (see [4, 10]) has been established in [2, 13],
as follows

Theorem 2.1. If u0 ∈ L2+α([0, 1]), f0, f1, g ∈ L1+
α
2 ([0, T ]), u0 ≥ 0, f0, f1 ≥ 0, g ≥ 0,and

the compatibility conditions up to first order are satisfied, then there exists a unique solu-
tion u ∈ L2+α,1+

α
2

(
[0, 1] × [0, T ]

)
, p ∈ L

α
2 ([0, T ]) of the inverse problem (3)-(7) which is

continuously dependent upon data. Remark that the theorem does not guarantee that the
solution for p is positive, hence only the uniqueness of the solution (u(x, t), p(t) > 0) can
be concluded.

3. A Review of the method of fundamental solutions

Let D = {x : x ∈ (0, 1)}, D̄ = {x : x ∈ [0, 1]}, DT = {(x, t) : (x, t) ∈ D × [0, T ]},
Γ = ∂D = {0, 1} is boundary of the domain D, DE is open domain containing D̄ and ΓE
is boundary of DE on which source points are placed.

The fundamental solution of Eq. (10) in one-dimensional case is given by

F (x, t; y, τ) =
H(t− τ)√
4π(t− τ)

exp(−(x− y)2

4(t− τ)
), (17)

where H is the Heaviside function, which is necessary in order to emphasize that the
fundamental solution is zero for t ≤ τ . We begin by constructing a set of source points
placed outside the region D̄. Let {yj , τm}j,m=1,2,···be a denumerable, everywhere dense
set of points in ΓE × [−T, T ], (τm 6= 0). In this paper, we show the source points have
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Figure 1. The representation of the placement of source and collocation points.

placed around a domain D. We approximate the solution of Eqs. (10)-(14) by a linear
combination of fundamental solutions in the form

v(x, t) ≈ vM (x, t) =
2∑
j=1

2M∑
m=1

c(j)m F (x, t; yj , τm), (x, t) ∈ D̄, (18)

where c
(j)
m are unknown coefficients.

We shall investigate some properties of linear combinations of such functions for various
source points yj . The source points will be placed on y1 = −h and y2 = 1 + h at time
points {τm}m=1,··· ,2M, ∈ (−T, T ) given by

τm =
2(m−M)− 1

(2M)
T, m = 1, · · · , 2M, (19)

We have 4M source points on the external boundary ΓE , and we place the other number
of collocation points on the any fixed space point x∗, lateral and base surfaces

(
x∗×[0, T ]

)
∪(

Γ× [0, T ]
)
∪
(
D × {0}

)
.

Letting

ti =
i

M
T, i = 0, · · · ,M, xj =

j

N
, j = 0, · · · , N. (20)

Fig. 1 displays placement of source and collocation points for a one-dimensional domain
in time when D is a rectangular domain. Denseness results are given for both the lateral
and base surfaces, justifying the use of this MFS. The proofs of the following theorems
are similar to the proof of Theorem 2.2 in [9], hence omitted.

Theorem 3.1. Denseness on the lateral surface The set of functions {F (x, t; yj , τm)}∞m=1,
j = 1, 2 defined on Γ × (−T, T ) form a linearly independent and dense set in L2

(
Γ ×

(−T, T )
)
.
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Theorem 3.2. Denseness on the base surface The set of functions F (x, 0; yj , τm)∞m=1,

j = 1, 2, with τm < 0, forms a linearly independent and dense set in L2(D).

4. Implementation of the MFS for the Inverse problem

From Eqs. (11)-(14) and Eq. (18) we obtain the following system of equations

vM (0, ti) = r(ti)f0(ti), i = 0, · · · ,M, (21)

vM (1, ti) = r(ti)f1(ti), i = 0, · · · ,M, (22)

vM (x∗, ti) = r(ti)g(ti), i = 0, · · · ,M, (23)

vM (xj , 0) = u0(xj), j = 0, · · · , N. (24)

The resultant linear algebraic equations can be represented by

A(3M+N+4)×(5M+1)C(5M+1)×1 = b(3M+N+4)×1, (25)

where the vectors C and b denote the vectors of unknown constant coefficients and known
right hand side respectively, as follows

C =
[
c
(1)
1 · · · c

(1)
2M c

(2)
1 · · · c

(2)
2M r(t0) · · · r(tM )

]T
,

and

b =
[
0 0 · · · 0 u0(x0) u0(x1) · · · u0(xN )

]T
,

and A is a known coefficients Block matrix of order (3M + N + 4) × (5M + 1) which is
defined by

A =



(
F (0, ti; y1, τm)

)i=0,··· ,M
m=1,··· ,2M

(
F (0, ti; y2, τm)

)i=0,··· ,M
m=1,··· ,2M di,j =

{
0 i 6= j
−f0(ti) i = j(

F (1, ti; y1, τm)
)i=0,··· ,M
m=1,··· ,2M

(
F (1, ti; y2, τm)

)i=0,··· ,M
m=1,··· ,2M di,j =

{
0 i 6= j
−f1(ti) i = j(

F (x∗, ti; y1, τm)
)i=0,··· ,M
m=1,··· ,2M

(
F (x∗, ti; y2, τm)

)i=0,··· ,M
m=1,··· ,2M di,j =

{
0 i 6= j
−g(ti) i = j(

F (xj , 0; y1, τm)
)j=0,··· ,N
m=1,··· ,2M

(
F (xj , 0; y2, τm)

)j=0,··· ,N
m=1,··· ,2M (di,j)

j=0,··· ,N
i=0,··· ,M = 0


This system contains 3M +N + 4 equations and 5M + 1 unknowns. In order to obtain

a unique solution, we require N ≥ 2M − 3. Since the resulting matrix is ill-conditioned so
applying the regularization technique is necessary. We will apply Tikhonov regularization,
with L-curve criterion.

By employing the Tikhonov regularization method, the ill-conditioned linear system
(25) is replaced by the new system of linear equations (ATA+ λI)C = ATb, where AT is
the transpose of A and λ is found by L-curve criterion, as suggested by Hansen [6, 7]. By
solving Eq. (25) the numerical approximations of r(ti) are found.

We implement the proposed method with Matlab 2018a software in a personal computer.
In next section, we introduce an efficient method for computing of numerical differentiation
of r(t) at discrete points ti with known values of r(ti).
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5. Numerical differentiation of r(ti) with discrete noisy data

We are interested in finding an approximation of r′(ti) from the given data {rεi } and

substituting into p(t) = r′(t)
r(t) . We can write the numerical differentiation of a smooth

function r(t) as a Volterra integral equation

Ax(t) := 1 +

∫ t

0
x(τ)dτ = r(t), 0 ≤ t ≤ 1. (26)

Below we assume that

r(0) = rε0 = 1, (27)

i.e., the initial data are known exactly. Then it is clear that x(t) = r′(t) is a unique
solution of Eq. (26).

On the other hand, since only the noisy measurements {rεi } are available, one has a new
equation

Ax = r, ‖r − rδ‖L2 ≤ δ, (28)

where rδ and A are given and x and r are unknown.
The Tikhonov method for a noisy linear equation (28) consists of determining the reg-

ularized approximation xδα as a unique solution of the following equation

αxδα +A∗Axδα = A∗rδ, (29)

where α is regularization parameter.
By applying the iterated Tikhonov method of order p, the regularized approximation

xδα,p is determined by the recursion

αxδα,l +A∗Axδα,l = αxδα,l−1 +A∗rδ, l = 1, 2, · · · , p, (30)

xδα,0 = 0, xδα,1 = xδα,

i.e., the equation of the form (29) should be solve p times. The discrete form of the Eqs.
(29), (30) can be constructed based on the Galerkin method. By considering the space of
piecewise linear functions Vm+1 = span{ϕmi }mi=0, where

ϕmi (t) = ϕσmi (t), i = 1, 2, · · · ,m, σm = { i
m
}mi=0, ϕ

m
0 (t) = ϕmm(1− t),

where piecewise linear interpolation functions ϕσi are defined as follows

ϕσi (t) =


t−ti−1

ti−ti−1
, t ∈ [ti−1, ti],

ti+1−t
ti+1−ti , t ∈ [ti, ti+1],

0, t /∈ [ti−1, ti+1],

i = 1, 2, · · · ,m− 1,

ϕσm(t) =

{ t−tm−1

tm−tm−1
, t ∈ [tm−1, tm],

0, t /∈ [tm−1, tm].

Then the Galerkin approximation xδα,l,m of xδα,l has the form

xδα,l,m(t) =
m∑
i=0

zliϕ
m
i (t), (31)

and should solve the variational problem

〈ν, αxδα,l,m +A∗Axδα,l,m − αxδα,l−1,m −A∗rδ〉 = 0, (32)
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for all ν ∈ Vm+1, where 〈., .〉 is the standard inner product in Hilbert space L2(0, 1). It
is convenient to rewrite (32) as the following system of linear algebraic equations with
respect to unknown coefficients zli. From (31)

α

m∑
i=0

zli〈ϕmi , ϕmj 〉+
m∑
i=0

zli〈Aϕmi , Aϕmj 〉

=α

m∑
i=0

zl−1i 〈ϕ
m
i , ϕ

m
j 〉+ 〈Aϕmj , rδ〉, (33)

j = 0, 1, · · · ,m, l = 1, 2, · · · ,p, z0i = 0, i = 0, 1, · · · ,m,
The choice of the discretization parameter m and the regularization parameter α is

crucial, we have the possibility to choose m in such a way that the error caused by
the discretization will be dominated by the regularization error and for the selection of
regularization parameter, we can refer to [11].

6. Numerical Experiment and Results

In order to assess the validity and accuracy of the numerical algorithm, we compare
MFS solutions with the available exact solutions for various test examples. Numerical
results are presented for different values of N,M and h, which were found to be sufficiently
large to ensure that any further increasing in these numbers did not significantly improve
the accuracy of the numerical solutions. The stability of the proposed method for test
examples is investigated when some perturbed approximation of Eq. (7) is in hand. We
examine the effect of this perturbed function on the solution of problem. The perturbed
data at point ti is produced by adding a noise εi to exact data g(t) as follows

uε(x
∗, ti) = g(ti) + εi, i = 0, 1, ..., N,

where εi are random variables which are generated from a Gaussian normal distribution
with zero mean and standard deviation σ given by

σ = δ ×Maxt∈[0,1] | g(t) |,
where δ represents the percentage of noise. The normrand command in MATLAB is used
to generate the random variables (εi)i=0,1,...,N .

Also, we presents the root mean square error (RMSE) defined by

RMSE(p(t)) =

√√√√ 1

N

N∑
i=1

[p(ti)− papprox(ti)]2,

to measure the values of error in our computations.

6.1. Example 1. Let us consider the inverse problem (3)-(7) with input data

u0(x) = x2, f0(t) = 2te(−t−
t2

2
), f1(t) = (1 + 2t)e(−t−

t2

2
),

g(t) = (
1

4
+ 2t)e(−t−

t2

2
).

It is easy to check that the exact solutions of the problem (3)-(7) are u(x, t) = (x2 +

2t)e(−t−
t2

2
) and p(t) = 1 + t. We take x∗ = 0.5 and T = 1.

The value of h > 0 will be chosen appropriately. However, the accuracy of the approx-
imation appears to decrease when h < .5 or h > 1.5.
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Figure 2. The absolute error of the numerical solution of p(t) for different
values of noise level δ with M = 50, N = 100, h = 1 for example 1.

Table 1. The comparison between the exact and numerical solutions of
p(t) for different values of M,N, h for example 1.

t Exact solution Numerical solution
M=50,N=100,h=.5

Numerical solution
M=50,N=100,h=1

Numerical solution
M=50,N=100,h=1.5

Numerical solution
M=100,N=200,h=1

0.0 1.00 1.020203 1.020272 1.020270 1.010067
0.1 1.10 1.103579 1.100322 1.100309 1.100077
0.2 1.20 1.204146 1.200366 1.200355 1.200089
0.3 1.30 1.303882 1.300412 1.300407 1.300102
0.4 1.40 1.403526 1.400474 1.400463 1.400116
0.5 1.50 1.503220 1.500522 1.500525 1.500131
0.6 1.60 1.602984 1.600616 1.600593 1.600148
0.7 1.70 1.702809 1.700636 1.700668 1.700167
0.8 1.80 1.802687 1.800825 1.800749 1.800187
0.9 1.90 1.902607 1.900694 1.900837 1.900209
1.0 2.00 1.952520 1.948481 1.950919 1.975231

RMSE −− 6.2076e − 05 6.0432e − 05 5.5615e − 05 7.0982e − 06

Fig. 2 displays the behavior of the absolute error for numerical solution of p(t), when
the overspecified condition (7) is contaminated by δ ∈ {1, 3, 5}% noise. This figure shows
that when the overdetermination condition (7) is perturbed by noise then the numerical
approximation becomes unstable due to the noise.

The numerical results for comparison between the exact source term pexact(t) given in
this example and the computed solution papprox(t) for different values of M,N and h along
with their RMSE are shown in Table 1 and the comparison between the exact source term
pexact(t) and the approximate solution papprox(t) for different values of noise level δ with
their RMSE are presented in Table 2. From the figures and tables for this example, it can
be been seen that when the noise level decrease to zero, the computed solution goes to
the exact solution and the obtained numerical approximations are stable in the presence
of noise in input data.
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Table 2. The comparison between the exact and numerical solutions of
p(t) for different values of noise level with M = 50, N = 100, h = 1 for
example 1.

t Exact solution Numerical solution
M=50,N=100,h=1,δ=0%

Numerical solution
M=50,N=100,h=1,δ=1%

Numerical solution
M=50,N=100,h=1,δ=3%

Numerical solution
M=50,N=100,h=1,δ=5%

0.0 1.00 1.020272 0.989119 0.863451 0.091973
0.1 1.10 1.100322 1.119308 0.929579 1.403863
0.2 1.20 1.200366 1.195399 1.163791 1.258247
0.3 1.30 1.300412 1.293478 1.184647 1.360364
0.4 1.40 1.400474 1.397027 1.428592 1.187839
0.5 1.50 1.500522 1.535932 1.594619 1.376355
0.6 1.60 1.600616 1.635583 1.812464 1.735068
0.7 1.70 1.700636 1.808493 1.759823 1.635478
0.8 1.80 1.800825 1.810818 1.795761 1.800749
0.9 1.90 1.900694 1.916411 1.894724 1.638915
1.0 2.00 1.948481 1.929861 2.364996 1.924565

RMSE −− 6.0432e − 05 0.0013 0.0174 0.0456
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Figure 3. The comparison between the exact and numerical solutions of
p(t) with M = 50, N = 100, h = 4 and λ = 5.9383× 10−14 for example 2.

6.2. Example 2. Consider the following inverse problem (3)-(7) with input data

u0(x) = sin(πx), f0(t) = 0, f1(t) = 0,

g(t) = e(−t(π
2+1)− t

2

2
).

and T = 1. The exact solutions of the inverse problem (3)-(7) are as follow:

u(x, t) = sin(πx)e(−t(π
2+1)− t

2

2
) and p(t) = 1 + t. We take x∗ = 0.5 in our computations.

The accuracy of the approximation appears to decrease when h < 1 or h > 7. In Fig.
3 the exact solution and the MFS approximation p(t) is plotted with λ = 5.9383× 10−14

in the Tikhonov regularization for M = 50, N = 100, h = 4 when the input data given by
Eq. (7) is exact.

Similar to previous example, the numerical results for comparison between the exact
source term pexact(t) given in this example and the computed solution papprox(t) for dif-
ferent values of M,N and different values of noise level δ with their RMSE are shown in
Table 3 and Table 4.

These results have significant implications and show that the regularization method
plays an important role in order to obtain a stable solution of the ill-posed problem.
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Table 3. The comparison between the exact and numerical solutions of
p(t) for different values of M,N, h for example 2.

t Exact solution Numerical solution
M=50,N=100,h=1.5

Numerical solution
M=50,N=100,h=4

Numerical solution
M=50,N=100,h=6.5

Numerical solution
M=100,N=200,h=4

0.0 1.00 1.020270 1.020270 1.020585 1.010067
0.1 1.10 1.100309 1.100309 1.100371 1.100077
0.2 1.20 1.200355 1.200355 1.200663 1.200089
0.3 1.30 1.300407 1.300407 1.300185 1.300102
0.4 1.40 1.400463 1.400463 1.398805 1.400116
0.5 1.50 1.500525 1.500525 1.496857 1.500131
0.6 1.60 1.600594 1.600593 1.594344 1.600148
0.7 1.70 1.700669 1.700668 1.692354 1.700167
0.8 1.80 1.800752 1.800749 1.791693 1.800188
0.9 1.90 1.900795 1.900836 1.881385 1.900208
1.0 2.00 1.945873 1.950918 1.924078 1.975256

RMSE −− 6.5852e − 05 5.5616e − 05 1.9259e − 04 7.0861e − 06

Table 4. The comparison between the exact and numerical solutions of
p(t) for different values of noise level with M = 50, N = 100, h = 4 for
example 2.

t Exact solution Numerical solution
M=50,N=100,h=4,δ=0%

Numerical solution
M=50,N=100,h=4,δ=1%

Numerical solution
M=50,N=100,h=4,δ=3%

Numerical solution
M=50,N=100,h=4,δ=5%

0.0 1.00 1.020270 1.020270 1.020269 1.020267
0.1 1.10 1.100309 1.100308 1.100312 1.100307
0.2 1.20 1.200355 1.200358 1.200354 1.200370
0.3 1.30 1.300407 1.300413 1.300404 1.300487
0.4 1.40 1.400463 1.400429 1.400401 1.400416
0.5 1.50 1.500525 1.500550 1.500665 1.500020
0.6 1.60 1.600593 1.600978 1.600217 1.600754
0.7 1.70 1.700668 1.700736 1.701627 1.696306
0.8 1.80 1.800749 1.793154 1.816595 1.790316
0.9 1.90 1.900836 1.902233 1.898505 1.867805
1.0 2.00 1.950918 2.005793 1.843309 1.816337

RMSE −− 5.5616e − 05 3.1286e − 05 0.0012 0.0019

7. Conclusions

In this work a numerical approach based on the method of fundamental solutions com-
bined with the Tikhonov regularization technique for solving an inverse time-dependent
coefficient identification problem is presented. The key of the method is to employ the
fundamental solutions as basis functions in the approximate solution of the inverse prob-
lem and so the original problem reduces to solve an ill-conditioned linear system. The
stability of the proposed method is investigated by adding noise to input data. The pro-
posed approach is applied for solving two test examples in one-dimensional case and the
numerical results show that the method can be applied for parabolic inverse problem due
to its efficiency. The obtained numerical approximations are accurate for noisy data and
so the method is stable. The proposed method can be extended to solve such problem in
higher dimensional problems.
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