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EFFECTS OF SINUSOIDAL AND NON-SINUSOIDAL TEMPERATURE

MODULATION IN A TRIPLE DIFFUSIVE CONVECTION

S. PRANESH1, S. TARANNUM1, J. MEGHANA1, §

Abstract. The Triple Diffusive convection with time-dependent sinusoidal (cosine) and
non-sinusoidal (square and triangular) temperature modulation is studied using linear
and non-linear analysis. The expression for Rayleigh number and correction Rayleigh
number is obtained by using perturbation method which gives the prospect to control the
convection. Effects of various parameters of the problem are individually studied for two
cases of temperature modulation namely, (i) in-phase and (ii)out-of-phase. Ginzburg-
Landau equation using multi-scale method is derived to study the effects of temperature
modulation on heat and mass transfer. It is observed that both solutal Rayleigh num-
bers stabilizes or destabilizes the system depending on the values of the frequency of
modulation.

Keywords: Triple diffusive convection, Temperature modulation, Sinusoidal and non-
sinusoidal wave form, Correction Rayleigh number.
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1. Introduction

The single component convection was studied first by Bénard [1] and this was further
explained by Rayleigh [2] in terms of buoyancy and by Pearson [3] in terms of surface
tension. Diffusion process in single component is straightforward but in multicomponent,
the system is not that easy compared to single component. The curiosity of oceanography
led to the study of double diffusive convection by Stern [4], Turner [5] and many more
authors. Furthermore, this inquisitiveness led to another important convective phenom-
ena called triple diffusive convection in which the density depends on three independently
diffusing stratifying agencies. Triple diffusive convection can be found in solidification of
molten alloys, geothermal lakes, sea water, etc. The onset of motion in a triple diffusive
convection is fundamentally different from that of single and double diffusive cases. The
presence of third diffusive component in the system leads to a important and remarkable
results which are not observed in single and two component convection. Griffiths [6] stud-
ied the limiting condition for the formation of salt fingers at an initially sharp density step
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in a three-component system. Poulikakos [7] examined that the presence of third diffusing
component with small diffusivity which can seriously alter the nature of the convective
instabilities in the system. Later Sameena and Pranesh [8, 9] investigated the heat and
mass transfer in a triple diffusive convection by deriving the Ginzburg-Landau equation
in a couple stress fluid with and without rotation respectively. Sameena and Pranesh [10]
studied the effect of temperature modulation on heat and mass transfer by considering only
sinusoidal wave modulation in a couple stress fluid using non-linear analysis. Recently,
Raghunatha et. al. [11] studied the effect of cross diffusion in triple diffusive convection in
a Oldroyd-B fluid using linear and nonlinear analyses. They found that the cross diffusion
either stabilises or destabilises the system depending on the solute concentration values.

One of the functional ways of monitoring convection is by maintaining the non-uniform
thermal gradient which solely depends on space. Nonetheless, in various applied circum-
stances non-uniform thermal gradient finds the source in transient cooling or heating at
the boundaries, therefore the basic thermal profiles depend explicitly on time as well as
position and these kinds of problems are considered as temperature modulation. Venezian
[12] examined the effect of modulation on the onset of thermal convection using pertur-
bation method and concluded that the shift in the critical Rayleigh number is calculated
as a function of frequency, and he observed that it is feasible to progress or postpone the
onset of convection by time modulation of the wall temperatures. Recently, Siddheshwar
et al. [13] studied the effects of temperature modulation and variable viscosity on the
onset of Rayleigh-Bénard convection in Newtonian dielectric fluid using linear theory by
considering only sinusoidal type. Though many authors have studied the effect of mod-
ulation on the onset of thermal convection, to the best of our knowledge, none of them
have considered the effect of third component on the onset of convection in a sinusoidal
and non-sinusoidal wave temperature modulation. Therefore, the main objective of this
paper is to study the effect of third component on the onset of convection and heat mass
transfer with sinusoidal (cosine) and non-sinusoidal (square and triangular) wave type of
temperature modulation.

2. Mathematical Formulation

The horizontal layer of Newtonian fluid is taken between two parallel plates situated at
z = 0 and z = d. The fluid layer is heated and solutes are added from below. Let ∆T ,
∆S1 and ∆S2 are temperature and solutes 1, 2 difference maintained between the plates.
Cartesian coordinates with origin in lower plate and z-axis vertically upwards are taken.
Gravity is acting vertically downwards and in addition to fixed temperature difference
between the plates an additional perturbation is applied to the wall temperatures varying
sinusoidally or non-sinusoidally.

Figure 1. Physical Configuration



S. PRANESH, S. TARANNUM, J. MEGHANA: EFFECTS OF SINUSOIDAL AND ... 1209

Under the Boussinesq approximation the continuity equation, conservation of linear
momentum, conservation of energy, conservation of solute 1, conservation of solute 2 and
equation of state for the problem are given by:

∇ · ~q = 0, (1)

ρ0

[
∂~q

∂t
+ (~q.∇)~q

]
= −∇p− ρgk̂ + µ∇2~q, (2)

∂T

∂t
+ (~q.∇)T = χ∇2T, (3)

∂Si
∂t

+ +(~q.∇)Si = χSi∇2Si, (i = 1, 2), (4)

ρ = ρ0
[
1− αt(T − T0) + αSi

(
Si − Si0

)]
(i = 1, 2). (5)

where, ~q is the velocity vector, ρ is the density, t is time, p is the pressure, µ is the
coefficient of viscosity, g is gravity, T is Temperature, Si is concentration of solute i, ρ0 is
the refence density, αt is the coefficient of thermal expansion, αsi is concentration analog
of thermal expansion of solute i, χ is thermal diffusivity, χSi is solutal diffusivity of solutei.
The lower and upper plates are maintained with temperature and solutes;

T (0, t) = T0 +
∆T

2
[1 + εf(γt)], T (d, t) = T0 −

∆T

2
[1− εf(γt+ ϕ)], (6)

Si = Si0 + ∆Si at z = 0, Si = Si0 at z = d (i = 1, 2). (7)

where, ε is the amplitude of modulation, γ is frequency of modulation and ϕ is phase
angle. The temperature modulation comes into picture in the present problem through
the boundary condition (6).

We consider two types of temperature modulation namely:
Case (i): In-phase (Symmetric, ϕ = 0 ) Case (ii): Out-of-phase (Asymmetric, ϕ = π),

Using the boundary conditions (6) and (7), the solutions of motionless state can be
written as.

~qb = (0, 0, 0), Sib = Si0 + ∆Si

(
1− z

d

)
, (i = 1, 2),

Tb(z, t) = T0 +

(
1− 2z

d

)
∆T + ε Re

H(m)e

mz

d +H(−m)e

−mz
d

 e−iγt, (8)

where, m = (1− i)
(
γd2

2χ

)(1/2)

, H(m) =
∆T

2

[
e−iϕ − e−m

em − e−m

]
,

The three different wave types of temperature modulation are considerd in the paper,
namely:
(i) Cosine : f(γ, t) = Cos(γt),
(ii) Square: f(γ, t) =

∑∞
n=1,3,5,···

4
nπsin(nγt),

(iii) Triangular: f(γ, t) =
∑∞

n=1,3,5,···
8

n2π2 (−1)
n−1
2 sin(nγt),

3. Stability Analysis

The stability of the system is analysed by introducing the following perturbation on the
motionless state and is given by,

~q = ~qb + ~q ′, p = pb + p′, ρ = ρb + ρ′, T = Tb + T ′, Si = Sib + S′i (i = 1, 2), (9)



1210 TWMS J. APP. AND ENG. MATH. V.11, N.4, 2021

where, the prime indicates that the quantities are infinitesimal perturbations.
Substituting equation (9) in equations (1)-(5), using motionless state solution (8), ren-

dereding resultant equations dimensionless using (x∗, y∗, z∗) =

(
x′

d
,
y′

d
,
z′

d

)
, t∗ =

t′

d2/χ
,

q∗ =
~q′

χ/d
, p∗ =

d2p′

µχ
, θ∗ =

T ′

∆T
, φ∗Si =

S′

∆Si
and introducing the stream function ψ by

u =
∂ψ

∂z
, w = −∂ψ

∂x
, we get the following dimensionless equations after eliminating the

pressure term.

−∇4 Ra
∂

∂x
−RS1

∂

∂x
−RS2

∂

∂x
∂

∂x
−∇2 0 0

∂

∂x
0 −τ1∇2 0

∂

∂x
0 0 −τ2∇2





ψ

θ

φS1

φS2


=



− 1

Pr

∂

∂t
(∇2ψ) +

1

Pr

∂(ψ,∇2ψ)

∂(x, z)

−∂θ
∂t

+ δ2ε2f1
∂ψ

∂x
+
∂(ψ, θ)

∂(x, z)

−∂φS1

∂t
+
∂(ψ, φS1)

∂(x, z)

−∂φS2

∂t
+
∂(ψ, φS2)

∂(x, z)


(10)

In equation (10) the dimensionless groups are Ra =
ρ0αtg∆Td3

µχ
the thermal Rayleigh

number, RSi =
ρ0αSig∆Sid

3

µχ
the solutal Rayleigh number of solute i, Pr =

µ

ρ0χ
the

Prandtl number, τi =
χsi
χ

the ratio of diffusivity of solute i and the heat diffusivity and

ω = γd2

χ is the frequency. In the equation(10) we observe that the motionless state solution

influences the stability problem through the factor ∂Tb
∂z , which is substituted by

∂Tb
∂z

= −1 + δ2ε2f1 (11)

where, f1 = Re
[
A1(λ)eλz +A1(−λ)e−λz

]
f, λ = (1− i)

(ω
2

) 1
2
, A1(λ) =

λ

2

[
e−iϕ − e−λ

eλ − e−λ

]
,

4. Linear Stability Analysis

In this section, we obtain the condition for the onset of convection immense useful in
the local non-linear analysis to be discussed in the next section. To make this study we
neglect the Jacobians in the system (10). Eliminating θ, φS1 and φS2 from the resulting
equations (10)and replacing ε = δ2ε2 we get equation of ψ in the form:[
X1X2X3X4∇2 + [Ra(−1 + εf1)X4X3 +RS1X2X3 +RS2X3X2]

∂2

∂x2

]
ψ = 0, (12)

where,

X1 =
[ 1

Pr

∂

∂t
−∇2

]
, X2 =

[ ∂
∂t
−∇2

]
, X3 =

[ ∂
∂t
− τ1∇2

]
, X4 =

[ ∂
∂t
− τ2∇2

]
,

The boundary conditions for solving equation(10) are obtained in the form:

ψ =
∂2ψ

∂z2
=
∂4ψ

∂z4
=
∂6ψ

∂z6
=
∂8ψ

∂z8
= 0 at z = 0, 1. (13)
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The eigen value Ra of the equation (12) is obtained by expanding Ra and ψ as a function
of small amplitude of modulation ε in the form:

(Ra,ψ) = (Ra0, ψ0) + ε(Ra1, ψ1) + ε2(Ra2, ψ2) + · · · (14)

Here, Ra0 is the solution for the unmodulated system (ε = 0), ψi and Rai (i ≥ 1) are
the correction due to temperature modulation. Using equation (14) in equation (12) and
equating the coefficents of corresponding powers of ε, we obtain:

Lψ0 = 0, (15)

Lψ1 = −Ra0X4X3f1
∂2ψ0

∂x2
+Ra1X3X4

∂2ψ0

∂x2
, (16)

Lψ2 = −Ra0X4X3f1
∂2ψ1

∂x2
+Ra1X3X4

(∂2ψ1

∂x2
− f1

∂2ψ0

∂x2

)
+Ra2X3X4

∂2ψ0

∂x2
, (17)

where,

L =
[
X1X2X3X4∇2 + (−Ra0X4X3 +RS1X2X3 +RS2X3X2)

∂2

∂x2

]
.

The solution of equation (15) is taken in the form ψ0 = sin(παx)sin(πz) and the corre-
sponding eigen value Ra0 for unmodulated case is given by,

Rast0 =
Rs1
τ1

+
Rs2
τ2

+
k6

π2a2
, (18)

where, k2 = π2(1 + α2).
When RS1 = RS2 = 0, equation (18) reduces to the expression for the classical Rayleigh
number.
Following the analysis of Siddheshwar and Pranesh [14], we get:

Ra1 = 0 (19)

Ra2c =
Ra20π

2α2

2

∞∑
n=1

|Bn(λ)|2|Z3|2
[
L1(ω, n) + L∗1(ω, n)

2|L1|2

]
, (20)

where, L(ω, n) = Y1 + iY2, L1(ω, n) = Z∗3L(ω, n),

Y1 =
1

Pr

[
π2α2Pr[−k4(Rs2τ1 + (Rs1 −Ra0τ1)τ2) + (−Ra0 +Rs1 +Rs2)ω

2]

+k2[−k8Prτ1τ2 + k4(Z2 + PrZ1)ω
2]− k2ω4

]
,

Y2 =
ω

Pr

[
π2α2Prk2[Rs1(1 + τ2) +Rs2(1 + τ1)−Ra0(τ1 + τ2)] + k2[k6(τ1τ2 + PrZ2)− k2(Pr + Z1)ω

2]
]

Z1 = 1 + τ1 + τ2, Z2 = τ1 + τ2 + τ1τ2, Z3 = (−iω + τ1k
2)(−iω + τ2k

2),

Bn(λ) =
−2nπ2λ2

[
eλ − e−λ + (−1)n(e−λ−iϕ − eλ−iϕ)

]
eλ − e−λ [λ2 + (n+ 1)2π2]

,

5. Local Nonlinear Stability Analysis

We assume the form of the stream function, temperature and solute concentrations as
follows:

ψ = A(τ)sin(αx)sin(πz), (21)

θ = B(τ)cos(αx)sin(πz) + C(τ)sin(2πz), (22)

φSi = Ei(τ)cos(αx)sin(πz) + Fi(τ)sin(2πz), (i = 1, 2), (23)
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where, the time dependent amplitudes A,B,C,Ei and Fi, are to be determined from the
dynamics of the system.
Substituting equation (21)-(23) in equation (10) and taking the orthogonality condition
with the eigen functions associated with the considered minimal modes, we get

1

Pr

∂A

∂τ
=
πα

k2
[−RaB +RS1E1 + +RS2E2]− k2A, (24)

∂B

∂τ
= −π2αAC + (−1 + εf)παA− k2B, (25)

∂C

∂τ
=
π2αAB

2
− 4π2C, (26)

∂Ei
∂τ

= −π2αAFi − παA− k2τiEi, (i = 1, 2), (27)

∂Fi
∂τ

=
π2αAEi

2
− 4π2τiFi, (i = 1, 2), (28)

We now use the following regular perturbation expansion in equations (24)- (28):

A = εA1 + ε2A2 + ε3A3 , B = εB1 + ε2B2 + ε3B3 , C = εC1 + ε2B2 + ε3C3 , Ei = εEi1

+ ε2Ei2 + ε3Ei3 , Fi = εFi1 + ε2Fi2 + ε3Fi3 , Ra = Ra0 + εRa1 + ε2Ra2 + ε3Ra3, (29)

where, τ = ε2t,
Substituting equation (29) in equations (24)-(28) and on comparing the corresponding
powers of ε in the resulting equations, we get:

LV1 = 0, (30)

LV2 =

[
0 0

π3α2

2k2
A2

1 0
π3α2

2k2τ1
A2

1 0
π3α2

2k2τ2
A2

1

]Tr
, (31)

LV3 =

[
dA1

dτ
+Ra2

(
−πα
k2
A1

) (
−πα
k2

dA1

dτ

)
− f1παA1 −

π5α3

8π2k2
A3

1

π3α2

k2
A1A2

− πα

τ1k2
dA1

dτ
− π4α3A3

1

8τ1π2k2
π3α2

τ1k2
A1A2 −

πα

τik2
dA1

dτ
− π4α3A3

1

8τ2π2k2
π3α2

τ2k2
A1A2

]Tr
,

(32)

where Vi =
[
Aj Bj Cj E1j F1j E2j F2j

]
, (j = 1, 2, 3),

L =



0 −Ra0Prπα
k2

0
RS1Prπα

k2
0

RS2Prπα

k2
0

−πα −k2 0 0 0 0 0
0 0 −4π2 0 0 0 0
−πα 0 0 −τ1k2 0 0 0

0 0 0 0 −4π2τ1 0 0
−πα 0 0 0 0 −τ2k2 0

0 0 0 0 0 0 −4π2τ2


,

The solution of equation (30) and (31) subject to initial conditions is given by :

V T
1 =

[
A10 −πα

k2
A10 0 − πα

τ1k2
A10 0 − πα

τ2k2
A10 0

]Tr
, (33)

V T
2 =

[
A20 −πα

k2
A20

−π3α2

8π2k2
A2

10

−πα
τ1k2

A20
−π3α2

8π2τ1k2
A2

10

−πα
τ2k2

A20
−π3α2

8π2τ2k2
A2

10

]
,Tr

(34)
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where, A10 and A20 are arbitrary functions of τ. Using Fredholm solvability condition we
get the Ginzburg-Landau equation in the form:

P1
dA10

dτ
= P2A10 − P3A

3
10, (35)

where, P1 = 1 +
Ra0Prπ

2α2

k6
− RS1Prπ

2α2

τ1k6
− RS1Prπ

2α2

τ2k6
,

P2 = (Ra2 −Ra0f)
Prπ2α2

k2
, P3 =

(
Ra0 −

RS1

τ21
− RS2

τ22

)
Prπ3α4

k6
,

6. Heat and Mass Transport at Lower Boundary

The expression for Nusselt number Nu and Sherwood number Sh which quantifies the
amount of heat and mass transport is given by

Nu(τ) =

 α
2π

∫ 2π

α
0 (1− z + θ)zdx


z=0[

α

2π

∫ 2π
α

0 (1− z)zdx
]
z=0

= 1− 2πC(τ) = 1 + ε2
π2α2

4k2
A2

10, (36)

Shi(τ) =

 α
2π

∫ 2π

α
0 (1− z + φSi)zdx


z=0[

α

2π

∫ 2π
α

0 (1− z)zdx
]
z=0

= 1− 2πFi(τ) = 1 + ε2
π2α2

4k2τ2i
A2

10, (i = 1, 2),

(37)

Average Nusselt number and average sheerwood number is considered in order to study
effects of various parameters on heat and mass transport and it is given by:

Nu(τ) =
( ω

2π

)∫ 2π

ω

0
Nu dτ, Shi(τ) =

( ω
2π

)∫ 2π

ω

0
Shi dτ, (i = 1, 2). (38)

7. Results and Discussions

In this paper, the effects of sinusoidal (cosine) and non-sinusoidal (square and trian-
gular ) temperature modulations on the onset of triple diffusive convection heated and
added solutes from below are analyzed with stress-free, isotemperature and isoconcentra-
tion boundaries. The influence of the parameters RS1 , RS2 , τ1 and τ2 on the onset and
heat and mass transport in a triple diffusive convection are examined for sinusoidal and
non-sinusoidal temperature modulations. The correction Rayleigh number R2c is plotted
against frequency of modulation ω for in-phase temperature modulation where, ϕ = 0 and
for out-of-phase temperature modulation where, ϕ = π. The graphs are plotted by taking
moderate values of ω for a reason that when ω < 1, the period of modulation is very high
and makes finite amplitude important and ω → ∞ the modulations tends to zero. With
RS1 = RS2 = 0, our results agree with those obtained by Venezian [12].

Figures (2)-(5) are the plots of R2c versus ω for different types of temperature mod-
ulations and for different values of RS1 , RS2 , τ1 and τ2. From these figures we observe
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that with an increase of ω, R2c decreases initially and reaches the minimum point (around
ω = 5). Further increase in ω, R2c increases and reaches the maximum value (around
ω = 20). For ω > 20, R2c decreases with increase in ω and becomes zero for large values
of ω. This indicates that the modulation effect is to destabilize the system for ω < 5 and
stabilize when 5 < ω < 20 . The two peaks of R2c at ω = 10 (approximately) and ω = 20
(approximately) gives the maximum destabilizes and maximum stabilizes respectively.

Figure (2(A)) is the plot of R2c versus ω, for in-phase; cosine, square and triangular
temperature modulations and for different values of RS1 . From the figure, we observe
that, with increase in the values of RS1 , the value of R2c also increases. This is because
when the solutes are added from below, the system is not disturbed as the solute concen-
tration settles down at the lower boundary and this expands when heated and the onset
of convection is delayed. Thus, increase in RS1 stabilizes the system. We also observed
that the increase in RS1 increases the peak for negative and positive values of R2c , which
shows that maximum destabilizing and maximum stabilizing can be achieved by increasing
RS1 . Also R2c changes from negative to positive at around ω = 8, which shows in-phase
modulation destabilizes when ω < 8 and stabilizes when ω > 8.

Figure (3(A)) is the plot of R2c versus ω, for in-phase; cosine, square and triangular
temperature modulations and for different values of RS2 . From the figure, we observe
that, with increase in the values of RS2 , R2c increases. The physical reason is same as
that of RS1 as RS2 is also added from below and hence makes the system stable. We notice
from the graph that by increasing the value ofRS2 increases, the maximum peak of R2c

increases, thus by adding the third component to the system, the system becomes more
stable.

Figure (4(A)) and (5(A)) are the plots of R2c versus ω, for in-phase; cosine, square
and triangular temperature modulations and for different values of τ1 and τ2 respectively.
From the figures, we observe that, with increase in the values of τ1 and τ2, the values of
R2c decreases. τ1 and τ2 represents the ratio of solute diffusivity with heat diffusivity. The
increase in τ1 and τ2 advances the onset of convection because heat diffuses faster than
solute and therefore, salute gradient advances the onset of convection and hence destabi-
lizes the system. Comparing the two graphs we observe that both maximum destabilizing
peak and maximum stabilizing peak decreases in the case of increase in τ2 compare to τ1.

Figures (2(B)) - (5(B)) presents the plots of R2c with ω for out-of-phase temperature
modulation respectively for different values of RS1 , RS2 , τ1 and τ2. The effect of these pa-
rameters is quantitatively similar to that of its effect in in-phase temperature modulation.
Comparing the figure (2(B)) and figure (3(B)) we found that maximum peak of R2c is
higher in figure (3(B)), which means that the addition of the third component RS2 for a
two component system, stabilizes the system, the same result as observed in the case of
in-phase temperature modulation. Thus, the triple diffusive convection is more stable than
single and two component convection. This result can also be anticipated from equation
(18). We observe that in the case of out-of-phase temperature modulation R2c changes
from negative to positive at ω = 3. Thus, comparing two types of temperature modula-
tion, R2c is more positive in out-of-phase temperature modulation in-phase temperature

modulation and also from figures we note that Rin-phase
2c

< Rout-of-phase
2c

. Therefore, we
can conclude that the out-of-phase temperature modulation is more stable than that of
in-phase temperature modulation.
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From the above figures following are true for all the three types of temperature modula-
tion:
(i) For ω < ω∗, RS2c < RC2c < RT2c (ii) For ω > ω∗, RT2c < RC2c < RS2c ,
where ω∗ = 8 and 3 for in-phase and out-of-phase temperature modulation respectively.
From the above observation we can conclude that in general square wave (S) type of tem-
perature modulation is more stable compared to the cosine (C) and triangular (T) wave
type of temperature modulation.

With the clear knowledge of effects of parameters and temperature modulations on
the onset of convection, we move on to discuss their effects on heat and mass transfer
which represents post onset regime of the convection. In the case of nonlinear analy-
ses of Ginzburg-Landau equation (35) is derived from seventh order non -autonomous
Lorenz model equations (24)- (28) using multi-scale method. The heat and mass transfer
is quantified by Nusselt number (see equation (36)) and mass transports are quantified
by Sherwood numbers Sh1 and Sh2 (see equation (37)). Evaluating Ginzburg-Landau
equation (35) numerically, the average Nusselt number ( Nu) and average Sherwood num-
bers (Sh1 and Sh2) are calculated for different parameters and for different temperature
modulations. The results obtained in this case are depicted in the Figures (6) - (9).
From the figures following observations are made:

i. NuRS1=RS2=50 < NuRS1=RS2=100

ii. Sh1RS1=RS2=50 < Sh1RS1=RS2=100

iii. Sh2RS1=RS2=50 < Sh2RS1=RS2=100

Thus, increase in RS1 and RS2 increases Nu, Sh1 and Sh2 and therefore increases
the heat and mass transport. This is true for in-phase and out-of-phase modula-
tion.

iv. Nu τ1=0.3/τ2=0.7 > Nu τ1=0.5/τ2=0.9

v. Sh1 τ1=0.3/τ2=0.7 > Nu τ1=0.5/τ2=0.9

vi. Sh2 τ1=0.3/τ2=0.7 > Nu τ1=0.5/τ2=0.9

Thus, increase in diffusivity ratios decreases the heat and mass transport. This is
true for in-phase and out-of-phase modulation.

vii. Nu
in-phase

> Nu
out-of-phase

, Sh1
in-phase

> Sh1
out-of-phase

, Sh2
in-phase

> Sh2
out-of-phase

,
Thus, heat and mass transport decreases in out-of-phase compare to in-phase.

viii. Nu
T
< Nu

C
< Nu

S
, Sh1

T
< Sh1

C
< Sh1

S
, Sh2

T
< Sh2

C
< Sh2

S

Thus, heat and mass transport is maximum in square wave type of temperature
modulation and least in triangular wave type of modulation in case of out-of-phase
modulation, but in the case of in-phase modulation Nu, Sh1 and Sh2 for all three
types of modulations coincides because in in-phase modulation the phase angle is
zero (ϕ = 0).

ix. In genral Sh2 < Sh1 for all three types of temperature modulation.
x. Mass transfer is more compare to heat transfer.

8. Conclusions

The following are the conclusions drawn from the study:

(1) The temperature modulation can either stabilize or destabilise depending on the
value of frequency of modulation.

(2) Compare to two types of temperature modulation, out-of-phase temperature mod-
ulation is more stable than that of in-phase.
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(3) Square wave form is more stable compare to the cosine and triangular wave form
in general.

(4) The addition of third component stabilizes the system more compare to single and
two component convection.

(5) Solute Rayleigh numbers RS1 and RS2 stabilize the system, whereas ratio of dif-
fusivities of solute to heat diffusivity τ1 and τ2 destabilize the system.

(6) It is possible to control the onset of triple diffusive convection and also heat and
mass transfer by appropriately choosing the type of temperature modulation and
also choosing the appropriate wave form of modulation.
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(a) (b)

Figure 2. Plot of variation of R2c with ω for different values of RS1 for (A)
in-phase and (B) out-of-phase temperature modulation and for (1) square
(2) cosine and (3) triangular waveforms.

(a) (b)

Figure 3. Variation of R2c vs ω for different values of RS2 for (A) in-phase
and (B) out-of-phase temperature modulation and for (1) square (2) cosine
and (3) triangular waveforms.
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(a) (b)

Figure 4. Plot showing the effect of τ1 on R2c for (A) in-phase and (B)
out-of-phase temperature modulation and for (1) square (2) cosine and (3)
triangular waveforms.

(a) (b)

Figure 5. Plot showing the effect of τ2 on R2c for (A) in-phase and (B)
out-of-phase temperature modulation and for (1) square (2) cosine and (3)
triangular waveforms.

(a) (b) (c)

Figure 6. Variation of (A) Nu vs RS1 (B) Sh1 vs RS1 and (C) Sh2 vs RS1

for different values of RS2 and for for (A) in-phase and (B) out-of-phase
temperature modulation and for (1) square (2) cosine and (3) triangular
in-of-phase temperature modulation
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(a) (b) (c)

Figure 7. Variation of (A) Nu vs RS1 (B) Sh1 vs RS1 and (C) Sh2 vs
RS1 for different values of RS2 and for for (1) square (2) cosine and (3)
triangular out-of-phase temperature modulation

(a) (b) (c)

Figure 8. Variation of (A) Nu vs τ1 (B) Sh1 vs τ1 and (C) Sh2 vs τ1
for different values of τ2 and for (1) square (2) cosine and (3) triangular
in-phase temperature modulation

(a) (b) (c)

Figure 9. Variation of (A) Nu vs τ1 (B) Sh1 vs τ1 and (C) Sh2 vs τ1
for different values of τ2 and for (1) square (2) cosine and (3) triangular
out-of-phase temperature modulation
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