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Abstract—In recent literature, there exist many high-
performance wavelet coders that use different spatially adaptive
coding techniques in order to exploit the spatial energy com-
paction property of the wavelet transform. Two crucial issues
in adaptive methods are the level of flexibility and the coding
efficiency achieved while modeling different image regions and
allocating bitrate within the wavelet subbands. In this paper, we
introduce the “spherical coder”, which provides a new adaptive
framework for handling these issues in a simple and effective
manner. The coder uses local energy as a direct measure to
differentiate between parts of the wavelet subband and to decide
how to allocate the available bitrate. As local energy becomes
available at finer resolutions, i.e. in smaller size windows, the
coder automatically updates its decisions about how to spend
the bitrate. We use a hierarchical set of variables to specify
and code the local energy up to the highest resolution, i.e. the
energy of individual wavelet coefficients. The overall scheme is
nonredundant, meaning that the subband information is conveyed
using this equivalent set of variables without the need for any
side parameters. Despite its simplicity, the algorithm produces
PSNR results that are competitive with the state-of-art coders in
literature.

Index Terms—image, wavelet, coding.

I. INTRODUCTION

All image coders are based on some statistical model for

natural images, and exploit the dependencies implied by that

model. The coder is explicitly or implicitly optimized for

the specific model and applied to sample images. Therefore,

coding efficiency depends on how well the source model

matches the true distribution of natural images. In other words,

without a realistic source model to begin with, it is not possible

to construct an efficient compression algorithm.

Building a good source model requires a convenient and

efficient representation of the data. The success of transform

domain techniques have proven that coders based on DCT or

wavelet representations are superior to pixel domain methods.

Wavelet domain is shown to provide a good match to the

space-frequency characteristics of natural images. Hence, it

is much easier to build a realistic image model in the wavelet

domain than, say, in the pixel domain. That’s why a simple

coder in the wavelet domain could outperform a complex coder

in the pixel domain. Within the last decade, wavelets have

exemplified how a good image representation opens the doors

to a variety of original and successful image models.
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In this paper, we further develop and analyze the “spherical

representation” that has been introduced in [1] as a novel way

of representing image information in wavelet domain. We first

discuss the essential properties of a good wavelet-based image

model and indicate the weaknesses of the existing models.

Then, we show why spherical representation provides a robust

framework for building efficient image coders. We suggest

that wavelet subbands are best characterized by spatially

varying non-homogeneous processes. Based on the spherical

representation, we develop a coding algorithm that handles

this non-homogeneity in an effective and non-parametric way.

Understanding the reasons behind the success of wavelet

coders is important for predicting the future directions of

image coding. Wavelet transform achieves energy compaction

into few low-pass coefficients plus a sparse set of clustered

high-pass coefficients. Such a compact representation is very

suitable for a simple yet effective source model. The history of

wavelet coders shows an evolution of the models employed for

exploiting the energy clustering in the wavelet domain. At the

beginning stages, image information was assumed to be natu-

rally classified into statistically independent wavelet subbands,

each of which was modeled as an independent identically

distributed (i.i.d.) process. Successful coding schemes used in

DCT-based algorithms, such as run-length coding, and vector

quantization [2], [3] were tried in wavelet image coding, but

demonstrated modest coding gains over standard transform-

based algorithms. The breakthrough in wavelet image coding

arrived with coders using hierarchical wavelet trees, such

as EZW [4], SPIHT [5], SFQ [6], [7], [8], [9]. Grouping

wavelet coefficients that belong to the same spatial region

under a tree-structure, these coders were able to adapt to the

properties of different regions in the image. Other coders, such

as EQ [10], classification based algorithms [11], EBCOT [12],

etc., achieved improved coding efficiency by introducing more

spatial adaptivity in modeling the subbands.

The success of adaptive models is a direct consequence

of the special characteristics of image information. Natural

images consist of large smooth areas with localized high

frequency structures (i.e. edges) separating them. Edges and

texture come in arbitrary locations, orientations, shapes, and

sizes in natural images. Since high-frequency information

is rather localized, even coarse level information about the

location of high activity areas allows the coding methods to

be successfully adapted to the statistics of different regions.

In other words, using such “location information”, wavelet

subbands are modeled as non-homogeneous processes and

coded accordingly.

Recognizing the spatially changing properties of wavelet

subbands is crucial for accurate modeling. Equally important is
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the optimal allocation of bitrate to different parts of a subband

having distinct statistical characteristics. Sophisticated adap-

tive techniques fine tune models for each coefficient based on

the context of its local (scale and/or spatial) neighborhood. A

good example is the EQ coder [10], which uses a generalized

Gaussian distribution (GGD) with spatially adapted variance

for modeling each subband; the variance at each point is

estimated from the decoded values in its causal neighborhood

unless all the neighborhood coefficients are quantized to zero.

Based on the estimated variances, the coefficients are coded

in a way that yields overall rate-distortion optimality.

Despite their success, the EQ coder and other adaptive meth-

ods could only offer a restricted view of image information

in the wavelet domain. For instance, zerotrees of EZW coder

[4] are able to provide a rather structured separation between

significant and insignificant sets of coefficients. The EQ coder

is more flexible; however, because of the way the variances

are estimated, it assumes a slowly changing variance field

for the wavelet subband. It is doubtful whether this level of

adaptivity is adequate to accurately model the rich variety of

local statistics of wavelet coefficients. A modeling mismatch

for each coefficient will contribute to the loss of coding

efficiency for the overall image. We claim that parametric

descriptions of wavelet coefficient distributions are especially

prone to mismatches. In other words, the wavelet image model

shouldn’t be tied down to a fixed parametric description. A

more adaptive coding approach should be developed, which

updates its modeling paradigm locally as more information

becomes available about the underlying wavelet coefficients.

In this paper, we develop a wavelet-based representation that

is general, flexible and realistic. The “spherical representation”

is a hierarchical description of how total coefficient energy

gets distributed within each wavelet subband. A hierarchical

tree of subband energy is formed by summing up the squared

coefficients. Phase variables are defined that describe how the

energy in a given region is split into energies of two sub-

regions. Phase variables are coded based on a simple and

effective model. The non-homogeneity of wavelet subbands is

handled through this non-parametric model of the hierarchy.

We discuss why the spherical coding framework is more

robust against modeling mismatches than typical parametric

techniques. In particular, we explain how our coder improves

the coding efficiency by allocating total bitrate according to

the local sum of energies within the subband. The local energy

is used to adapt the coder to the local statistics of wavelet

coefficients. We claim that this approach makes it possible to

build highly adaptive and flexible coding algorithms.

Section II defines what modeling mismatch is and shows its

detrimental effects on the coder performance using a simple

example. Section III motivates and explains the spherical

representation, and discusses why this representation is more

robust against modeling mismatch while coding the wavelet

subbands. Then, Section IV describes the details of the spher-

ical coding algorithm. In Section V, the algorithm is tested

on standard test images. Compared to some of the state-of-art

wavelet coders, the spherical coding algorithm provides better

or as good coding performance.

II. EFFECTS OF MODELING MISMATCH IN CODING

Mismatch in source coding indicates the loss of coding ef-

ficiency resulting when a coder optimized for a certain source

model is applied to a different model. This is an important

problem in image coding, since there is no single source model

that can successfully describe a variety of different image

characteristics. Edges, texture, smooth regions require different

type of characterizations. It is not easy to determine the exact

statistical nature of each such region. Even if we assume that

we could develop correct models for each and every pixel

or wavelet coefficient of the image, we will probably need a

large set of parameters to define these distributions and this

incurs a heavy cost as side information for the coder. On the

other hand, if the parametrization is restricted in some way,

as it is done in all wavelet coders, modeling mismatch seems

inevitable.

We provide a simple example to show quantitatively the

effects of mismatch. In lossless coding, the performance loss

due to mismatch is measured by the relative entropy between

the two distributions, i.e. the distribution for which the coder

is designed and the distribution to which the coder is applied.

For lossy coding, results from high-rate vector quantization

theory can be used to show that relative entropy between two

continuous distributions is a good representative of the mis-

match [13]. Suppose that we apply the optimal coder designed

for an i.i.d. zero-mean Gaussian process to an independent

non-homogeneous zero-mean Gaussian process with changing

variances. The relative entropy is defined as

I(f ||g) =

∫

dxf(x) ln
f(x)
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. (1)
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Each term in this sum is greater than or equal to zero, with

equality being when σi = σ. Hence, the coder loses some

efficiency over all coefficients, unless the variance estimate

matches the true variance. In Figure 1, the relative entropy is

plotted against ln(σ/σ1) for k = 1.

This example illustrates the importance of accurate param-

eter estimation for coding a non-homogeneous process. The

estimation errors accumulate to reduce the efficiency of the

overall coding scheme. In wavelet subbands, this could be a

major problem, since the statistics change rapidly from one
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Fig. 1: Relative entropy vs. ln(σ/σ1).

region to the next and there aren’t enough samples to perform

reliable estimation. The EQ coder tries to reduce mismatch

by performing local variance estimation. However, it is not

even clear whether the immediate neighbors of a coefficient

are reliable enough to estimate its variance. This problem

persists in general for all parametric coding algorithms, i.e.

for algorithms that try to estimate certain parameters of the

coefficient distributions, and code them accordingly. In the

next section, we introduce our representation, and discuss how

robust non-parametric modeling can be carried out in this

framework, which we claim has the potential to significantly

reduce the damaging effects of modeling mismatch.

III. THE SPHERICAL REPRESENTATION

The clustering of energy in wavelet subbands motivates

the use of spatially varying models in coding the wavelet

information. All adaptive wavelet coders introduce some form

of non-homogeneity, either explicitly by parameterizing the

distribution of each wavelet coefficient (e.g. the EQ coder

and classification-based coders), or implicitly by using dif-

ferent quantization and coding techniques in different parts

of the subband (e.g. zerotree coding). In either case, care

must be taken not to produce excessive side information in

the form of model parameters or a classification map. This

limitation compromises the freedom and the flexibility in

choosing a matching model for the non-homogeneous nature

of the wavelet subband. As discussed in Section II, model

mismatches could result in severe performance loss.

Natural images offer many complications in modeling the

existing non-homogeneity. Different image regions require

different characterizations for efficient coding. There doesn’t

seem to be a small number of models one can easily define and

use to capture the statistical variety observed in natural images.

Due to the rich structure of edges and texture, statistical

differences need to be recognized within windows of different

shapes and sizes, ranging from large chunks of coefficients in

smooth regions down to the level of single isolated locations.

It is because of these challenges that we’ve decided to look

for flexible representations that can deal with such varying

information content.

Our representation and coding method share a similar

philosophy with the EQ coder in its use of local energy,

equivalently local variance, as a reliable measure of local

information content. We suggest that local variance provides

sufficient information about how the wavelet coefficients could
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Fig. 2: Spherical representation in 1-D.

be efficiently coded. Out of all wavelet coders in literature,

we single out the EQ coder for its effort to offer an “infinite

mixture model” for the wavelet coefficients. That is, each coef-

ficient can possess a GG distribution with a different variance

of any positive value. The problem in EQ is the obligation to

use the causal neighborhood for variance estimation in order to

avoid side information. In cases when local variances exhibit

sudden changes, e.g. around high-frequency structures such as

edges, the estimated variances are not accurate and this leads

to model mismatch.

One way to overcome the problem in EQ is to represent

local energy as part of the wavelet information to be coded,

and not as extra parameters needed for modeling. In other

words, local energy should be implicitly coded as part of

the subband information content. If both encoder and decoder

have access to local energy information, then coding could

be adapted according to this local statistic without any need

for side information. With that perspective, it is convenient

to define local energy hierarchically, starting from the total

energy of the full subband going down to smaller regions, even

down to the energy of a single coefficient. As the size of the

region is reduced, the local energy provides a better estimate

of the variance of the coefficients in that region. Given the

energy in a certain region, the encoder only needs to code how

this energy is divided into its sub-regions. This coarse-to-fine

strategy refines successively the available local information,

and makes coding adaptation more successful.

Motivated by this reasoning, we propose to use the follow-

ing hierarchical structure to represent a random process X (see

Figure 2): In 1-D (one dimension) , for X = {xi}1≤i≤2k , and

for 0 < m ≤ k, 0 ≤ n < 2k−m,

Em(n) =

2m(n+1)
∑

i=2mn+1

x2
i , (5)

ψm(n) = arctan

(
√

Em−1(2n)

Em−1(2n + 1)

)

, (6)

where 0 ≤ ψm(n) ≤ π/2. Here, X could be seen as one

of the wavelet subbands of a 1-D signal. In the next section,

this formulation is easily extended to 2-D (two dimensions)

subbands.

The variables Em(n) provide local energy information at

different resolution levels m. The phase variables ψm(n)
indicate how the local energy gets split between the two
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neighboring regions:

Em−1(2n) = Em(n) sin(ψm(n))2, (7)

Em−1(2n + 1) = Em(n) cos(ψm(n))2. (8)

The phase variables in a sense represent the difference in

information content between the two regions. Going from

the top level (m = k) to the bottom level (m = 1) of

the hierarchy, the phase values provide a refinement of the

available information in each region of the subband.

When the total energy, Ek(0) =
∑2k

i=1 x2
i , and the 2k − 1

phases at all levels of the hierarchy are given, the coef-

ficients are easily determined up to a sign bit; i.e. xi =
sign(xi)

√

E0(i). The sign bits could also be defined as part

of the representation if the phase values at the bottom of the

hierarchy cover full range; i.e. −π < ψ1(i) ≤ π, and:

x2i =
√

E1(i) sin(ψ1(i)), (9)

x2i+1 =
√

E1(i) cos(ψ1(i)). (10)

In this type of representation, we are able to use local energy

not only to differentiate between statistically distinct parts of

the process but also to provide direct information about the

underlying coefficient values. Coding Ek(0) and ψm(n) can

be seen as an alternative to coding xi. We might say that,

instead of cartesian coordinates, spherical coordinate system

is used in representing the process; hence the name spherical

representation.

The simple example of Section II helps us understand better

the convenience of spherical representation for coding a non-

homogeneous process. In case when the process X is i.i.d. zero

mean Gaussian with variance σ2, the local energies Em(n) are

σ2χ2
2m , where χ2

2m is chi-square distributed with 2m degrees

of freedom. The ratio of two chi-square distributed random

variables has F-distribution, F2m,2m ; the distribution of the

phase variables could be computed accordingly. It can be

shown that the joint pdf’s satisfy:

pχ2

2m ,F
2m−1,2m−1

(x, y) = pχ2

2m
(x)pF

2m−1,2m−1

(y) (11)

Therefore, Em(n) and ψm(n) are mutually independent; it

follows that ψm(n) are independent random variables for all

0 < m < k, 0 ≤ n < 2k−m. In theory, we can design an

optimal coder for these variables, and this coder is going to

have a performance equal to that of the coder designed for

i.i.d. Gaussian X = {xi}1≤i≤2k .

If X is in fact non-homogeneous Gaussian with changing

variances σ2
i for xi, then the total loss of efficiency due to

using the optimal spherical coder designed for the i.i.d. case

has to be equal to the mismatch calculated in Section II.

However, unlike the previous case, the phase variables ψm(n)
contribute in different proportions to the total mismatch; the

phases at the top levels of the hierarchy cause more mismatch

than then ones at the lower levels.

To show this, let’s first look at the distribution of Em(0) =
∑2m

i=1 x2
i , where xi have variances σ2

i with mean variance

σ̄2 = (1/2m)
∑2m

i=1 σ2
i . Figure 3 plots the pdf of Em(0) for

m = 4, σ̄ = 1 and var(σ2
i ) = 0.1. The dashed curve shows

the pdf of χ2
16. It turns out that, as long as σ2

i ’s do not deviate
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Fig. 3: Pdf for Em(0) and χ2
16 (m = 4 and σ̄ = 1).

too much from the mean value σ̄2, Em(0) is approximately

distributed as σ̄2χ2
2m .

Therefore, for slowly changing variances, we can assume

that Em(n) is σ2
1χ2

2m , and Em(n+1) is σ2
2χ2

2m , where σ2
1 and

σ2
2 are the mean variances for the corresponding coefficients.

Then Em(n)/Em(n+1) is (σ2
1/σ2

2)F2m,2m , where the pdf of

F2m,2m is given by,

g(x) = Ω
x(2m−2)/2

(1 + x)2m , x > 0, (12)

and the pdf of Em(n)/Em(n + 1) is (s =
σ2

1

σ2

2

),

f(x) = Ω
s2m−1

x(2m−2)/2

(s + x)2m , x > 0, (13)

where Ω is an appropriate normalization factor. The relative

entropy between (σ2
1/σ2

2)F2m,2m and F2m,2m is given by:

I(f ||g)=

∫ ∞

0

dxf(x) ln

(

s2m−1

(1 + x)2
m

(s + x)2m

)

=2m

∫ ∞

0

dxf(x)

(

ln(s1/2) + ln(
1 + x

s + x
)

)

. (14)

The relative entropy is proportional to 2m, hence increases

exponentially at higher levels of the hierarchy. Even though

the relative entropy for Em(n)/Em(n + 1) is not an exact

measure of coding mismatch for the phase variables, we can

argue that coding mismatch has to be significantly higher at

the top levels of the hierarchy. Since the total mismatch should

be equal to the case when xi’s are coded as i.i.d. Gaussian,

the coding mismatch has to be relatively small for the phase

variables at the lowest level, i.e. m = 1 (when compared with

the expression in Eqn. 4).

Since the upper levels contribute a major portion of the

efficiency loss due to mismatch, improving the coding perfor-

mance at the upper levels significantly improves the coding

efficiency of the overall coding scheme. This makes the

spherical representation robust against the non-homogeneity of

the underlying process. In other words, without knowing the

exact nature of this non-homogeneity and without any detailed

parametrization, we only need reasonable models for upper-

level phase variables in order to have good overall coding

results. From a different viewpoint, if the upper levels are
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optimally coded, then the lower levels will have access to

optimally decoded local energies, and the coding at the lower

levels will benefit from this information.

The attractiveness of the spherical representation is not

limited by its ability to collect modeling mismatch at the

few upper level phase values. It also creates a highly adaptive

coding framework, where different coding techniques could be

developed at different levels of the hierarchy without requiring

any side information. Imagine the optimal codeword for X

is given by X̂ = {x̂i}1≤i≤2k . The decoded phase variables

ψ̂m′(n) at a certain level m′ affect the decoded values of lower

level energies Êm(n),m < m′, and eventually the decoded

coefficients x̂i. On the other hand, optimal coding of ψm′(n)
is directly related to the total decoded energy Êm′(n) and

therefore on x̂i. This mutual dependency creates difficulties for

rate-distortion optimization but also opens the door to endless

possibilities for innovative coding strategies.

We resort to our original example to explain in simple

terms how to perform model adaptation using the spherical

representation. Imagine that the variances σ2
i , 1 ≤ i ≤ 2k

of non-homogeneous X are mutually independent. Then the

maximum likelihood (ML) estimate for each σ2
i is equal to x2

i .

That is, the values of neighboring coefficients are useless in

estimating the variance of xi. Without any a priori informa-

tion, the optimal spherical coder based on the i.i.d. assumption

will use σ2 = Êk(0)/2k as the variance estimate of all

coefficients. At a certain level m′, assume that we have the

decoded energy Êm′(n). Then, the descendants of this node

(e.g. ψm′(n) and other phase values that belong to the subtree

below Êm′(n)) can be coded using the optimal spherical coder

for an i.i.d. Gaussian with variance Êm′(n)/2m′

. In other

words, each subtree will be coded based on its decoded energy

and independent of the rest of the spherical tree. Ignoring

the quantization effects, this new variance estimate provides a

better match than Êk(0)/2k for the coefficients at the leaves of

this subtree. This means a reduction in the modeling mismatch

for this subtree. As we go down the hierarchical tree, the

variance estimate for every subtree gets refined at each level,

and we could get a significant recovery from the performance

loss due to the modeling mismatch of using Êk(0)/2k as the

variance estimate. This example illustrates how different levels

of the spherical hierarchy provides a natural refinement of

available information and how this new information could be

used for successful model and coder adaptation.

In the next section, we extend the spherical representation to

2-D wavelet subbands and develop a simple coding algorithm

that exploits the flexibility and robustness of the spherical

framework for efficient coding of the wavelet information.

IV. SPHERICAL CODER IN WAVELET SUBBANDS

Spherical representation could be easily extended to 2-D to

be used in wavelet image coding. Partial squared sums need

to be defined in both vertical and horizontal directions in an

alternating fashion (see Figure 4). Let us represent the phase

variables and the local energies as ψu,v(s, t) and Γu,v(s, t)
respectively. Assume the subband is (2J × 2J), so that 0 ≤
u, v ≤ J , and s, t are defined accordingly. The spherical coder

described in this section codes the wavelet subband through

22J −1 phase variables plus the total energy and the sign bits.

In coding ψu,v(s, t), the spherical coder acts on the follow-

ing assumptions:

• The technique is applied independently at each subband.

Even though we believe the energy information to be

highly redundant across scales, it is a challenging prob-

lem to model the dependencies among phase variables in

different subbands. We discuss this and other issues at

the end of this paper.

• ψu,v(s, t) in each subband are assumed to be indepen-

dent random variables that are uniformly distributed in

[0, π/2]. Independence assumption simplifies the coding

procedure. Once again, modeling and coding the intricate

dependencies of ψu,v(s, t) is a challenging and open

problem. The use of true histograms (see Figure 6) in

entropy coding ψu,v(s, t) achieve very little coding gain,

which justifies the use of uniform distribution.

• Independence of phase variables at different levels of the

hierarchy implies that ψu,v(s, t) is also independent of

Γu,v(s, t), since Γu,v(s, t) is determined by ψu+1,v(s, t)
or ψu,v+1(s, t) (see the definitions below).

• Since distortion is measured with respect to the actual

decoded values of wavelet coefficients, rate-distortion

theory implies that optimal coding of phase depends on

the decoded values of corresponding local energy. Specif-

ically, assuming independence, optimal coding requires

rate-distortion curve of each ψu,v(s, t) to be normalized

by Γ̂u,v(s, t) (See Figure 5).

• Since the decoded value of the local energy is needed for

coding the phase, decoding is performed hierarchically,

starting from the top level of the spherical tree going

down to the coefficient level (See Figure 4).

Given these modeling assumptions, the job of the encoder

is to choose the optimal (in rate-distortion sense) codeword

which is admissible within the spherical coding framework.

A codeword is admissible if its spherical tree can be decoded

with zero distortion at the designated bitrate. More specifi-

cally, for such a codeword, decoded phase and local energy

coefficients should be exactly equal to their original values.

At a given bitrate, the set of all admissible codewords defines

the spherical codebook.

The spherical codebook has a rather complicated and non-

linear structure. It is not a trivial problem to find the optimal

codeword which minimizes the distortion for a given set of

wavelet coefficients. Building the spherical tree using true

coefficient values and coding this original tree does not lead to

an optimal answer. This could be easily understood by looking

at how the coder behaves in smooth regions of the subband.

Insignificant energies could add up to be significant, and the

coder could end up spending bitrate coding the total energy,

not knowing that this energy comes from an insignificant

region of the subband. Since the coder wastes bitrate for

coding insignificant sets, the resulting codeword cannot be the

optimal one.

Ideally, spherical coding tree has to be constructed using op-

timally decoded wavelet values. However, there is no obvious
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Fig. 4: Spherical coder.

way of determining these optimal values. Here, we propose

a simple strategy for estimating the optimal spherical tree.

First, wavelet coefficients are thresholded using a dead-zone

interval. The dead-zone interval is used to find an initial set of

coefficients that must be quantized to zero for rate-distortion

efficiency. After thresholding, we perform a Lagrangian cost

analysis to find any other set of coefficients that should also

be quantized to zero. Going from the bottom to the top

of the spherical tree, we compare the Lagrangian cost of

zero-quantizing all coefficients of a given node to the best

alternative associated with choosing not to do so. The latter

is equal to the cost of coding the assigned phase value of the

node plus the best cost of the two children nodes (See Figure

4). At the end, coefficients that belong to zero nodes are set to

zero. The spherical tree is constructed and coded with these

quantized coefficients. It turns out that this is an effective way

of determining the set of zero-quantized coefficients, which is

essential for successful coding performance.

In more detail, the spherical coding algorithm is given

(for each wavelet subband at different scales and in different

orientations) as follows (assume 0 ≤ m,n < 2J ):

1) Use soft-thresholding to estimate zero-quantized wavelet

coefficients:

c̃(m,n) =

{

c(m,n) if |c(m,n)| > T
0 else

2) Define, for 0 ≤ u ≤ J (v = u − 1, u),

Γu,v(s, t) =

2u(s+1)−1
∑

m=2us

2v(t+1)−1
∑

n=2vt

c̃(m,n)2

0 ≤ s < 2(J−u), 0 ≤ t < 2(J−v),

and, for 0 ≤ u < J ,

ψu+1,u+1(s, t) = arctan

(

√

Γu+1,u(s, 2t)
√

Γu+1,u(s, 2t + 1)

)

0 ≤ s, t < 2(J−u−1),

ψu+1,u(s, t) = arctan

(

√

Γu,u(2s, t)
√

Γu,u(2s + 1, t)

)

0 ≤ s < 2(J−u−1), 0 ≤ t < 2(J−u).

The decoded values are represented as Γ̂u,v(s, t) and

ψ̂u,v(s, t).
3) Optimizing spherical representation: Compare the

Lagrangian cost of sending coded values of the wavelet

coefficients to the cost of quantizing them all to zero. If

the latter cost is smaller, then quantize to zero. Define

Lu,u(s, t) as the Lagrangian cost. For 0 ≤ m,n < 2J ,

L0,0(m, n) = (c(m,n) − c̃(m,n))
2

+ λI(m,n)

where I(m,n) represents the sign bit for coefficient

c(m,n), i.e.

I(m, n) =

{

0 if c̃(m,n) = 0
1 else

Then, set u = 1. While u < J do,

• For 0 ≤ s < 2(J−u), 0 ≤ t < 2(J−u+1), define

Lu,u−1(s, t) = Lu−1,u−1(2s, t)

+ Lu−1,u−1(2s + 1, t)

+ λ log2(Ku,u−1(s, t) + 1)

where the Lagrangian cost for coding ψu,u−1(s, t),
i.e. λ log2(Ku,u−1(s, t) + 1) (see step 4), is added

to the total cost of two subtrees in order to get the

total cost of the coefficients related to this node.

Consequently,

Lu,u−1(s, t) >

2u(s+1)−1
∑

m=2us

2u−1(t+1)−1
∑

n=2u−1t

c(m,n)2

⇒ c̃(m,n) = 0

∀ 2us ≤ m < 2u(s+1), 2u−1t ≤ n < 2u−1(t+1).
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√
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√
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ψ = π/2

Ku,u(s, t) = 4

ψ̂u,u(s, t)

Fig. 5: Circular quantization.

• For 0 ≤ s, t < 2(J−u), repeat the same procedure

for Lu,u(s, t).
• Increment u and repeat step 4.

4) Decoding: Code and send ΓJ,J(0, 0). Set u = J . While

u > 0 do,

• For 0 ≤ s, t < 2(J−u), code ψu,u(s, t) with a uni-

form quantizer for the interval [0, π/2]. Normalize

the step size based on the magnitude, such that there

are an integer number of quantization cells in the

interval (see Figure 5):

qu,u(s, t) =
π

2Ku,u(s, t)

where Ku,u(s, t) =









π/2
√

Γ̂u,u(s, t)

q
+ 0.5







 .

Two quantization levels are placed at ψ̂ = 0 and

ψ̂ = π/2. The other quantization points are chosen

accordingly. Therefore, there are Ku,u(s, t) + 1
quantization levels (since 0 and π/2 have quan-

tization intervals of half the size). Note that, if

Ku,u(s, t) = 0, then there is no need for coding

the phase values, and the iteration stops for such a

node. In this case, all the coefficients of the node

are quantized to zero.

• For 0 ≤ s, t < 2(J−u), decode the local energies,

Γ̂u,u−1(s, 2t) = Γ̂u,u(s, t)
(

sin(ψ̂u,u(s, t))
)2

Γ̂u,u−1(s, 2t + 1) = Γ̂u,u(s, t)
(

cos(ψ̂u,u(s, t))
)2

• For 0 ≤ s < 2(J−u), 0 ≤ t < 2(J−u+1),

repeat the procedure for ψ̂u,u−1(s, t) and

Γ̂u−1,u−1(2s, t), Γ̂u−1,u−1(2s + 1, t).

• Decrement u and repeat step 3.

At the end of decoding, we have, for 0 ≤ m,n < 2J ,

the decoded wavelet coefficients:

ĉ(m, n) = sign(c(m,n))

√

Γ̂0,0(m, n).

In the algorithm, q and T are chosen as the optimal

quantization step size and the optimal dead-zone interval size,

respectively, for best rate-distortion performance for a given

Lagrangian multiplier λ. For a given bitrate, optimal λ is

found using the convex bisection algorithm of [14]. Note that,

optimal λ is equal to the slope of the rate-distortion curve of

the spherical coder at its operating point. Starting from two

extreme points of rate-distortion curve, the bisection algorithm

shrinks the interval in which the optimal point lies until it

converges. If the algorithm does not converge after a certain

number of iterations, then the value of λ is incremented or

decremented in small steps to find the optimal operating point.

Arithmetic coding is used to code the phase variables. The

spherical tree provides a natural context for adaptive arithmetic

coding. The coding model of each phase value ψu,v is adapted

based on the corresponding number of quantization levels,

Ku,v + 1, and the level of the tree, i.e. (u, v) pair. Figure 6

plots the histograms of phase variables at highest scale vertical

subband at different levels of the spherical tree. Uniform

distribution seems to provide a good fit to phase histograms

at lower levels. The distribution gets more peaked around 45

degrees at higher levels of the spherical tree. However, since

the number of phase variables drops as 2uv , the use of true

histograms in arithmetic coding does not provide much coding

gain over uniform distribution. As a result, the bitrate of the

arithmetic coder turns out to be only slightly better than the

entropy estimate based on the uniform distribution. In other

words, it is justified to use the self-information log2(Ku,v +1)
for estimating the bitrate of each phase variable.
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Fig. 6: Histogram of phase variables: (a) u = 1, v = 0, 1; (b) u = 3, v = 2, 3.

While encoding/decoding the spherical tree, once the algo-

rithm reaches to a “zeronode”, all the coefficients that belong

to that node are set to zero and no further bitrate is spent for

coding the remaining phase values. Therefore, the compari-

son of Lagrangian cost between two modes of quantization,

namely ”zeronode” quantization and ”spherical” quantization

is essential for achieving successful coding results.

The performance of the algorithm is very much dependent

on how the spherical tree is constructed. Note that, the

optimization step, i.e. step 3, tries to find the set of coefficients

that are to be quantized to zero, and doesn’t provide estimates

for decoded values of remaining coefficients. In other words,

zeronode quantization is introduced as the only alternative to

standard spherical coding of phase variables. In principle, it

is possible to include more sophisticated vector quantization

modes into the search list. Yet, this surely turns Lagrangian

optimization into a much harder problem.

It is rather challenging to figure out what the best strategy

is, and how much better (in terms of total Lagrangian cost)

the decoded values can get. The answer lies in the compli-

cated structure of the codebook generated by the spherical

quantization and coding strategy. The quantization of phase

is very much dependent on the decoded magnitude, which is

related to the previously decoded phase values. Therefore, the

possible set of codewords have a rather complicated structure

to visualize. It is an open research problem to develop a better

understanding of the nature of this codebook and to improve

the coding algorithm.

V. SIMULATIONS AND DISCUSSIONS

Spherical coder is implemented using biorthogonal linear

phase filter pairs in a 6-level dyadic decomposition. Quantiza-

tion step size used for all phase variables in all subbands is the

same, up to the necessary normalization factor. Optimal q and

T are chosen among the set {t : t = 0.1kπ, k = 1, 2, ..., 150}.

Low-pass subband is arithmetic coded, after applying an

(8 × 8) DCT, using optimal scalar quantizer for a given λ.

The performance of the spherical coder is compared to that

of some of the best performing coders in the literature [15],

including SPIHT [5], SFQ [6], EQ [10], EBCOT [12] and

EZBC [16]. Lena, Goldhill and Barbara images are used for

comparison. All results are for the 9/7 filter pair, except for

EQ which uses the 10/18 filter. The results are reported at

1.00, 0.50, 0.25 bpp (see Table I).

The spherical coder, called as SPHE in Table I, outperforms

SPIHT, and is as good as SFQ, EBCOT and EZBC in most

cases. The slightly better performance of EQ coder is partially

due to the use of 10/18 filter. In Figure 7, PSNR for Lena is

plotted against different bitrates for SPHE and EBCOT. Except

for Barbara, the performance of SPHE is about the same as

that of EBCOT, which is the algorithm used in JPEG2000

standard. Note that, EBCOT uses sophisticated contextual

models which can adapt well to the local frequency content

of textured regions in images such as Barbara. Considering

the simplicity of the modeling choices we have made in

the spherical coder, these results are rather encouraging for

our future efforts in developing highly efficient and adaptive

coding methods based on the spherical representation.

Table II provides PSNR results of SPHE using both 17/11

and 9/7 filter pairs. With 17/11 filter, PSNR is 0.05-0.1 dB

better for Lena and Goldhill, and 0.3-0.4 dB better for Bar-

bara. This is because 17/11 filter achieves better compaction of

energy in wavelet subbands. This energy compaction is more

pronounced for textured images such as Barbara.

The performance of the spherical coder could possibly

be improved in many different ways. Using uniformly dis-

tributed independent phases simplifies the algorithm, and in-

troduces some form of non-homogeneity. But this assumption

is not quite right for modeling the actual non-homogeneity

of wavelet subbands. There exist complicated high-order de-

pendencies among phase variables. In addition, there exist

inter-band dependencies among phase variables that belong

to the same spatial locations in different subbands. Since

the spherical representation is robust to coding mismatch,

the spherical coder with the independence assumption is still

very successful. Based on the discussions of Section III, if

we can model these dependencies at different levels of the

hierarchy, and manage to decode optimal or close to optimal

local energies, we expect significant overall coding gains.

As for the computational cost of the algorithm, the most

time consuming part is to find the optimal parameter set

(q, T, λ) for a target bitrate. Due to this exhaustive optimiza-

tion, the complexity of the algorithm is comparable to that

of SFQ and EQ, and quite higher than the other algorithms



9

TABLE I: PSNR comparison of different coders.

Lena PSNR (dB)

Rate (bpp) SPHE SPIHT SFQ EQ EBCOT EZBC

1.00 40.67 40.46 40.52 40.88 40.55 40.62

0.50 37.40 37.21 37.36 37.69 37.43 37.47

0.25 34.28 34.11 34.33 34.57 34.32 34.35

Goldhill PSNR (dB)

Rate (bpp) SPHE SPIHT SFQ EQ EBCOT EZBC

1.00 36.85 36.55 36.70 36.96 36.75 36.90

0.50 33.37 33.13 33.37 33.44 33.38 33.47

0.25 30.72 30.63 30.71 30.76 30.75 30.74

Barbara PSNR (dB)

Rate (bpp) SPHE SPIHT SFQ EQ EBCOT EZBC

1.00 37.00 36.41 37.03 37.65 37.38 37.28

0.50 32.06 31.40 32.15 32.87 32.50 32.15

0.25 28.22 27.58 28.29 28.48 28.53 28.25

TABLE II: PSNR results for SPHE using 17/11 and 9/7 filters.

SPHE PSNR (dB)

Lena Goldhill Barbara

Rate (bpp) 17/11 9/7 17/11 9/7 17/11 9/7

1.00 40.74 40.67 36.91 36.85 37.39 37.00

0.50 37.50 37.40 33.42 33.37 32.44 32.06

0.25 34.38 34.28 30.76 30.72 28.52 28.22

mentioned above. However, we believe that an exhaustive

search for the optimal parameter set could be avoided by

modeling the relationships between these parameters. As for

the coding procedure for fixed values of (q, T, λ), the com-

putational complexity is reasonable. For building the tree,

the cost calculations require simple addition and comparison

operations at each node. During decoding, the number of

quantization bins is computed and uniform scalar quantization

is performed for each node. A significant portion of the coding

complexity is due to context-based arithmetic coding of the

quantized phase variables. For hardware implementation, in

both coding stages, the different nodes at a certain level of

the hierarchy could be processed in parallel, which could

significantly speed-up the execution.

VI. CONCLUSION

In this paper, we have introduced and analyzed the spherical

representation as a convenient and flexible framework for

developing adaptive models for wavelet information. A simple

application of the framework in wavelet subbands has led

to the spherical coding algorithm. The competitive results

attained by the spherical coder point towards the potential

of such energy-based representations in modeling wavelet

subbands.

On a more philosophical point, spherical coding technique

is based on an orthogonal representation which is quite dif-

ferent than the usual orthogonal bases of Cartesian coordinate

system. Instead, the phase variables here could be seen as

the basis vectors of the spherical coordinate system. To be

more accurate, in its current form, the spherical coder is

a combination of both coordinate systems, since wavelet

transformation is applied first and the spherical coordinates are
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Fig. 7: PSNR versus bitrate for SPHE and EBCOT.

used independently in each subband. The phase coordinates

could also be defined in different ways than the hierarchical

way we did in our algorithm. One might think of various other

ways to use these two types of representations together for

developing interesting coding strategies. This could lead to a

coding theory much more general than the theory of transform

coding.

Spherical representation could find interesting applications

in fields other than coding wavelet subbands. One such area is

the study of turbulence. Multifractals are extensively used in

this field [17], [18], mainly to describe the spatial dissipation

of turbulent energy. There exist several techniques to analyze

the multifractal nature of given data using different statistical

tools, such as the multifractal spectra [19]. In contrast to such

global descriptions, spherical representation could be used to

develop more localized statistical models for these kind of

processes.

Spherical coder is a basic implementation of the ideal adap-

tive coding methods that we are looking for, mainly because

it doesn’t rely on a deep understanding of natural images.

We expect to develop more intelligent coding techniques and

achieve much better results, if we can model the dependencies

that exist among local energy and phase variables.

Spherical coder, as described in this paper, is a non-

progressive lossy coding method. Our current work also fo-

cuses on different versions of spherical coder for lossless

coding and for progressive coding by modifying the way in

which the spherical tree is constructed and coded.
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