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L2- OPTIMAL ORDER ERROR FOR TWO-DIMENSIONAL COUPLED

BURGERS’ EQUATIONS BY WEAK GALERKIN FINITE ELEMENT

METHOD

A. J. HUSSEIN1, H. A. KASHKOOL1, §

Abstract. In this paper, we present a continuous time and discrete time weak Galerkin
finite element schemes for solving non linear two Dimensional coupled Burgers’ equations
with a stabilization term. We use special weak form (trilinear form) for nonlinear term.
The optimal order error in L2- norm is obtained based on dual argument technique for
both continuous time and discrete time weak Galerkin finite element schemes. The Nu-
merical examples are in good agreement with the theoretical analysis and polynomial
mixture {Pk(K), Pk−1(∂K), [Pk−1(K)]2}.

Keywords: Weak Galerkin Finite Element Method (WG-FEM), Burgers’ Equations, Op-
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1. Introduction

Two dimensional coupled Burgers’ Equations serves as a useful model for many inter-
esting problems in applied mathematics. It models effectively certain problems of a fluid
flow nature, in which either shocks or viscous dissipation is a significant factor as shock
flows, traffic flow, acoustic transmission in fog, air flow over an air, oil, gas dynamics
etc. Besides its importance in understanding convection diffusion phenomena, Burgers’
equation can be used, especially for computational purposes, as a precursor of the Naiver-
Stokes equations for fluid flow problems (see [11] [12], [13]). In fact, it can be used as a
model for any nonlinear wave propagation problem subject to dissipation. Depending on
the problem being modeled, this dissipation may result from viscosity, heat conduction,
mass diffusion, thermal radiation, chemical reaction, or other source.

In this paper, we consider nonlinear two dimensional coupled Burgers’ problem [1].

ut − ε∇2u+ (u · ∇)u = f(x, y, t), (x, y, t) ∈ Ω× (0, T ], (1.1)
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with Dirchlet boundary conditions

u(x, y, t) = η(x, y, t), (x, y, t) ∈ ∂Ω× (0, T ], (1.2)

and initial conditions

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (1.3)

where Ω = {(x, y), a1 ≤ x ≤ a2, b1 ≤ y ≤ b2} ⊂ R2 is the computational domian, ∂Ω
it’s boundary, u = (u, v), u and v are the velocity components, u0 = (u0, v0), η = (ηu, ηv)
are known functions, ut is unsteady term, ε∇2u is the diffusion term, ε = 1

Re is diffusion
constant, Re is the Reynolds number and f = (f1, f2) is the source term (Often equal to
zero).

Rest of the paper is organized as follows. In Section 2, we introduce the definition
of discrete weak derivative, discrete weak gradient, weak finite element spaces and some
lemmas which are necessary in error estimate. Section 3 is devoted to variational form
and weak variational form for continuous and discrete time WG-FEM. In section 4 we
derive the optimal order error for both continuous and discrete time WG-FEM in L2-
norm. Finally, in section 5 numerical experiments are presented to show the efficacy of
the WG-FEM and confirm our theoretical analysis.

2. The Weak Galerkin Method

In this section, we introduce some important weak function spaces, weak differential
operators, which are useful in the error analysis of WG-FEM. Let K ⊂ Ω be any polygonal
region with boundary ∂K.

For any triangle K ∈ Th and ∂K. A weak function w = {w0, wb} on K has two pieces,
w0 ∈ L2(K) and wb ∈ L2(∂K), the first pieces represents the values of w in the interior
K and the second pieces on triangle boundary ∂K. The space of weak functions and
corresponding vector space defined on K are given by

W (K) = {w = {w0, wb}|w0 ∈ L2(K), wb ∈ L2(∂K)}. (2.1)

Define a space

H(div,K) = {w,w ∈ (L2(K))2,∇ ·w ∈ L2(K)}. (2.2)

Definition 2.1. Let w ∈ W (K), the weak derivative operator of w in the direction xj is

defined as a linear functional ∂dw
∂xj

on H1(K) such that,∫
K

∂dw

∂xj
qdx = −

∫
K
w0

∂q

∂xj
dx+

∫
∂K

wbqnxjds, ∀q ∈ H1(K). (2.3)

Definition 2.2. Let w ∈ W (K), the weak gradient operator of w is defined as a linear
functional ∇dw ∈ H(div,K) on each element K, by the following equation:∫

K
∇dw · qdK = −

∫
K
w0(∇ · q)dK +

∫
∂K

wb(q · n)ds, ∀q ∈ H(div,K), (2.4)

where n is the outward normal direction of ∂K.
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Definition 2.3. Let w ∈W (K), the discrete weak derivative operator of w in the direction

xj is defined as unique polynomial
∂d,rw
∂xj

on Pk−1(K) such that∫
K

∂d,rw

∂xj
qdx = −

∫
K
w0

∂q

∂xj
dx+

∫
∂K

wbqnxjds, ∀q ∈ Pk−1(K). (2.5)

Definition 2.4. Let w ∈ W (K), the discrete weak gradient operator of w is defined as
unique polynomial ∇d,rw ∈ [Pk−1(K)]2 on each element K,by the following equation:∫

K
∇d,rw · qdK = −

∫
K
w0(∇ · q)dK +

∫
∂K

wb(q · n)ds, ∀q ∈ [Pk−1(K)]2. (2.6)

By applying the usual integration by part to the first term on the right hand side of (2.6),
we can rewrite the equation (2.6) as follows∫

K
∇d,rw · q dK =

∫
K
∇w0 q dK +

∫
∂K

(w0 − wb) (q · n)ds, ∀q ∈ [Pk−1(K)]2. (2.7)

Let Th be a partition of the domain Ω with mesh size h = maxhK ,∀K ∈ Th, where hK
is longest side of K. In this paper we assume that Th is shape regular, namely, satisfying
the shape regularity assumptions A1-A4 in [4].

A discrete weak function w = {w0, wb} refers to a polynomial with two components in
which the first component w0 is associated with the interior K and wb is defined on each
edge e, e ∈ ∂K. Note that wb may or may not equal to the trace of w0 on ∂K. Now we
introduce two trial finite element spaces as follows:

Wh = {w = {w0, wb} : {w0, wb}|K ∈ Pk(K)× Pk−1(∂K)}, (2.8)

W h = {w = {u, v} : u ∈Wh, v ∈Wh}, (2.9)

with test space,
W 0

h = {w ∈W h : wb |∂K∩∂Ω= 0}. (2.10)

Let Vk−1(K) = {[Pk−1(K)]2 ≡ set of vector-valued polynomial of degree no more than
k − 1 on K} .
To derive the error estimates for the WG-FEM, we define two projection operators, the
first Qhw = {Q0w, Qbw} is L2− projection of H1(Ω) on to P k(K) × P k−1(∂K) with
w0 |K= Q0w, wb |e= Qbw, ∀K ∈ Th, e ∈ ∂K and the other projection is Rh, the L2−
projection of [L2(K)]2 onto Vk−1(K) (i.e. Rh is the L2-projection to the space of piecewise
polynomials of degree k − 1).

Lemma 2.1. [6] Let Th be the finite element partition of Ω satisfying the shape regularity
assumption A1-A4. Let Qhw = {Q0w, Qbw} is L2− projection operator. Then, we have

∇d(Qhw) = Rh(∇w), ∀w ∈H1(Ω). (2.11)

Lemma 2.2. [4] Let Th be the finite element partition of Ω satisfying the shape regularity
assumption A1-A4. Then, for any w ∈Hk+1(Ω), we have∑

K∈Th

‖ w −Q0w ‖2K +
∑
K∈Th

h2
K ‖ ∇(w −Q0w) ‖2K≤ Ch2(k+1)‖w‖2k+1, (2.12)

∑
K∈Th

‖ (∇w −Rh(∇w)) ‖2K≤ Ch2k‖w‖2k+1. (2.13)

In addition, for any function w ∈H1(K), the following trace inequality holds.

‖ w ‖2∂K≤ C(h−1
K ‖ w ‖

2
K +hK ‖ ∇w ‖2K), ∀K ∈ Th. (2.14)
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Lemma 2.3. Let w ∈Hk+1(K), there exists constant C > 0 such that

‖Q0w −Qbw‖∂K ≤ Chk+ 1
2 ‖w‖k+1. (2.15)

Proof. From the definition of the L2-projection, Cauchy-Schwarz inequality, trace inequal-
ity and Lemma (2.2) that

‖Q0w −Qbw‖2∂K = (Q0w −Qbw, Q0w −Qbw)∂K = (Q0w −w, Q0w −Qbw)∂K

≤ ‖Q0w −w‖∂K‖Q0w −Qbw‖∂K
≤ (h−1

K ‖Q0w −w‖2 + hK‖∇(Q0w −w)‖2)
1
2 ‖Q0w −Qbw‖∂K

= Ch−
1
2 (h2(k+1)‖w‖2k+1)

1
2 ‖Q0w −Qbw‖∂K

= Chk+ 1
2 ‖w‖k+1‖Q0w −Qbw‖∂K .

�
3. Variational form and Weak Variational form

Multiplying equations (1.1) by w ∈ H1
0(Ω) and integrating both side on Ω. We

get.

(ut,w) + ε(∇u,∇w) + ((u · ∇)u,w) = (f ,w), (3.1)

(u(x, y, 0),w) = (u0,w).

The third term in (3.1) can be written as (see [9])

((u · ∇)u,w) =
1

2
(u · ∇u,w)− 1

2
(u · ∇w,u). (3.2)

Substituting (3.2) in to equation (3.1), the Variational form is find u ∈ H1(0, T,H1
0(Ω))

such that  (ut,w) + ε(∇u,∇w) + 1
2(u · ∇u,w)− 1

2(u · ∇w,u) = (f ,w),

u(x, y, 0) = u0(x, y) ∀(x, y) ∈ Ω ∀w ∈H1
0(Ω).

(3.3)

Define two bilinear form a0(., .), s(., .) and trilinear form a1(.; ., .) on W h, for any u,w ∈
W h

a0(u,w) =
∑
K∈Th

(ε∇du,∇dw), (3.4)

a1(u;u,w) =
∑
K∈Th

1

2
{(u0 · ∇du,w0)− (u0 · ∇dw,u0)}, (3.5)

s(u,w) =
∑
K∈Th

h−1
k (Qbu0 − ub, Qbw0 −wb)∂K , (3.6)

where s(u,w) is also called a stabilizer, the stabilizer term is used to control the gap
between u0 and ub and thus the gap of u0 over the boundary of K.
We defined the trip-bar norm as follows, for any u ∈Wh, we have

‖|u|‖ =

∑
K∈Th

((∇du,∇du)K + (u0,u0)K + h−1
k (Qbu0 − ub, Qbu0 − ub)∂K)

 1
2

, (3.7)
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and H1− equivalent norm

‖u‖w,1 =

∑
K∈Th

(‖∇du‖2K + h−1
K ‖Qbu0 − ub‖2∂K)

 1
2

. (3.8)

In the finite element space W h , we introduce a discrete H1− semi norm as follows

‖u‖h,1 =

∑
K∈Th

(‖∇u0‖2K + h−1
K ‖Qbu0 − ub‖2∂K)

 1
2

, (3.9)

where
‖∇du)‖2 =

∑
K∈Th

(∇du,∇du)K , ‖u0‖2 =
∑
K∈Th

(u0,u0)K .

Lemma 3.1. [6] There exists two constant D1 and D2 > 0 such that

D1‖w‖h,1 ≤ ‖w‖w,1 ≤ D2‖w‖h,1, ∀w ∈Wh. (3.10)

Lemma 3.2. There exists two constant M1 and M2 > 0 such that

M1‖w‖h,1 ≤ ‖|w|‖ ≤M2‖w‖h,1, ∀w ∈Wh. (3.11)

Lemma 3.3. [10] With Th is shape regular, we have

‖|w −Qhw|‖2 ≤ Ch2k‖w‖2k+1, ∀w ∈Hk+1(Ω). (3.12)

Now we can describe the WG-FEM for coupled Burgers’ equations based on variational
formulation (3.3), the continuous time WG-FEM is find uh(t) = (u0(., t),ub(., t))
∈W 0

h satisfying ub = Qbη and uh(0) = Qhu
0, such that

(uh,t(t),w0) + a(uh(t);uh(t),w) = (f ,w0), ∀w ∈W 0
h, (3.13)

where

a(uh(t);uh(t),w) = a0(uh(t),w) + a1(uh(t);uh(t),w) + s(uh(t),w). (3.14)

Let 0 = t0 < t1 < .... < tN = T be a partition for time interval [0, T ] and τ > 0 be a time
step size satisfying Nτ = T with N is positive integer, denote by Un ∈W h(k, k − 1) the
approximate solution of u(tn). the backward Euler WG-FEM is defined by replacing the

time derivative in equation (3.3) by a backward difference quotient ∂̃tUn = (Un−Un−1)/τ

(∂̃tUn,w0) + a(Un;Un,w) = (f ,w0),∀w ∈W 0
h. (3.15)

There are some properties of the trilinear form a(.; ., .), which is easy to prove.

Lemma 3.4. Let W h(k, k− 1) be the WG-FEM defined in (2.8) and a(uh;uh,w) be the
trilinear form given in (3.14), there exists a positive constants δ, λ, such that

a(uh;uh,uh) ≥ δ‖|uh|‖2, (3.16)

|a(uh;uh,w)| ≤ λ‖|uh|‖‖|w|‖. (3.17)

4. Error Analysis

In this section we estimate the optimal order error for both continues and discrete
time WG-FEM, the error estimate will be measured in L2 norm. Throughout this work
the constant C have different values in each occurence (i.e. general constant).
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4.1. Error Equation. Let u ∈H1(K) and w ∈W h be any finite element function, from
Lemma (2.1), definition (2.1) and the integration by part, we get

a0(Qhu,w) = (ε∇u,∇w0)K − (ε(Rh∇u) · n,w0 −wb)∂K .

This implies that

(ε∇u,∇w0)K = (ε∇dQhu,∇dw)K + (ε(Rh∇u) · n,w0 −wb)∂K . (4.1)

From definition of trilinear form (3.5), we have

a1(Qhu;Qhu,w) =
∑
K∈Th

1

2
{(Q0u · ∇dQhu,w0)K − (Q0u · ∇dw, Q0u)K}. (4.2)

Since

(Q0u · ∇dw, Q0u)K = (Q0u · ∇w0, Q0u)K − (w0 −wb, (Q0u · n)Q0u)∂K . (4.3)

Substitution (4.3) in (4.2), we have

a1(Qhu;Qhu,w) =
∑
K∈Th

1

2
(Q0u · ∇dQhu,w0)K −

∑
K∈Th

1

2
(Q0u · ∇w0, Q0u)K

+
∑
K∈Th

1

2
(w0 −wb, (Q0u · n)Q0u)∂K . (4.4)

In the same manner, we have

a1(u;u,w0) =
∑
K∈Th

1

2
(u · ∇u,w0)K −

∑
K∈Th

1

2
(u · ∇w0,u)K

+
∑
K∈Th

1

2
(w0 −wb, (u · n)u)∂K . (4.5)

Then

a1(Qhu;Qhu,w)−a1(u;u,w0) =

∑
K∈Th

1

2
(Q0u · ∇dQhu,w0)K −

∑
K∈Th

1

2
(u · ∇u,w0)K


−

∑
K∈Th

1

2
(Q0u · ∇w0, Q0u)K −

∑
K∈Th

1

2
(u · ∇w0,u)K


+

∑
K∈Th

1

2
(w0 −wb, (Q0u · n)Q0u)∂K −

∑
K∈Th

1

2
(w0 −wb, (u · n)u)∂K

 .

(4.6)
From Lemma (2.1), add and subtract the terms (u ·Rh(∇u),w0), (u · ∇w0, Q0u), (w0 −
wb, (u · n)Q0u), to the Eq.(4.6), we get

a1u;u,w0) = a1(Qhu;Qhu,w)−
6∑
i=1

Ii(u,w), (4.7)

where
6∑
i=1

Ii(u,w) =
1

2

∑
K∈Th

((Q0u− u) ·Rh(∇u),w0)K +
1

2

∑
K∈Th

(u · (Rh(∇u)−∇u),w0)K
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−1

2

∑
K∈Th

((Q0u−u)·∇w0, Q0u)K−
1

2

∑
K∈Th

(u·∇w0, Q0u−u)K

+
1

2

∑
K∈Th

(w0−wb, (Q0u−u) ·nQ0u)∂K +
1

2

∑
K∈Th

(w0−wb, (u ·n) (Q0u−u))∂K .

(4.8)
Let w ∈W 0

h be a test function, testing equation (1.1) by w0, we have

(ut,w0) + (−ε∇2u,w0) + ((u · ∇)u,w0) = (f ,w0). (4.9)

To estimate the error, we need to reformulate equation (4.9) as following:
Integration by part for the second term, we get∑

K∈Th

(−ε∇ · (∇u),w0)K =
∑
K∈Th

(ε∇u,∇w0)K −
∑
K∈Th

(w0, ε∇u · n)∂K . (4.10)

Substitution Eq.(4.1) in (4.10), we get∑
K∈Th

(−ε∇ · (∇u),w0)K =
∑
K∈Th

(ε∇dQhu,∇dw)K +
∑
K∈Th

(ε(Rh∇u) · n,w0 −wb)∂K

−
∑
K∈Th

(w0, ε∇u · n)∂K . (4.11)

using the fact that
∑

K∈Th(ε∇u · n,wb)∂K = 0, after adding it, we obtain∑
K∈Th

(−ε∇· (∇u),w0)K =
∑
K∈Th

(ε∇dQhu,∇dw)K +
∑
K∈Th

(ε(Rh∇u−∇u) ·n,w0−wb)∂K .

(4.12)
In other words it’s really∑

K∈Th

(−ε∇ · (∇u),w0)K = a0(Qhu,w)− I7(u,w), (4.13)

where I7(u,w) =
∑

K∈Th(ε(∇u−Rh∇u) · n,w0 −wb)∂K .

Substitution (4.7) and (4.13) in (4.9), with fact (ut,w0) = (Qhut,w0) and adding the
term s(Qhu,w). to both side, gives

(f ,w0) + s(Qhu,w) = (Qhut,w0) + a(Qhu;Qhu,w)−
7∑
i=1

Ii(u,w). (4.14)

Subtract (3.13) from (4.14), we have an error equation

((uh −Qhu)t,w0) + a(uh −Qhu;uh −Qhu,w) =
8∑
i=1

Ii(u,w), (4.15)

where I8(w) = s(Qhu,w).
To estimate Ii(w), i = 1 ∼ 8, We need the following inequality [3] with using Lemma (3.2)∑

K∈Th

h−1
K ‖w0 −wb‖2∂K ≤ C‖w‖2h,1 ≤ C‖|w‖|2. (4.16)
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We can estimate Ii terms in the error equation (4.15), by using Cauchy-Schwarz inequality,
Lemma (2.2) and from definition of ‖|w|‖, as following

|I1(u,w)| =

∣∣∣∣∣∣12
∑
K∈Th

((Q0u− u) ·Rh(∇u),w0)K

∣∣∣∣∣∣
≤ 1

2
‖∇u‖∞

∑
K∈Th

‖Q0u− u‖K‖w0‖K


≤ Ch(k+1)‖u‖k+1‖w0‖ ≤ Chk‖u‖k+1‖|w|‖.

In the same manner for Ii, i = 2 ∼ 8, therefore, we have

|
8∑
i=1

Ii(u,w)| ≤ Chk‖u‖k+1‖|w|‖. (4.17)

5. Optimal order error estimates

In this section we derived the optimal order error estimate in L2-norm for contin-
ues and discrete time WG-FEM. Let u ∈ H1

0(Ω)
⋂
H2(Ω) and Phu denote the elliptic

projection of u onto finite element space W 0
h, which satisfies the following inequality

a(Phu;Phu,w) = (−∇ · (ε∇u),w) + ((u · ∇)u,w), ∀w ∈W 0
h. (5.1)

Lemma 5.1. Suppose that the exact solution of the problem (1.1) is so regular that
u ∈Hk+1(Ω) then there exists a constant C such that

(a) ‖|Qhu− Phu|‖ ≤ Chk‖u‖k+1, (b) ‖Qhu− Phu‖ ≤ Chk+1‖u‖k+1.

Proof. (a), From Equation (5.1), we have

a(Phu;Phu,w) = (f ,w)− (ut,w), ∀w ∈W 0
h. (5.2)

Let θ = Qhu− Phu, testing (1.1) by w ∈W 0
h, similarity for equation (4.14), we have

a(Qhu;Qhu,w) = (f ,w)− (ut,w) +

8∑
i=1

Ii(u,w), ∀w ∈W 0
h. (5.3)

Subtract (5.2) from (5.3), we get

a(θ;θ,w) =
8∑
i=1

Ii(u,w), ∀w ∈W 0
h. (5.4)

Setting w = θ and coercivity of the trilinear form a(·; ·, ·), we obtain

‖|θ|‖2 ≤ C|
8∑
i=1

Ii(u,θ)|. (5.5)

From Eq.(4.17), we have

|
8∑
i=1

Ii(u,θ)| ≤ Chk‖u‖k+1‖|θ|‖. (5.6)
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Subsituation (5.6) in (5.5), we complete the prove.
To prove part (b), we use the dual problem, find φ ∈H1

0(Ω)
⋂
H2(Ω), satisfy

−∇ · (ε∇φ) + (φ · ∇)φ = θ, in Ω. (5.7)

and φ is H2-regularity i.e. there exists a positive constant C such that ‖φ‖2 ≤ C‖θ‖
Testing Eq.(5.7) by θ

‖θ‖2 = (−∇ · (ε∇φ),θ) + ((φ · ∇)φ,θ)

= a0(Qhφ,θ)− I7(φ,θ) + a1(Qhφ, Qhφ,θ)−
6∑
i=1

Ii(φ,θ)

= a(Qhφ, Qhφ,θ)− s(Qhφ,θ)−
7∑
i=1

Ii(φ,θ). (5.8)

From Eq.(5.4) with w = Qhφ, we get

‖θ‖2 =
7∑
i=1

Ii(φ,θ) +
8∑
i=1

Ii(u, Qhφ)− s(Qhφ,θ). (5.9)

For Ii(φ,θ), we use Cauchy-Schwarz inequality, Lemma (2.2), trace inequality (2.14),
Ponicaré inequality and embedding theorem, we obtain

|I1(φ,θ)| =

∣∣∣∣∣∣12
∑
K∈Th

((Q0φ− φ) ·Rh(∇φ),θ0)K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

‖Q0φ− φ‖‖∇φ‖‖θ0‖

≤ Ch2‖φ‖2‖‖φ‖1‖|θ|‖ ≤ Ch2‖φ‖2‖‖φ‖2‖|θ|‖
≤ Ch2‖φ‖22‖Chk‖u‖k+1 ≤ Chk+2‖u‖k+1‖‖θ‖,

|I2(φ,θ)| =

∣∣∣∣∣∣12
∑
K∈Th

(φ · (Rh(∇φ)−∇φ),θ0)K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

‖φ‖‖Rh(∇φ)−∇φ‖‖θ0‖

≤ ‖φ‖2(Ch‖φ‖2)‖|θ|‖ ≤ (Ch‖φ‖22)Chk‖u‖k+1

≤ Chk+1‖u‖k+1‖‖θ‖,

|I3(φ,θ)| =

∣∣∣∣∣∣−1

2

∑
K∈Th

((Q0φ− φ) · ∇θ0), Q0φ)K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

‖Q0φ− φ‖‖∇θ0‖‖Q0φ‖

≤ Ch2‖φ‖2‖|θ|‖(‖φ‖+ ‖φ−Q0φ‖)
≤ Ch2‖φ‖2Chk‖u‖k+1‖(C‖φ‖2 + Ch2‖φ‖2)

≤ Chk+2‖u‖k+1‖‖θ‖+ Chk+4‖u‖k+1‖‖θ‖
≤ Chk+2‖u‖k+1‖‖θ‖,
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|I4(φ,θ)| =

∣∣∣∣∣∣−1

2

∑
K∈Th

(φ · ∇θ0, Q0φ− φ)K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

‖φ‖‖∇θ0‖‖Q0φ− φ‖

≤ ‖φ‖2‖|θ|‖(Ch2‖φ‖2) ≤ ‖φ‖2(Chk‖u‖k+1)(Ch2‖φ‖2)

≤ Chk+2‖u‖k+1‖‖θ‖,

|I5(φ,θ)| =

∣∣∣∣∣∣12
∑
K∈Th

(θ0 − θb, (Q0φ− φ) · nQ0φ)∂K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

(h−
1
2 ‖θ0 − θb‖∂K)(h

1
2 ‖Q0φ− φ‖∂K‖Q0φ‖∂K)

≤ ‖|θ|‖h
1
2 (h−

1
2 ‖Q0φ− φ‖+ h

1
2 ‖∇(Q0φ− φ)‖)(h−

1
2 ‖Q0φ‖+ h

1
2 ‖∇Q0φ‖)

≤ ‖|θ|‖(h2‖φ‖2)h−
1
2 (‖φ‖+ ‖φ−Q0φ‖) + h

1
2 (‖φ‖1 + ‖φ−Q0φ‖1)

≤ ‖|θ|‖(h2‖φ‖2)(h−
1
2 (C‖φ‖2 + Ch2‖φ‖2) + h

1
2 (C‖φ‖2 + Ch‖φ‖2))

≤ Ch
3
2 ‖|θ|‖‖φ‖22 + Ch

7
2 ‖|θ|‖‖φ‖22 + Ch

5
2 ‖|θ|‖‖φ‖22 + Ch

7
2 ‖|θ|‖‖φ‖22

≤ (Chk+ 3
2 + Chk+ 7

2 + Chk+ 5
2 + Chk+ 7

2 )‖u‖k+1‖‖θ‖ ≤ Chk+ 3
2 ‖u‖k+1‖‖θ‖.

Similarity for |I6(φ,θ)| ≤ Chk+ 3
2 ‖u‖k+1‖‖θ‖,

|I7(φ,θ)| =

∣∣∣∣∣∣
∑
K∈Th

(ε(∇φ−Rh∇φ) · n,θ0 − θ0)∂K

∣∣∣∣∣∣
≤ (

∑
K∈Th

hk‖ε(∇φ−Rh∇φ)‖2∂K)
1
2 (
∑
K∈Th

h−1
k ‖θ0 − θb‖2∂K)

1
2

≤ (
∑
K∈Th

‖ε(∇φ−Rh∇φ)‖2K + h2
k‖∇(ε(∇φ−Rh∇φ))‖2K)

1
2 ‖|θ|‖

≤ Ch2‖φ‖2‖|θ|‖
≤ Chk+2‖u‖k+1‖θ‖.

For Ii(u, Qhφ), we use Cauchy-Schwarz inequality, Lemma (2.2), trace inequality (2.14),
embedding theorem, we obtain

|I1(u,Qhφ)| =

∣∣∣∣∣∣12
∑
K∈Th

((Q0u− u) ·Rh(∇u), Q0φ)K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

‖Q0u− u‖ · ‖∇u‖∞‖Q0φ‖

≤ Chk+1‖u‖k+1‖(‖φ‖+ ‖φ−Q0φ‖)
≤ Chk+1‖u‖k+1‖(C‖φ‖2 + Ch2‖φ‖2) ≤ Chk+1‖u‖k+1‖‖θ‖.
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Similarity for I2(u, Qhφ) ≤ Chk+1‖u‖k+1‖‖θ‖,

|I3(u, Qhφ)| =

∣∣∣∣∣∣−1

2

∑
K∈Th

((Q0u− u) · ∇Q0φ), Q0u)K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

‖(Q0u− u‖‖∇Q0φ)‖‖Q0u‖

≤ Chk+1‖u‖k+1‖‖Q0φ‖1
≤ Chk+1‖u‖k+1‖(‖φ‖1 + ‖φ−Q0φ‖1)

≤ Chk+1‖u‖k+1‖(C‖φ‖2 + Ch‖φ‖2)

≤ Chk+1‖u‖k+1‖(C‖θ‖+ Ch‖θ‖) ≤ Chk+1‖u‖k+1‖‖θ‖.

Similarity for |I4(u, Qhφ)| ≤ Chk+1‖u‖k+1‖‖θ‖,

|I5(u, Qhφ)| =

∣∣∣∣∣∣12
∑
K∈Th

(Q0φ−Qbφ, (Q0u− u) · nQ0ua)∂K

∣∣∣∣∣∣
≤ 1

2

∑
K∈Th

‖Q0φ−Qbφ‖∂K‖Q0u− u‖∂K‖Q0u‖∂K

≤ Ch
3
2 ‖φ‖2(h−1‖Q0u− u‖2K + h‖∇(Q0u− u)‖2K)

1
2

≤ Ch
3
2 ‖θ‖h−

1
2Chk+1‖u‖k+1 ≤ Chk+2‖u‖k+1‖‖θ‖.

Similarity for |I6(u, Qhφ)| ≤ Chk+2‖u‖k+1‖‖θ‖,

|I7(u, Qhφ)| =

∣∣∣∣∣∣
∑
K∈Th

(ε(∇u−Rh∇u) · n, Q0φ−Qbφ)∂K

∣∣∣∣∣∣
≤

∑
K∈Th

‖ε(∇u−Rh∇u‖∂K‖Q0φ−Qbφ‖∂K

≤ (h−1‖∇u−Rh∇u‖2K + h‖∇(∇u−Rh∇u)‖2K)
1
2Ch

3
2 ‖φ‖2

≤ (h−1Ch2k‖u‖2k+1 + hCh2k−1‖u‖2k+1)
1
2Ch

3
2 ‖φ‖2

≤ (Ch2k−1‖u‖2k+1)
1
2Ch

3
2 ‖φ‖2

≤ Chk+1‖u‖k+1‖‖θ‖,

|I8(u, Qhφ)| =

∣∣∣∣∣∣
∑
K∈Th

h−1
k (Qb(Q0u)−Qbu, Q0φ−Qbφ)∂K

∣∣∣∣∣∣
≤ (

∑
K∈Th

h−1
k ‖Qb(Q0u)−Qbu‖2∂K)

1
2 (
∑
K∈Th

h−1
K ‖Q0φ−Qbφ‖2∂K)

1
2

≤ (Ch2k‖u‖2k+1)
1
2h−

1
2 ‖Q0φ−Qbφ‖∂K

≤ Chk‖u‖2k+1h
− 1

2Ch
3
2 ‖φ‖2 ≤ Chk+1‖u‖k+1‖‖θ‖,
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|s(θ, Qhφ)| =

∣∣∣∣∣∣
∑
K∈Th

h−1
k (Qb(Q0φ)−Qbφ, Qbθ0 − θb)∂K

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
K∈Th

h−1
k (Q0φ− φ, Qbθ0 − θb)∂K

∣∣∣∣∣∣
≤ (

∑
K∈Th

h−1
k ‖Q0φ− φ‖2∂K)

1
2 (
∑
K∈Th

h−1
k ‖Qbθ0 − θb‖∂K)

1
2

≤ Ch‖φ‖2‖|θ|‖ ≤ Ch‖θ‖Chk‖u‖k+1 ≤ Chk+1‖u‖k+1‖θ‖.

Substituting
∑8

i=1 Ii(u, Qhφ),
∑7

i=1 Ii(φ,θ) and s(Qhφ,θ) into (5.9), we complete proof
part (b) �

5.1. Error estimate for the continuous time WG scheme.

Theorem 5.1. Suppose that u(x, y, t),uh(x, y, t) be the solutions to the Burgers’ equation
(1.1) and the continuous time WG scheme (3.13), respectively, assume that the exact
solution is so regular that u,ut ∈Hk+1(Ω). Then there exists a constant C such that

‖u− uh‖2 ≤ C
(
‖u0 − u0

h‖2 + h2(k+1)(‖u0‖2k+1 +

∫ t

0
‖ut‖2k+1dt)

)
. (5.10)

Proof. Suppose that ρu = u−Qhu, µu = Qhu− Phu, eu = Phu− uh, we can write

u− uh = ρu + µu + eu. (5.11)

From Lemma(2.2), we have

‖ρu‖ ≤ Chk+1‖u‖k+1, ‖ρut ‖ ≤ Chk+1‖ut‖k+1, (5.12)

‖µu‖ ≤ Chk+1‖u‖k+1, ‖µut ‖ ≤ Chk+1‖ut‖k+1. (5.13)

We must estimate eu, we can write

(eut ,w) + a(eu; eu,w) = (Phut,w) + a(Phu, Phu,w)− (uh,t,w)− a(uh;uh,w)

= (Phut,w) + a(Phu, Phu,w)− (f ,w)

= (Phut,w)− (∇ · (ε∇u),w) + (u · ∇u,w)− (f ,w)

= (Phut,w)− (Qhut,w) + (Qhut,w)− (ut,w)

= −(µut ,w)− (ρut ,w), ∀w ∈W 0
h. (5.14)

Setting w = eu, we have
(eut , e

u) + a(eu; eu, eu) = −(µut , e
u)− (ρut , e

u) .
By coercivity of the trilinear form a(.; ., .), Cauchy-Schwarz inequality, Young’s inequality,
we get

1

2

d

dt
‖eu‖2 + δ‖|eu|‖2 ≤ −(µut , e

u)− (ρut , e
u)

d

dt
‖eu‖2 ≤ C(‖µut ‖2 + ‖ρut ‖2 + ‖eu‖2).

Integration with respect to t, we get the following inequality

‖eu‖2 ≤ ‖e(., 0)‖2 + C(

∫ t

0
‖µuτ ‖2dτ +

∫ t

0
‖ρuτ ‖2dτ +

∫ t

0
‖eu‖2dτ). (5.15)
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For ‖e(., 0)‖, we use Lemma (2.2) and Lemma(5.1)

‖e(., 0)‖ = ‖Phu0 − u0
h‖ = ‖Phu0 −Q0u

0 +Q0u
0 − u0 + u0 − u0

h‖
≤ ‖Phu0 −Q0u

0‖+ ‖Q0u
0 − u0‖+ ‖u0 − u0

h‖
≤ Chk+1‖u0‖k+1 + ‖u0 − u0

h‖. (5.16)

Substitution (5.12),(5.13) and (5.16) in (5.15), with Gronwall lemma, equation (5.10)
holds.

�

5.2. Error estimate for the discrete time WG scheme.

Theorem 5.2. Suppose that u ∈ Hk+1(Ω),Un ∈ W h(k, k − 1) be the solutions to the
Burgers’ equation (1.1) and the discrete time WG scheme (3.15), respectively, let u0,ut ∈
Hk+1(Ω), then there exists a constant C such that

‖u(tn)−Un‖ ≤ C
(
‖u0 −U0‖+ τ

∫ tn

0
‖utt‖dt+ hk+1(‖u0‖k+1 +

∫ tn

0
‖ut‖k+1dt)

)
.

(5.17)

Proof. In the same manner in Theorem(5.1), we can write

un −Un = ρun + µun + eun , (5.18)

where ρun = un − Qhun, µun = Qhun − Phun, eun = Phun − Un and un = u(tn), for
convenience.
From Lemma(2.2) and Lemma(5.1), we have

‖ρun‖ ≤ Chk+1‖un‖k+1 ≤ Chk+1(‖u0‖k+1 +

∫ tn

0
‖uτ‖k+1dτ). (5.19)

‖µun‖ ≤ Chk+1‖un‖k+1 ≤ Chk+1(‖u0‖k+1 +

∫ tn

0
‖uτ‖k+1dτ). (5.20)

We must estimate eu, we can write

(∂̃te
u
n ,w) + a(eun ; eun ,w) = (∂̃tPhun,w) + a(Phun, Phun,w)− (∂̃tUn,w)− a(Un;Un,w)

= (∂̃tPhun,w) + a(Phun, Phun,w)− (fn,w)

= (∂̃tPhun,w)− (∇ · (ε∇un),w) + (un · ∇un,w)− (fn,w)

= (∂̃tPhun,w)− (ut,w)

= (∂̃tPhun,w)− (∂̃tQhun,w)

+ (∂̃tQhun,w)− (∂̃tun,w) + (∂̃tun,w)− (ut,w)

= −(∂̃tµ
u
n ,w)− (∂̃tρ

u
n ,w)− (ut − ∂̃tun,w), ∀w ∈W 0

h. (5.21)

Setting w = eun , coercivity of the trilinear form a(.; ., .), Cauchy-Schwarz inequality, we get

(
eun − eun−1

τ
, eun) + δ‖|eun |‖2 ≤ (‖∂̃tµun‖+ ‖∂̃tρun‖+ ‖ut − ∂̃tun‖)‖eun‖

(‖eun‖2 − ‖eun−1‖‖eun‖) ≤ τ(‖∂̃tµun‖+ ‖∂̃tρun‖+ ‖ut − ∂̃tun‖)‖eun‖
‖eun‖ ≤ ‖eun−1‖+ τ(‖∂̃tµun‖+ ‖∂̃tρun‖+ ‖ut − ∂̃tun‖). (5.22)
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By induction

‖eun‖ ≤ ‖eu0 ‖+ τ(
n∑
j=1

Λ1
j +

n∑
j=1

Λ2
j +

n∑
j=1

Λ3
j ). (5.23)

We have

‖eu0 ‖ ≤ Chk+1‖u0‖k+1 + ‖u0 −U0‖, (5.24)

and

∂̃tρ
u
j = −(∂̃tQhu(tj)− ∂̃tu(tj)) = −τ−1

∫ tj

tj−1

(Qh − I)utdt, (5.25)

∂̃tµ
u
j = −(∂̃tQhu(tj)− ∂̃tPhu(tj)) = −τ−1

∫ tj

tj−1

(Qh − Ph)utdt. (5.26)

Integration by part, we obtain

∂̃tu(tj)− ut(tj) = −τ−1

∫ tj

tj−1

(t− tj−1)uttdt. (5.27)

It follows from (2.2) and Lemma(5.1) that

n∑
j=1

Λ1
j ≤ τ−1

n∑
j=1

∫ tj

tj−1

Chk+1‖ut‖k+1dt ≤
C

τ
hk+1

∫ tn

0
‖ut‖k+1dt, (5.28)

n∑
j=1

Λ2
j ≤ τ−1

n∑
j=1

∫ tj

tj−1

Chk+1‖ut‖k+1dt ≤
C

τ
hk+1

∫ tn

0
‖ut‖k+1dt, (5.29)

n∑
j=1

Λ3
j ≤ C

n∑
j=1

∫ tj

tj−1

‖utt‖k+1dt ≤
∫ tn

0
‖utt‖k+1dt. (5.30)

Substitution (5.24), (5.28), (5.29) and (5.30) in (5.23), with disecrete Gronwall lemma, we
compelet the proof. �

6. Numerical Experiments

In this section, we use the combination of polynomial spaces {P1(K), P0(∂K), [P0(K)]2}
of the numerical approximation i.e., space consisting of piecewise linear polynomial on the
triangles and piecewise constants on the edges, we also adopt the L2-norm and L∞-norm
to present the optimal order error between the exact solution and the numerical solution
uh, we consider two example over square domain Ω : [0, 1]× [0, 1] that divided into n× n
square element uniformly and into 2n+1 triangles by the diagonal line for two triangle.
The initial and Dirichlet boundary conditions are taken from the analytical solution.

6.1. Test problem 1. In this subsection, we consider the system of two dimension Burg-
ers’ equations (1.1) over time interval [0, T ] = [0, 1]. The exact solutions of two dimension
Burgers’ equation [2] are:

u(x, y, t) = −2ε
2πe−5π2εtcos(2πx)sin(πy)

2 + e−5π2εtsin(2πx)sin(πy)
,

v(x, y, t) = −2ε
πe−5π2εtsin(2πx)cos(πy)

2 + e−5π2εtsin(2πx)sin(πy)
.
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In the test ε = 10−5, τ = 10−2 are used to check the convergence with respect to time step
size τ and mesh size h = 1

n , (n = 2, 4, 8, 16, 32, 64). Table 1 and 2 show that the L2 and
L∞− error with respect to the velocity u and v, Figure 1 show the weak Galerkin solution
and exact solution for u and v in case (T = 1, τ = 0.01, ε = 10−5).

h L2 error Order L∞ error Order

1/2 5.3123e-07 - 1.3013e-06 -

1/4 9.7624e-08 2.4440 4.4168e-07 1.5589

1/8 1.7426e-08 2.4860 1.1812e-07 1.9027

1/16 3.0931e-09 2.4941 2.9753e-08 1.9892

1/32 5.7738e-10 2.4215 7.1563e-09 2.0558

1/64 1.1150e-10 2.3725 1.4624e-09 2.2909

Table 1. L2 and L∞ error for u in case T = 1, ε = 10−5 and τ = 10−2 .

h L2 error Order L∞ error Order

1/2 1.2825e-06 - 3.1415e-06 -

1/4 1.8782e-07 2.7716 6.5072e-07 2.2713

1/8 3.4515e-08 2.4440 2.2107e-07 1.5576

1/16 6.1613e-09 2.4859 5.9353e-08 1.8971

1/32 1.0956e-09 2.4915 1.5191e-08 1.9661

1/64 2.1417e-10 2.3549 3.9046e-09 1.9600

Table 2. L2 and L∞ error for v in case T = 1, ε = 10−5 and τ = 10−2 .

6.2. Test problem 2. In this subsection, we present the test problem to illustrate the
backward Euler WG finite elements method for the time dependent coupled Burgers’
equations (1.1) over time interval [0, T ] = [0, 1]. The exact solutions of coupled Burgers
equation [2] are:

u(x, y, t) =
(x+ y − 2xt)

(1− 2t2)
, v(x, y, t) =

(x− y − 2xt)

(1− 2t2)
.

In the test τ = 0.01 and ε = 100 are used to check the order of convergence with respect
to time step size τ and mesh size h = 1

n , (n = 2, 4, 8, 16, 32, 64) the results are shown in
Table3, Table4 and Figure 2.
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h L2 error Order L∞ error Order

1/2 1.2768e-01 - 1.4221e-01 -

1/4 1.9239e-02 2.7304 2.3120e-02 2.6209

1/8 4.4667e-03 2.1068 5.4657e-03 2.0806

1/16 1.0739e-03 2.0564 1.3498e-03 2.0176

1/32 2.4359e-04 2.1403 3.3661e-04 2.0036

1/64 4.7035e-05 2.3727 8.4140e-05 2.0002

Table 3. Numerical results for a test problem2 .

Figure 1. Numerical and Exact solution for u and v in case (T = 1, τ = 0.01, ε =

10−5).

h L2 error Order L∞ error Order

1/2 2.4477e-01 - 4.4970e-01 -

1/4 3.8086e-02 2.6841 7.0237e-02 2.6787

1/8 8.8613e-03 2.1037 1.6499e-02 2.0899

1/16 2.1069e-03 2.0724 4.0683e-03 2.0199

1/32 4.5265e-04 2.2186 1.0141e-03 2.0042

1/64 7.9618e-05 2.5072 2.5347e-04 2.0004

Table 4. Numerical results for a test problem2 .

7. Conclusions

The goal of this paper is to obtain the optimal order error by applying the WG-FEM
with configuration (Pk(K), Pk−1(∂K), [Pk−1(K)]2) and stabilization term for solving two
dimensional coupled Burgers’ equations. The optimal order error in L2- norm is obtained
based on dual argument technique, numerically, the WG-FEM in this work gives accurate
results and conforms well the theoretical analysis.
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Figure 2. Numerical and Exact solution for u and v in case (T = 1, τ = 0.01, ε =

100).
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