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Kn(λ) IS FULLY {P7, S4}-DECOMPOSABLE

R. CHINNAVEDI1, R. SANGEETHA1, §

Abstract. Let Pk+1 denote a path of length k, Sm denote a star with m edges, and
Kn(λ) denote the complete multigraph on n vertices in which every pair of distinct ver-
tices is joined by λ edges. In this paper, we have obtained the necessary conditions for
a {Pk+1, Sm}-decomposition of Kn(λ) and proved that the necessary conditions are also
sufficient when k = 6 and m = 4.
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1. Introduction

All graphs considered here are finite and undirected with no loops. For the standard
graph-theoretic terminology the reader is referred to [1]. A simple graph in which every
pair of distinct vertices is joined by an edge is called a complete graph, denoted by Kn.
If more than one edge joining two vertices are allowed, the resulting object is called a
multigraph. Let Kn(λ) denote the complete multigraph on n vertices in which every pair
of distinct vertices is joined by λ edges. A complete bipartite graph is a simple bipartite
graph with bipartition (X,Y ) in which each vertex of X is joined to each vertex of Y ;
if |X| = a and |Y | = b, such a graph is denoted by Ka,b. In Ka,b(λ), we label the
vertices in the partite set X as {x1, x2, . . . , xa} and Y as {xa+1, xa+2, . . . , xa+b}. If a = b,
the complete bipartite graph is referred to as balanced. A path is an open trail with no
repeated vertex. A path with k edges is denoted by Pk+1. The complete bipartite graph
K1,m is called a star and is denoted by Sm. For m ≥ 3, the vertex of degree m in Sm is
called the center and any vertex of degree 1 in Sm is called an end vertex.

Let G be a graph and G1 be a subgraph of G. Then G\G1 is obtained from G by deleting
the edges of G1. Let G1 and G2 be subgraphs of G. The union G1∪G2 of G1 and G2 is the
graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). We say that G1 and
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G2 are edge-disjoint if they have no edge in common. If G1 and G2 are edge-disjoint, we
denote their union by G1+G2. A decomposition of a graph G is a collection of edge-disjoint
subgraphs G1, G2, . . . , Gn of G such that every edge of G is in exactly one Gi. Here it is
said that G is decomposed or decomposable into G1, G2, . . . , Gn. If G has a decomposition
into p1 copies of G1, . . . , pn copies of Gn, then we say that G has a {p1G1, . . . , pnGn}-
decomposition. If such a decomposition exists for all values of p1, . . . , pn satisfying trivial
necessary conditions, then we say that G has a {G1, . . . , Gn}{p1,...,pn}-decomposition or G
is fully {G1, . . . , Gn}-decomposable.

In [6], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the ex-
istence of {pG1, qG2}-decomposition ofKn(λ), when (G1, G2) ∈ {(Pn, Sn−1), (Cn, Sn−1), (Pn,
Cn)}. In [7], Priyadharsini gave the necessary and sufficient conditions for the existence
of {pPn, qSn−1}-decomposition of Kn+1(λ). In [8], Shyu gave the necessary and sufficient
conditions for a {P4, S3}{p,q}-decomposition of Kn and also discussed the existence of

{Pk+1, Sk}{p,q}-decomposition of Kn, when n ≥ 4k such that either k is even and p ≥ k
2 or

k is odd and p ≥ k. In [9], Shyu proved that the necessary conditions are also sufficient for
the {Pk+1, Sk}{p,q}-decomposition of Kn, when n ≥ 4k. In [5], Ilayaraja and Muthusamy
proved that Kn is fully {P4, S4}-decomposable. In [3], Lee and Chen showed the existence
of {pPk+1, qSk}-decomposition of Kn(λ) and Kb,b(λ). In [2], Lee and Chen gave the nec-
essary and sufficient conditions for a {F, S3}{p,q}-decomposition of Kn with F ∈ {Pn, Cn}.
In [10], Shyu gave the necessary conditions for a {pCk, qPk+1, rSk}-decomposition of Kn

and proved that Kn is fully {C4, P5, S4}-decomposable, when n is odd. In this paper we
prove that Kn(λ) is fully {P7, S4}-decomposable.

2. Preliminaries

For convenience we denote V (Kn(λ)) = {x1, x2, . . . , xn}. The notation S(x1;x2 · · ·xm)
denotes anm-star with x1 as center vertex and x2, . . . , xm as end vertices, and [x1x2 · · ·xk+1]
is a k + 1-path with vertices x1, x2, . . . , xk+1 and edges x1x2, x2x3, . . . , xkxk+1.

We recall here some results on Pk+1 and Sm-decompositions that are useful for our
proofs.

Theorem 2.1. [11] A necessary and sufficient conditions for the existence of a Pk+1-
decomposition of Kn(λ) into edge-disjoint simple paths of length k is λ

(
n
2

)
≡ 0 (mod k)

and n ≥ k + 1.

Theorem 2.2. [12] A necessary and sufficient conditions for the existence of a Sm-
decomposition of Kn(λ) is that: (i) λ

(
n
2

)
≡ 0 (mod m) (ii) n ≥ 2m for λ = 1 (iii)

n ≥ m+ 1 for even λ (iv) n ≥ m+ 1 + m
λ for odd λ ≥ 3.

Theorem 2.3. [13] Let k be a positive integer and let a and b be positive even integers
such that a ≥ b. Ka,b(λ) has a Pk+1-decomposition if and only if a ≥ dk+1

2 e, b ≥ d
k
2e and

λab ≡ 0 (mod k).

Theorem 2.4. [4] For positive integers a and b with a ≥ b, the complete bipartite multi-
graph Ka,b(λ) is Sm-decomposable if and only if a ≥ m and (i) λa ≡ 0 (mod m) if b < m
(ii) λab ≡ 0 (mod m) if b ≥ m.

In the following Theorem, we discuss the necessary conditions for a {pPk+1, qSm}-
decomposition of Kn(λ), when λ ≥ 1.

Theorem 2.5. Let λ, n, k and m be positive integers. Let p and q be non-negative integers.
The necessary condition for a {pPk+1, qSm}-decomposition of Kn(λ) is pk + qm = λ

(
n
2

)
and n ≥ max{k + 1,m+ 1}.
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In this paper, we prove that the above necessary condition is sufficient for a {P7, S4}{p,q}-
decomposition of Kn(λ) in Theorem 3.1.

3. Main result

In this section, we discuss a {P7, S4}{p,q}-decomposition of Kn(λ), when λ ≥ 1. Since
Kn(λ) cannot be decomposed into P7 and S4 when n ≤ 6, we discuss the decompositions
for n ≥ 7.

Remark 3.1. The necessary conditions for the existence of a {P7, S4}{p,q}-decomposition
in Kn(λ) is satisfied when n ≡ 0, 1 (mod 4) if λ ≥ 1 and n ≡ 2, 3 (mod 4) if λ is even.
i.e., there does not exist non-negative integers p and q satisfying 6p + 4q = λ

(
n
2

)
when

n ≡ 2, 3 (mod 4) if λ is odd.

In the following two lemmas, we discuss {P7, S4}{p,q}-decompositions of K4,6 and K3,6(2)
which we use further to decompose Kn(λ) into {pP7, qS4}.

Lemma 3.1. If p and q are non-negative integers such that 6p + 4q = 24, then K4,6 is
fully {P7, S4}-decomposable.

Proof. (p, q) ∈ {(4, 0), (2, 3), (0, 6)}. By Theorem 2.3, K4,6 is {4P7, 0S4}-decomposable.
K4,6 can be decomposed into 2P7 : [x2x8x1x9x3x10x4], [x3x8x4x9x2x10x1] and 3S4 : S(x5;x1,
x2, x3, x4), S(x6;x1, x2, x3, x4), S(x7;x1, x2, x3, x4). By Theorem 2.4, K4,6 is {0P7, 6S4}-
decomposable. Therefore K4,6 is fully {P7, S4}-decomposable. �

Lemma 3.2. If p and q are non-negative integers such that 6p+ 4q = 36, then K3,6(2) is
fully {P7, S4}-decomposable.

Proof. (p, q) ∈ {(6, 0), (4, 3), (2, 6), (0, 9)}. K3,6(2) can be decomposed into 6P7 : 2 copies
of [x4x1x5x2x6x3x9], [x5x3x8x2x7x1x6], [x8x1x9x2x4x3x7]. K3,6(2) can be decomposed into
4P7 : [x4x3x9x2x8x1x5], [x4x2x6x3x7x1x9], [x4x1x5x2x7x3x8], [x4x2x5x3x6x1x8] and 3S4 :
S(x1;x4, x6, x7, x9), S(x2;x6, x7, x8, x9), S(x3;x4, x5, x8, x9). K3,6(2) can be decomposed
into 2P7 : [x4x3x9x2x8x1x5], [x4x2x6x3x7x1x9] and 6S4 : S(x1;x4, x6, x7, x9), S(x1;x4, x5, x6,
x8), S(x2;x5, x7, x8, x9), S(x2;x4, x5, x6, x7), S(x3;x4, x5, x8, x9), S(x3;x5, x6, x7, x8). By
Theorem 2.4, K3,6(2) is {0P7, 9S4}-decomposable. Therefore K3,6(2) is fully {P7, S4}-
decomposable. �

We now prove our main result.

Theorem 3.1. For any non-negative integers p and q and any integer n ≥ 7, there exists
a {P7, S4}{p,q}-decomposition of Kn(λ) if and only if 6p+ 4q = λ

(
n
2

)
.

Proof. The necessary conditions are obvious. First we prove the result for 7 ≤ n ≤ 17; then
we use induction to settle the remaining cases. As we discuss {pP7, qS4}-decompositions
of Kn(λ) for all possible choices of p and q, we have the following cases:
Case 1: n = 7.

If λ = 2, then (p, q) ∈ {(7, 0), (5, 3), (3, 6), (1, 9)}. By Theorem 2.1, K7(2) is {7P7, 0S4}-
decomposable. The graphK7(2) can be decomposed into 5P7 : [x1x3x2x4x7x6x5], [x1x4x3x5
x2x6x7], [x2x1x6x3x7x5x4], [x6x1x5x4x3x2x7], [x1x7x3x5x2x4x6] and 3S4 : S(x1;x2, x3, x4,
x5), S(x6;x2, x3, x4, x5), S(x7;x1, x2, x4, x5). K7(2) can be decomposed into 3P7 : [x7x6x1x3
x2x4x5], [x2x1x7x5x6x3x4], [x1x5x3x2x6x4x7] and 6S4 : S(x1;x2, x3, x4, x6), S(x2;x4, x5, x6,
x7), S(x3;x4, x5, x6, x7), S(x4;x1, x5, x6, x7), S(x5;x1, x2, x6, x7), S(x7;x1, x2, x3, x6). K7(2)
can be decomposed into a P7 : [x1x2x3x4x5x6x7] and 9S4 : S(x1;x3, x4, x5, x6), S(x1;x3, x5,
x6, x7), S(x2;x1, x4, x6, x7), S(x2;x3, x4, x5, x7), S(x3;x4, x5, x6, x7), S(x4;x1, x5, x6, x7), S
(x5;x2, x3, x6, x7), S(x6;x2, x3, x4, x7), S(x7;x1, x3, x4, x5).
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If λ = 4, then (p, q) ∈ {(14, 0), (12, 3), (10, 6), . . . , (0, 21)} (we see that the values of p
decreases by 2 and the values of q increases by 3). We write K7(4) = K7(2) + K7(2) =
{(7, 0), (5, 3), (3, 6), (1, 9)}+{(7, 0), (5, 3), (3, 6), (1, 9)} = {(14, 0), (12, 3), (10, 6), (8, 9), (6, 12),
(4, 15), (2, 18)}. By Theorem 2.2, K7(4) is {0P7, 21S4}-decomposable.

If λ ≥ 6, then the proof is divided into the following cases.
λ ≡ 0 (mod 4): We write K7(λ) = λ

4K7(4).

λ ≡ 2 (mod 4): We write K7(λ) = K7(λ − 2) + K7(2) = λ−2
4 K7(4) + K7(2). Therefore

K7(λ) is fully {P7, S4}-decomposable.
Case 2: n = 8.

If λ = 1, then (p, q) ∈ {(4, 1), (2, 4), (0, 7)}. The graph K8 can be decomposed into
4P7 : [x3x1x5x8x4x2x6], [x8x7x6x3x2x5x4], [x1x8x3x7x4x6x5], [x6x8x2x7x5x3x4] and a S4 :
S(x1;x2, x4, x6, x7). K8 can be decomposed into 2P7 : [x2x1x4x3x7x8x5], [x2x3x8x4x7x6x5]
and 4S4 : S(x1;x3, x5, x7, x8), S(x2;x4, x6, x7, x8), S(x5;x2, x3, x4, x7), S(x6;x1, x3, x4, x8).
By Theorem 2.2, K8 is {0P7, 7S4}-decomposable.

If λ = 2, then (p, q) ∈ {(8, 2), (6, 5), (4, 8), . . . , (0, 14)}. By taking K8(2) = 2K8, we get
all the above possible decompositions.

If λ = 3, then (p, q) ∈ {(14, 0), (12, 3), (10, 6), . . . , (0, 21)}. By Theorem 2.1, K8(3) is
{14P7, 0S4}-decomposable. By taking K8(3) = K8(2) +K8, we get all the above possible
decompositions.

If λ ≥ 4, then the proof is divided into the following cases.
λ ≡ 0 (mod 3): We write K8(λ) = λ

3K8(3).

λ ≡ 1 (mod 3): We write K8(λ) = K8(λ− 1) +K8 = λ−1
3 K8(3) +K8.

λ ≡ 2 (mod 3): We write K8(λ) = K8(λ− 2) +K8(2) = λ−2
3 K8(3) +K8(2).

Case 3: n = 9.
If λ = 1, then (p, q) ∈ {(6, 0), (4, 3), (2, 6), (0, 9)}. By Theorem 2.1, K9 is {6P7, 0S4}-

decomposable. By Case 2, K8 = {(4, 1), (2, 4), (0, 7)}. The graph K1,8 is {0P7, 2S4}-
decomposable. By taking K9 = K8 +K1,8, we get all the above possible decompositions.

If λ ≥ 2, K9(λ) can be decomposed into λ copies of K9.
Case 4: n = 10.

If λ = 2, then (p, q) ∈ {(15, 0), (13, 3), (11, 6), . . . , (1, 21)}. By Theorem 2.1, K10(2)
is {15P7, 0S4}-decomposable. We write K10(2) = (K10(2)\K7(2)) + K7(2). The graph
K10(2)\K7(2) can be decomposed into 6P7 : [x1x10x2x9x3x8x4], [x7x10x4x9x1x8x6], [x3x10
x4x9x7x8x5], [x3x10x6x9x7x8x4], [x1x8x2x10x6x9x3], [x3x8x2x9x5x10x8] and 3S4 : S(x8;x5,
x6, x9, x10), S(x9;x1, x5, x8, x10), S(x10;x1, x5, x7, x9). K10(2)\K7(2) can be decomposed
into 12S4 : 2 copies of S(x8;x1, x2, x3, x9), S(x8;x4, x5, x6, x7), S(x9;x1, x2, x3, x10), S(x9;x4,
x5, x6, x7), S(x10;x1, x2, x3, x4), S(x10;x5, x6, x7, x8). By Case 1, K7(2) = {(7, 0), (5, 3), (3, 6),
(1, 9)}. We have, K10(2) = (K10(2)\K7(2))+K7(2) = {(6, 3), (0, 12)}+{(7, 0), (5, 3), (3, 6),
(1, 9)} = {(13, 3), (11, 6), (9, 9), (7, 12), (5, 15), (3, 18), (1, 21)}.

If λ = 4, then (p, q) ∈ {(30, 0), (28, 3), (26, 6), . . . , (0, 45)}. By Theorem 2.2, K10(4) is
{0P7, 45S4}-decomposable. By taking K10(4) = 2K10(2), we get all the above possible
decompositions.

If λ ≥ 6, then the proof is divided into the following cases.
λ ≡ 0 (mod 4): We write K10(λ) = λ

4K10(4).

λ ≡ 2 (mod 4): We write K10(λ) = K10(λ− 2) +K10(2) = λ−2
4 K10(4) +K10(2).

Case 5: n = 11.
If λ = 2, then (p, q) ∈ {(17, 2), (15, 5), (13, 8), . . . , (1, 26)}. We write K11(2) = (K11(2)\

K7(2))+K7(2). The graphK11(2)\K7(2) can be decomposed into 10P7 : [x11x5x9x6x8x7x10],
[x6x10x4x9x7x8x1], [x6x11x8x2x9x3x10], [x1x10x11x8x3x9x4], [x1x9x10x8x5x11x2], [x3x11x1x9
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x8x4x10], [x11x7x9x8x5x10x2], [x8x1x10x5x9x11x7], [x6x11x9x2x8x3x10], [x9x6x8x4x11x10x7]
and 2S4 : S(x10;x2, x6, x8, x9), S(x11;x1, x2, x3, x4). By Theorem 2.1, K7(2) is {7P7, 0S4}-
decomposable. We have, K11(2) = (K11(2)\K7(2)) + K7(2) = {(10, 2)} + {(7, 0)} =
{(17, 2)}. The graph K1,10(2) is {0P7, 5S4}-decomposable. By taking K11(2) = K10(2) +
K1,10(2), we get all the other possible decompositions.

If λ = 4, then (p, q) ∈ {(36, 1), (34, 4), (32, 7), . . . , (0, 55)}. The graph K11(4) can be de-
composed into 36P7 : [x6x7x9x11x8x10x5], [x9x5x8x1x3x4x10], [x5x1x6x8x7x11x10], [x5x3x6
x1x9x10x7], [x2x5x7x3x11x1x6], 4 copies of [x6x10x1x2x8x4x7], [x11x5x6x4x2x9x8], [x11x4x1
x7x2x3x8], [x11x2x10x3x9x4x5], 3 copies of [x11x6x2x5x3x7x8], [x11x10x5x9x7x6x3], [x1x9x10
x8x11x7x5], [x11x9x6x8x5x1x3], [x8x1x11x3x4x10x7] and a S4 : S(x6;x1, x2, x9, x11). By
Theorem 2.2, K11(4) is {0P7, 55S4}-decomposable. By taking K11(4) = 2K11(2), we get
all the other possible decompositions.

If λ = 6, then (p, q) ∈ {(55, 0), (53, 3), (51, 6), . . . , (1, 81)}. By Theorem 2.1, K11(6) is
{55P7, 0S4}-decomposable. By taking K11(6) = K11(4) + K11(2), we get all the above
possible decompositions.

If λ = 8, then (p, q) ∈ {(72, 2), (70, 5), (68, 8), . . . , (0, 110)}. By taking K11(8) =
2K11(4), we get all the above possible decompositions.

If λ = 10, then (p, q) ∈ {(91, 1), (89, 4), (87, 7), . . . , (1, 136)}. By taking K11(10) =
K11(6) +K11(4), we get all the above possible decompositions.

If λ = 12, then (p, q) ∈ {(110, 0), (108, 3), (106, 6), . . . , (0, 165)}. By Theorem 2.2,
K11(12) is {0P7, 165S4}-decomposable. By taking K11(12) = 2K11(6), we get all the
above possible decompositions.

If λ ≥ 14, then the proof is divided into the following cases.
λ ≡ 0 (mod 12): We write K11(λ) = λ

12K11(12).

λ ≡ 2 (mod 12): We write K11(λ) = K11(λ− 2) +K11(2) = λ−2
12 K11(12) +K11(2).

λ ≡ 4 (mod 12): We write K11(λ) = K11(λ− 4) +K11(4) = λ−4
12 K11(12) +K11(4).

λ ≡ 6 (mod 12): We write K11(λ) = K11(λ− 6) +K11(6) = λ−6
12 K11(12) +K11(6).

λ ≡ 8 (mod 12): We write K11(λ) = K11(λ− 8) +K11(8) = λ−8
12 K11(12) +K11(8).

λ ≡ 10 (mod 12): We write K11(λ) = K11(λ− 10) +K11(10) = λ−10
12 K11(12) +K11(10).

Case 6: n = 12.
If λ = 1, then (p, q) ∈ {(11, 0), (9, 3), (7, 6), . . . , (1, 15)}. By Theorem 2.1, K12 is

{11P7, 0S4}-decomposable. We write K12 = (K12\K9) + K9. The graph K12\K9 can be
decomposed into 3P7 : [x1x12x3x10x8x11x7], [x7x12x9x10x5x11x4], [x1x11x2x10x6x12x4] and
3S4 : S(x10;x1, x4, x7, x11), S(x11;x3, x6, x9, x12), S(x12;x2, x5, x8, x10). K12\K9 can be
decomposed into a P7 : [x1x12x3x11x4x10x9] and 6S4 : S(x10;x1, x2, x3, x11), S(x10;x5, x6, x7
, x8), S(x11;x1, x2, x5, x12), S(x11;x6, x7, x8, x9), S(x12;x2, x4, x5, x9), S(x12;x6, x7, x8, x10).
By Case 3, K9 = {(6, 0), (4, 3), (2, 6), (0, 9)}. We have, K12 = (K12\K9)+K9 = {(3, 3), (1, 6)}
+ {(6, 0), (4, 3), (2, 6), (0, 9)} = {(9, 3), (7, 6), (5, 9), (3, 12), (1, 15)}.

If λ = 2, then (p, q) ∈ {(22, 0), (20, 3), (18, 6), . . . , (0, 33)}. By Theorem 2.2, K12(2)
is {0P7, 33S4}-decomposable. By taking K12(2) = 2K12, we get all the above possible
decompositions.

If λ ≥ 3, then the proof is divided into the following cases.
λ ≡ 0 (mod 2): We write K12(λ) = λ

2K12(2).

λ ≡ 1 (mod 2): We write K12(λ) = K12(λ− 1) +K12 = λ−1
2 K12(2) +K12.

Case 7: n = 13.
If λ = 1, then (p, q) ∈ {(13, 0), (11, 3), (9, 6), . . . , (1, 18)}. By Theorem 2.1, K13 is

{13P7, 0S4}-decomposable. The graphK1,12 is {0P7, 3S4}-decomposable. By takingK13 =
K12 +K1,12, we get all the above possible decompositions.
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If λ = 2, then (p, q) ∈ {(26, 0), (24, 3), (22, 6), . . . , (0, 39)}. By Theorem 2.2, K13(2)
is {0P7, 39S4}-decomposable. By taking K13(2) = 2K13, we get all the above possible
decompositions.

If λ ≥ 3, then the proof is divided into the following cases.
λ ≡ 0 (mod 2): We write K13(λ) = λ

2K13(2).

λ ≡ 1 (mod 2): We write K13(λ) = K13(λ− 1) +K13 = λ−1
2 K13(2) +K13.

Case 8: n = 14.
By taking K14(λ) = K8(λ) +K7(λ) + λK4,6 + λ

2K3,6(2), we get all the possible decom-
positions.
Case 9: n = 15.

By taking K15(λ) = K9(λ) +K7(λ) + 2λK4,6, we get all the possible decompositions.
Case 10: n = 16.

If λ = 1, then (p, q) ∈ {(20, 0), (18, 3), (16, 6), . . . , (0, 30)}. By Theorem 2.1, K16 is
{20P7, 0S4}-decomposable. The graph K1,8 is {0P7, 2S4}-decomposable. By taking K16 =
K8 +K9 + 2K6,4 +K1,8, we get all the above possible decompositions.

If λ ≥ 2, K16(λ) can be decomposed into λ copies of K16.
Case 11: n = 17.

By Theorems, 2.3 and 2.4, K3,8 is {{4P7, 0S4}, {0P7, 6S4}}-decomposable. By taking
K17(λ) = K9(λ) +K8(λ) + 2λK6,4 + λK3,8, we get all the possible decompositions.

Now we prove the result for n > 17. Let n = 4r, n = 4r + 1, n = 4r + 2, n = 4r + 3,
where r ≥ 1. We prove by mathematical induction on n, splitting the proof into four cases
as follows:
n ≡ 0 (mod 4). Let n = 4r, with r ≥ 5. Assume that K4t(λ) is fully decomposable if

2 ≤ t < r. Write K4r(λ) = K4(r−3)(λ)+K12(λ)+K4(r−3),12(λ) = K4(r−3)(λ)+K12(λ)+(r−
3)K4,12(λ) = K4(r−3)(λ)+K12(λ)+(2r−6)λK4,6. Suppose the non-negative integers p and
q satisfy the obvious necessary conditions for a {pP7, qS4}-decomposition in K4r(λ). Then

we have 6p+ 4q = λ(4r)×(4r−1)
2 = λ

2 (16r2− 4r) = λ(8r2− 2r) = 8λr2− 2λr = 8λr2− 2λr+

144λ−144λ = 8λr2−50λr+78λ+66λ+48λr−144λ = λ(8r2−50r+78)+66λ+48λr−144λ =
λ
2 (16r2−100r+156)+66λ+48λr−144λ = λ

2 (16r2−52r−48r+156)+66λ+48λr−144λ =
λ
2 (4r−12)×(4r−13)+66λ+48λr−144λ = λ

2 (4r−12)×(4r−12−1)+66λ+48λr−144λ =
λ
2 (4(r−3)×4(r−3)−1)+66λ+24λ(2r−6) = λ

2 (4(r−3)×4(r−3)−1)+ 132λ
2 +4×6λ(2r−6) =

λ
2 (4(r−3)×4(r−3)−1)+ λ

2 (132)+(2r−6)λ4×6 = λ
2 (4(r−3)×4(r−3)−1)+ λ

2 (12×11)+
(2r − 6)24λ = (6p1 + 4q1) + (6p2 + 4q2) + (6p3 + 4q3). By the induction hypothesis, there
exists a {p1P7, q1S4}-decomposition of K4(r−3)(λ), by Case 6 there exists {p2P7, q2S4}-
decomposition of K12(λ) and by Lemma 3.1 there exists {p3P7, q3S4}-decomposition of
K4,6. Therefore a {pP7, qS4}-decomposition of K4r(λ) exists. Hence by the method of
induction, we have K4r(λ) is fully {P7, S4}-decomposable for any r ≥ 2.
n ≡ 1 (mod 4). Let n = 4r+1, with r ≥ 5. Assume that K4t+1(λ) is fully decomposable

if 2 ≤ t < r. Write K4r+1(λ) = K4(r−3)+1(λ) + K13(λ) + K4(r−3),12(λ) = K4(r−3)+1(λ) +
K13(λ)+(r−3)K4,12(λ) = K4(r−3)+1(λ)+K13(λ)+(2r−6)λK4,6. Suppose the non-negative
integers p and q satisfy the obvious necessary conditions for a {pP7, qS4}-decomposition

in K4r+1(λ). Then we have 6p + 4q = λ(4r+1)×(4r+1)−1
2 = λ

2 (16r2 + 4r) = λ(8r2 + 2r) =

8λr2 + 2λr = 8λr2 + 2λr + 144λ − 144λ = 8λr2 − 46λr + 66λ + 78λ + 48λr − 144λ =
λ(8r2 − 46r + 66) + 78λ + 48λr − 144λ = λ

2 (16r2 − 92r + 132) + 78λ + 48λr − 144λ =
λ
2 (16r2−48r−44r+132)+78λ+48λr−144λ = λ

2 (4r−11)×(4r−12)+78λ+48λr−144λ =
λ
2 (4r−12+1)×(4r−12)+78λ+48λr−144λ = λ

2 (4(r−3)+1×4(r−3))+78λ+24λ(2r−6) =
λ
2 (4(r − 3) + 1× 4(r − 3) + 1− 1) + 156λ

2 + 4× 6λ(2r − 6) = λ
2 (4(r − 3) + 1× 4(r − 3) +
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1 − 1) + λ
2 (156) + (2r − 6)λ4 × 6 = λ

2 (4(r − 3) + 1 × 4(r − 3) + 1 − 1) + λ
2 (13 × 12) +

(2r − 6)24λ = (6p1 + 4q1) + (6p2 + 4q2) + (6p3 + 4q3). By the induction hypothesis, there
exists a {p1P7, q1S4}-decomposition of K4(r−3)+1(λ), by Case 7 there exists {p2P7, q2S4}-
decomposition of K13(λ) and by Lemma 3.1 there exists {p3P7, q3S4}-decomposition of
K4,6. Therefore a {pP7, qS4}-decomposition of K4r+1(λ) exists. Hence by the method of
induction, we have K4r+1(λ) is fully {P7, S4}-decomposable for any r ≥ 2.
n ≡ 2 (mod 4). Let n = 4r+2, with r ≥ 4. Assume that K4t+2(λ) is fully decomposable

if 2 ≤ t < r. Write K4r+2(λ) = K4(r−1)(λ) + K7(λ) + K4(r−1)−1,6(λ) = K4(r−1)(λ) +

K7(λ) + (r − 2)λK4,6 + λ
2K3,6(2). Suppose the non-negative integers p and q satisfy the

obvious necessary conditions for a {pP7, qS4}-decomposition in K4r+2(λ). Then we have

6p + 4q = λ(4r+2)×(4r+2)−1
2 = λ

2 (16r2 + 12r + 2) = λ(8r2 + 6r + 1) = 8λr2 + 6λr + λ =

8λr2 + 6λr + 49λ− 48λ = 8λr2 − 18λr + 10λ+ 21λ+ 24λr − 48λ+ 18λ = λ(8r2 − 18r +
10) + 21λ+ 24λr− 48λ+ 18λ = λ

2 (16r2− 36r+ 20) + 21λ+ 24λr− 48λ+ 18λ = λ
2 (16r2−

20r−16r+20)+21λ+24λr−48λ+18λ = λ
2 (4r−4)× (4r−5)+21λ+24λr−48λ+18λ =

λ
2 ((4r − 4) × (4r − 4) − 1) + 21λ + 24λr − 48λ + 18λ = λ

2 (4(r − 1) × 4(r − 1) − 1) +

21λ + 24λ(r − 2) + 18λ = λ
2 (4(r − 1) × 4(r − 1) − 1) + 42λ

2 + 4 × 6λ(r − 2) + λ
2 (36) =

λ
2 (4(r−1)×4(r−1)−1)+ λ

2 (42)+(r−2)λ4×6+ λ
2 (2×3×6) = λ

2 (4(r−1)×4(r−1)−1)+
λ
2 (7× 6) + (r− 2)24λ+ λ

2 (36) = λ
2 (4(r− 1)× 4(r− 1)− 1) + λ

2 (7× 6) + (r− 2)24λ+ 18λ =
(6p1 + 4q1) + (6p2 + 4q2) + (6p3 + 4q3) + (6p4 + 4q4). By the induction hypothesis, there
exists a {p1P7, q1S4}-decomposition of K4(r−1)(λ), by Case 1 there exists {p2P7, q2S4}-
decomposition ofK7(λ), by Lemma 3.1 there exists {p3P7, q3S4}-decomposition ofK4,6 and
by Lemma 3.2 there exists {p4P7, q4S4}-decomposition of K3,6(2). Therefore a {pP7, qS4}-
decomposition of K4r+2(λ) exists. Hence by the method of induction, we have K4r+2(λ)
is fully {P7, S4}-decomposable for any r ≥ 2.
n ≡ 3 (mod 4). Let n = 4r+3, with r ≥ 4. Assume that K4t+3(λ) is fully decomposable

if 1 ≤ t < r. Write K4r+3(λ) = K4(r−1)+1(λ) + K7(λ) + K4(r−1),6(λ) = K4(r−1)+1(λ) +
K7(λ) + (r − 1)λK4,6. Suppose the non-negative integers p and q satisfy the obvious
necessary conditions for a {pP7, qS4}-decomposition in K4r+3(λ). Then we have 6p+4q =
λ(4r+3)×(4r+3)−1

2 = λ
2 (16r2+20r+6) = λ(8r2+10r+3) = 8λr2+10λr+3λ = 8λr2+10λr+

27λ−24λ = 8λr2−14λr+ 6λ+ 21λ+ 24λr−24λ = λ(8r2−14r+ 6) + 21λ+ 24λr−24λ =
λ
2 (16r2 − 28r+ 12) + 21λ+ 24λr− 24λ = λ

2 (16r2 − 16r− 12r+ 12) + 21λ+ 24λr− 24λ =
λ
2 (4r−3)×(4r−4)+21λ+24λr−24λ = λ

2 ((4r−4+1)×(4r−4)+1−1)+21λ+24λr−24λ =
λ
2 ((4(r− 1) + 1)× 4(r− 1) + 1− 1) + 21λ+ 24λ(r− 1) = λ

2 (4(r− 1) + 1)× (4(r− 1) + 1−
1) + 42λ

2 + 4× 6λ(r − 1) = λ
2 (4(r − 1) + 1)× (4(r − 1) + 1− 1) + λ

2 (42) + (r − 1)λ4× 6 =
λ
2 (4(r−1)+1)×4(r−1)+1−1)+ λ

2 (7×6)+(r−1)24λ = (6p1+4q1)+(6p2+4q2)+(6p3+4q3).
By the induction hypothesis, there exists a {p1P7, q1S4}-decomposition of K4(r−1)+1(λ), by
Case 1 there exists {p2P7, q2S4}-decomposition of K7(λ) and by Lemma 3.1 there exists
{p3P7, q3S4}-decomposition of K4,6. Therefore a {pP7, qS4}-decomposition of K4r+3(λ)
exists. Hence by the method of induction, we have K4r+3(λ) is fully {P7, S4}-decomposable
for any r ≥ 1. �

4. Conclusions

In this paper, we have obtained the necessary conditions for a {Pk+1, Sm}-decomposition
of Kn(λ) and proved that the necessary conditions are also sufficient when k = 6 and
m = 4.
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