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Kn(\) IS FULLY {P;, S,}-DECOMPOSABLE

R. CHINNAVEDI!, R. SANGEETHA', §

ABSTRACT. Let Pyy1 denote a path of length k, S,, denote a star with m edges, and
K, () denote the complete multigraph on n vertices in which every pair of distinct ver-
tices is joined by A edges. In this paper, we have obtained the necessary conditions for
a {Pr41, Sm }-decomposition of K, (\) and proved that the necessary conditions are also
sufficient when & = 6 and m = 4.

Keywords: Decomposition, Complete multigraph, Path, Star.

AMS Subject Classification: 05C70, 05C38.

1. INTRODUCTION

All graphs considered here are finite and undirected with no loops. For the standard
graph-theoretic terminology the reader is referred to [1]. A simple graph in which every
pair of distinct vertices is joined by an edge is called a complete graph, denoted by K.
If more than one edge joining two vertices are allowed, the resulting object is called a
multigraph. Let K, (\) denote the complete multigraph on n vertices in which every pair
of distinct vertices is joined by A edges. A complete bipartite graph is a simple bipartite
graph with bipartition (X,Y’) in which each vertex of X is joined to each vertex of Y;
if |[X| = a and |Y| = b, such a graph is denoted by Kyp. In K,p(A), we label the
vertices in the partite set X as {z1,z2,...,2.} and Y as {xgt1, Tat2, .-, Tayp) fa =0,
the complete bipartite graph is referred to as balanced. A path is an open trail with no
repeated vertex. A path with k£ edges is denoted by Py41. The complete bipartite graph
K, is called a star and is denoted by S,,. For m > 3, the vertex of degree m in S, is
called the center and any vertex of degree 1 in S, is called an end vertex.

Let G be a graph and G be a subgraph of G. Then G\G| is obtained from G by deleting
the edges of G1. Let G and G2 be subgraphs of G. The union G1UG> of G1 and GG is the
graph with vertex set V(G1) UV (G2) and edge set E(G1) U E(G2). We say that G and
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G are edge-disjoint if they have no edge in common. If G; and G4 are edge-disjoint, we
denote their union by G1+Go. A decomposition of a graph G is a collection of edge-disjoint
subgraphs G1,Go,...,G, of G such that every edge of GG is in exactly one G;. Here it is
said that G is decomposed or decomposable into G1,Go,...,G,. If G has a decomposition
into p; copies of G, ...,p, copies of G,, then we say that G has a {p1G1,...,pnGn}-
decomposition. If such a decomposition exists for all values of py, ..., p, satisfying trivial
necessary conditions, then we say that G has a {G1, ..., Gn}{p1 ’’’’’ pn}-decomposition or G
is fully {G1, ..., Gy }-decomposable.

In [6], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the ex-
istence of {pG1, ¢G2}-decomposition of K, (\), when (G1, G2) € {(Py, Sn—1), (Cny Sn—1), (Pn,
Cr)}. In [7], Priyadharsini gave the necessary and sufficient conditions for the existence
of {pP,, qSn—1}-decomposition of K,11(A). In [8], Shyu gave the necessary and sufficient
conditions for a {Pj, S3}(p 43-decomposition of K, and also discussed the existence of
{Pg+1, Sk}{pg}—decomposition of K,,, when n > 4k such that either k is even and p > % or
k is odd and p > k. In [9], Shyu proved that the necessary conditions are also sufficient for
the { P11, Sk} {p,q1-decomposition of Kp, when n > 4k. In [5], llayaraja and Muthusamy
proved that K, is fully { Py, Si}-decomposable. In [3], Lee and Chen showed the existence
of {pPy+1, ¢Sk }-decomposition of K, () and Kpp(A). In [2], Lee and Chen gave the nec-
essary and sufficient conditions for a {F), S5}y, ;1-decomposition of K, with F' € {P,, Cy}.
In [10], Shyu gave the necessary conditions for a {pC, P11, 7S }-decomposition of K,
and proved that K, is fully {Cy, P5, S4}-decomposable, when n is odd. In this paper we
prove that K, () is fully {Pr, Ss}-decomposable.

2. PRELIMINARIES

For convenience we denote V (K, (\)) = {x1,22,...,2,}. The notation S(z1;x2- - zpm)
denotes an m-star with z; as center vertex and xa, . . ., z,, as end vertices, and [x1z2 - - - Tj11]
is a k 4 1-path with vertices x1,x2, ..., 21 and edges 122, T2Z3, . .., TETh11-

We recall here some results on Pyi1 and Sy,-decompositions that are useful for our
proofs.

Theorem 2.1. [11] A necessary and sufficient conditions for the existence of a Pyy1-
decomposition of K,(X\) into edge-disjoint simple paths of length k is A(3) = 0 (mod k)
andn >k +1.

Theorem 2.2. [12] A necessary and sufficient conditions for the existence of a Sp,-
decomposition of Kn(\) is that: (i) A(5) = 0 (mod m) (i) n > 2m for X\ = 1 (iii)
n>m+1 for even A (iv) n>m+ 1475 for odd X > 3.

Theorem 2.3. [13] Let k be a positive integer and let a and b be positive even integers
such that a > b. K,p(\) has a Pyy;-decomposition if and only if a > [%Lb > [g} and
Aab =0 (mod k).

Theorem 2.4. [4] For positive integers a and b with a > b, the complete bipartite multi-
graph K, y(X) is Sp-decomposable if and only if a > m and (i) \a =0 (mod m) if b <m
(i) Aab =0 (mod m) if b > m.

In the following Theorem, we discuss the necessary conditions for a {pPyi1,qSm}-
decomposition of K, (A), when A > 1.

Theorem 2.5. Let A\, n, k and m be positive integers. Let p and q be non-negative integers.
The necessary condition for a {pPiy1,qSm }-decomposition of K,(\) is pk + qm = )\(g)
and n > max{k + 1, m + 1}.
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In this paper, we prove that the above necessary condition is sufficient for a { Py, 5’4}{p,q}—
decomposition of K, (A) in Theorem 3.1.

3. MAIN RESULT

In this section, we discuss a {Pr, Sy}(p 41-decomposition of K, (\), when A > 1. Since
K, (\) cannot be decomposed into P; and Sy when n < 6, we discuss the decompositions
forn>T7.

Remark 3.1. The necessary conditions for the existence of a { P, 54}{p7q}-decomposition
in Kp(\) is satisfied when n = 0,1 (mod 4) if A > 1 and n = 2,3 (mod 4) if X is even.
i.e., there does not exist non-negative integers p and q satisfying 6p + 4q = )\(g) when
n=2,3 (mod 4) if A is odd.

In the following two lemmas, we discuss {P7, Sy}, q}-decompositions of K46 and K3(2)
which we use further to decompose K, (\) into {pPr, ¢S4}.

Lemma 3.1. If p and q are non-negative integers such that 6p + 4q = 24, then Kyg is
fully { Py, S4}-decomposable.

Proof. (p,q) € {(4,0),(2,3),(0,6)}. By Theorem 2.3, K46 is {4P7,05}-decomposable.
K46 can be decomposed into 2Py : [zoxgx1 292321024, [T328T429x221021] and 35y = S(xs; 21,
To,x3,x4), S(T6; T1, T2, T3, 24), S(x7; 21, T2, 23, 24). By Theorem 2.4, K¢ is {0P7,654}-
decomposable. Therefore Ky is fully {Pr, Sy}-decomposable. O

Lemma 3.2. If p and q are non-negative integers such that 6p + 4q = 36, then K3¢(2) is
fully { Pz, Sa}-decomposable.

Proof. (p,q) € {(6,0),(4,3),(2,6),(0,9)}. K36(2) can be decomposed into 67 : 2 copies
of [xax1x52286329), [TrT308T20721T6), [T3T1T9T2x42327]. K36(2) can be decomposed into
AP; : [x423T9X2T8T1X5], [T4XT2T6T3T7T1Tg], [TaT1X5T2T723T8), [Tazom5232671 28] and 35y :
S(x1; 4, x6, 7, T9), S(T2; T6, X7, T8, X9), S(3; 4, T5, 28, T9). K36(2) can be decomposed
into 2Py : [x4w3x9T208X1T5), [TaTomex3T7T129] and 65y : S(x1; x4, x6, T7, T9), S(21; T4, X5, Tp,
xg), S(xo; x5, T7, T8, T9), S(T2; X4, X5, T, T7), S(T3; T4, T5, X8, T9), S(X3; 5, T6, T7, 28). By
Theorem 2.4, K3¢(2) is {0P7,954}-decomposable. Therefore K3¢(2) is fully {P7, S4}-
decomposable. OJ

We now prove our main result.

Theorem 3.1. For any non-negative integers p and q and any integer n > 7, there exists
a { Pz, Su}ip.qy-decomposition of Kn(X) if and only if 6p + 4q = A(3).

Proof. The necessary conditions are obvious. First we prove the result for 7 < n < 17; then
we use induction to settle the remaining cases. As we discuss {pP7, ¢S4}-decompositions
of K, () for all possible choices of p and ¢, we have the following cases:

Case 1: n=1.

If A =2, then (p,q) € {(7,0),(5,3),(3,6),(1,9)}. By Theorem 2.1, K7(2) is {7P7,054}-
decomposable. The graph K7(2) can be decomposed into 5P : [x123T02427T625], [T12423T5
XToTeTr|, [TaT1X6T3T7 5T, [TeT1T5x4T3T227], [T12723T5x0246] and 35y : S(x1; xe, T3, 24,
x5), S(xe; T2, T3, T4, T5), S(T7; X1, T2, T4, X5). K7(2) can be decomposed into 3P; : [z7xex1 23
X4 Ts|, [ToT1X7T5T6x3T 4], [T1T5T3x2T6T427] and 65y : S(x1; xe, T3, 24, T6), S(T2; T4, T35, 6,
x7), S(x3; 24, 25, 6, 27), S (245 71, T35, T, 27), S (253 71, T2, T, T7), S(27; 1, T2, 73, T6). K7(2)
can be decomposed into a Pr : [z1x2x324252627] and 95y : S(z1; 3, x4, 5, 6), S(x1; 23, T5,
x6, x7), S(x2; 21, T4, TG, T7), S(T2; T3, T4, T5, 7), S(T3; T4, T5, T6, T7), S(T4; 21, X5, Te, T7), S
(55 9, 3, T6, 7), S(T6; T2, T3, T4, T7), S(T7; 21, T3, T4, X5).
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If X =4, then (p,q) € {(14,0),(12,3),(10,6),...,(0,21)} (we see that the values of p
decreases by 2 and the values of ¢ increases by 3). We write K7(4) = K7(2) + K7(2) =
{(7,0),(5,3),(3,6), (1,9)}+{(7,0),(5,3), (3,6), (1,9)} = {(14,0), (12, 3), (10,6), (8,9), (6,12),
(4,15),(2,18)}. By Theorem 2.2, K7(4) is {0P7, 215, }-decomposable.

If A > 6, then the proof is divided into the following cases.

A =0 (mod 4): We write K7(\) = 3 K7(4).

A =2 (mod 4): We write K7(\) = K7(\A — 2) + K7(2) = 272K7(4) + K7(2). Therefore
Kr(X) is fully {Pr, Ss}-decomposable.

Case 2: n = 8.

If A =1, then (p,q) € {(4,1),(2,4),(0,7)}. The graph Kg can be decomposed into
AP; : [w3x125208T4T0%6), [T8XTXET3T2T5 T4, [X1X8T 30746 X 5], [TersTomr52324] and a Sy :
S(x1;x2, 14,26, x7). Kg can be decomposed into 2Ps : [xox1 242327282 5], [To03T8T4 27262 5]
and 45y : S(x1; 3, x5, 7, 28), S(X9; T4, X6, T7, 28), S(T5; T2, T3, T4, T7), S(T6; X1, T3, T4, X8).
By Theorem 2.2, Kg is {0P7, 7S, }-decomposable.

If A =2, then (p,q) € {(8,2),(6,5),(4,8),...,(0,14)}. By taking Kg(2) = 2Kg, we get
all the above possible decompositions.

If A = 3, then (p,q) € {(14,0), (12, 3),(10,6),...,(0,21)}. By Theorem 2.1, Kg(3) is
{14P7,05,}-decomposable. By taking K3(3) = Kg(2) + Kg, we get all the above possible
decompositions.

If A > 4, then the proof is divided into the following cases.

A=0 (mod 3): We write Ks(\) = 3 K3(3).

A=1 (mod 3): We write Kg(\) = Kg(\A — 1) + Kg = 271 Kg(3) + K.

A =2 (mod 3): We write Ks(\) = Ks(\ — 2) + K3(2) = 252 K3(3) + K3(2).
Case 3: n=09.

If A =1, then (p,q) € {(6,0),(4,3),(2,6),(0,9)}. By Theorem 2.1, Kg is {6P7,0S54}-
decomposable. By Case 2, Kg = {(4,1),(2,4),(0,7)}. The graph K;g is {0P7,254}-
decomposable. By taking Kg = Kg + K g, we get all the above possible decompositions.

If A > 2, K9(A) can be decomposed into A copies of Kg.

Case 4: n = 10.

If A = 2, then (p,q) € {(15,0),(13,3),(11,6),...,(1,21)}. By Theorem 2.1, K;o(2)
is {15P7,054}-decomposable. We write K10(2) = (K10(2)\K7(2)) + K7(2). The graph
K19(2)\K7(2) can be decomposed into 6Py : [x1210T229T3T8x4), [x7T10T4T9T128T6], [3210
x4wgaﬁ7x8x5], [x3w10x6w9$7x8x4], [x1w8$2$10$6x9x3], [xgnggxgwg,l'lowg] and 354 : S(xs; Is,
T, T9, X10), S(To; 1, T5, T8, T10), S(X10; T1, T5, X7, 29). Ki10(2)\K7(2) can be decomposed
into 125y : 2 copies of S(xg; x1,x2, T3, T9), S(rs; T4, x5, 6, x7), S(T9; X1, T2, T3, X10), S(T9; X4,
T5, L6, 337), S(Q?lo; T1,22,x3, .734), S(l’lo; T5, L6, L7, 338)- By Case 1, K7(2) = {(7, 0), (5, 3), (3, 6),
(1,9)}. We have, K10(2) = (K10(2)\K7(2))+K7(2) = {(6,3), (0,12)}-+{(7,0), (5,3), (3, 6),
(1,9)} = {(13,3), (11,6), (9,9), (7, 12), (5, 15), (3, 18), (1, 21},

If A =4, then (p,q) € {(30,0),(28,3),(26,6),...,(0,45)}. By Theorem 2.2, Kjy(4) is
{0P7,455, }-decomposable. By taking K19(4) = 2K10(2), we get all the above possible
decompositions.

If A > 6, then the proof is divided into the following cases.

A =0 (mod 4): We write K19(\) = 3 K10(4).
A=2 (mod 4) We write KIO()\) = KlO()\ - 2) + K10(2) = %Klo(él) + K10(2).
Case 5: n =11.

If A =2, then (p,q) € {(17,2), (15,5), (13,8),...,(1,26)}. We write K11(2) = (K11(2)\
K7(2))+K7(2). The graph K11(2)\ K7(2) can be decomposed into 10P; : [z11x5x9T628T72T10),
(6T 10T4T9T7T821], [T6T11X8T2L9T3T10], [T1210211T8T3T9T4], [T1Z9X10T8T521122], [X32 117129
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9583741610], [16113U7ZU99683351‘10332], [$8$1ZC10$5$99€111‘7L [9669011369332308%1610], [959$6968904$113310$7]
and 254 : S(z10; x2, 6, T8, T9), S(T11; 1, T2, T3, x4). By Theorem 2.1, K7(2) is {7P7,05,}-
decomposable. We have, K11(2) = (K11(2)\K7(2)) + K7(2) = {(10,2)} + {(7,0)} =
{(17,2)}. The graph K 10(2) is {0Pr, 554 }-decomposable. By taking K11(2) = K10(2) +
K1,10(2), we get all the other possible decompositions.

If A =4, then (p,q) € {(36,1),(34,4),(32,7),...,(0,55)}. The graph K1;(4) can be de-
composed into 367 : [T6277971178T10T5), [ToT5T8T103T4T10), [T571T6T8T7T11 710, [T5T376
T1T921027], [Tox5T72321121%6), 4 copies of [xeT1021T2287427], [T1125T624T2T9 28], [T117471
$7$2$3.’E8], [.’13111‘23310$3339$4£C5], 3 copies of [1}11£U6$2£C5$3:E7CE8], [1?113310$5339$75661‘3], {CL‘l.’L’gl‘lo
x8T11T7x5], [T1109T6T8T5T1 T3], [TsT1x 112342 1027] and a Sy @ S(xe;x1, 22,79, 711). By
Theorem 2.2, K11(4) is {0P;, 555 }-decomposable. By taking Ki1(4) = 2K71(2), we get
all the other possible decompositions.

If A = 6, then (p,q) € {(55,0),(53,3), (51, 1
{55P7,084 }-decomposable. By taking K1 ( (4
possible decompositions.

If A = 8, then (p,q) € {(72,2),(70,5),(68,8),...,(0,110)}. By taking Kii(8) =
2K11(4), we get all the above possible decompositions.

If A = 10, then (p,q) € {(91,1),(89,4),(87,7),...,(1,136)}. By taking K1;(10) =
K11(6) + K11(4), we get all the above possible decompositions.

If A = 12, then (p,q) € {(110,0),(108,3),(106,6),...,(0,165)}. By Theorem 2.2,
K11(12) is {0P7,16554}-decomposable. By taking K;1(12) = 2K11(6), we get all the
above possible decompositions.

If X\ > 14, then the proof is divided into the following cases.

(mod 12): We write K11(\) = 5 K11(12).

(mod 12)2 We write KH()\) KH( — 2) + K11(2) K11(12) + K11(2)
(mod 12)2 We write K11(>\) Ky ()\ — 4) + K11(4) K11(12) + K11(4)
(mod 12): We write K11(\) K 1A —6) + K11(6) = 1261(11(12) + K11(6).
( (A) ( 2)
1(A

6),...,(
) 1

,81)}. By Theorem 2.1, K11(6) is
= Kj1(4)

+ K11(2), we get all the above

mod 12): We write K1;(\ —8) + K11(8) = 22 K11(12) + K11 (8).
A =10 (mod 12): We write K11(\) = K11 (X — 10) + K11(10) = 252 K1 (12) + K11 (10).
Case 6: n = 12.

If A = 1, then (p,q) € {(11,0),(9,3),(7,6),...,(1,15)}. By Theorem 2.1, Ky is
{11P7,084}-decomposable. We write K12 = (K12\Ky) + Kg9. The graph Kj2\Ky can be
decomposed into 3P; : [x121223T10T8T1127), [T7212X9T10T5T1124], [T1211X2T10T6T1204) and
354 . 5(1‘10; T1,T4,T7, 1‘11), S(.Z‘H; I3,Te6, L9, 3312), 5(1‘12; T2,T5, T8, .rlo). K12\K9 can be
decomposed into a P; : [x12122321124T1029] and 65y : S(x10; 21, T2, T3, 211), S(T10; T5, Te, T7
,x8), S(T115 21, T2, T5, T12), S(T115 T, T7, T8, 9), S(T12; T2, T4, T5, T9), S(T12; T, T7, T8, T10).-
By Case 3, K9 = {(6,0), (4,3),(2,6),(0,9)}. We have, K12 = (K12\K9)+Ky = {(3,3),(1,6)}
+{(6,0),(4,3),(2,6),(0,9)} = {(9,3),(7,6), (5,9), (3,12), (1,15)}.

If A\ = 2, then (p,q) € {(22,0),(20,3), (18,6),...,(0,33)}. By Theorem 2.2, K12(2)
is {0P7,3354}-decomposable. By taking Ki2(2) = 2Kj9, we get all the above possible
decompositions.

If A > 3, then the proof is divided into the following cases.

A =0 (mod 2): We write K12(\) = 5K12(2).
A=1 (mod 2): We write K12(A) = K12(A — 1) + K12 = 251 K15(2) + K.
Case 7: n =13.

If A\ = 1, then (p,q) € {(13,0),(11,3),(9,6),...,(1,18)}. By Theorem 2.1, K3 is
{13P7, 05, }-decomposable. The graph K 12 is {0P7, 354 }-decomposable. By taking K13 =
K19 + Ki12, we get all the above possible decompositions.
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If A = 2, then (p,q) € {(26,0),(24,3),(22,6),...,(0,39)}. By Theorem 2.2, K15(2)
is {0P7, 39S54}-decomposable. By taking K;3(2) = 2K;3, we get all the above possible
decompositions.

If A > 3, then the proof is divided into the following cases.

A =0 (mod 2): We write K13(\) = 5K13(2).
A =1 (mod 2): We write K13(\) = Ki3(A — 1) + K13 = 251 K13(2) + Kis.
Case 8: n = 14.

By taking K14(\) = Ks(\) + K7(\) + My6 + 5K3,6(2), we get all the possible decom-
positions.

Case 9: n = 15.

By taking Ki5(A\) = Kg(A) + K7(\) +2AK 46, we get all the possible decompositions.
Case 10: n = 16.

If A = 1, then (p,q) € {(20,0),(18,3),(16,6),...,(0,30)}. By Theorem 2.1, K¢ is
{20P;, 05, }-decomposable. The graph K g is {0Pr, 254 }-decomposable. By taking K =
Kg + Kg + 2Kg 4 + K18, we get all the above possible decompositions.

If A > 2, K16(\) can be decomposed into A copies of Kig.

Case 11: n = 17.

By Theorems, 2.3 and 2.4, K3g is {{4P7,054},{0P, 6S,}}-decomposable. By taking
Ki7(A\) = Ko(\) + Kg(A) +2MKg 4 + AK3 g, we get all the possible decompositions.

Now we prove the result for n > 17. Let n =4r, n=4r+ 1, n=4r+2, n = 4r + 3,
where > 1. We prove by mathematical induction on n, splitting the proof into four cases
as follows:

n =0 (mod 4). Let n = 4r, with r > 5. Assume that Ky (\) is fully decomposable if
2 <t <r. Write Kup(A) = Ky(r—3)(A)+K12(A) + Ky r—3)12(A) = Kyr—3)(A) +K12(A)+(r—
3)K412(A) = Ky—3)(A)+K12(\)+(2r—6)AK4 6. Suppose the non-negative integers p and
q satisfy the obvious necessary conditions for a {pP7, ¢S4 }-decomposition in K4,(\). Then
we have 6p +4q = % = 2(16r2 —4r) = A(8r% —2r) = 8Ar? — 2\r = 8A\r? — 2\r +
1440 —144)\ = 8A72 =507+ T8A+66A+48Ar — 144\ = \(87%—50r+78)+66 A\ +48Ar— 144\ =
(1612 —100r +156) + 66 A +48Ar — 144\ = 3(16r2—52r—48r+ 156) + 66\ +48\r — 144\ =
23 (4r—12) x (4r —13) +66A+48\r — 144X = (47’—12) (4r—12—1)+66A+48\r — 144\ =
2(4(r—3)x4(r—3)—1 )+66)\+24)\(2r 6) = 5(4(r—3)x4(r—3)—1)+ 322 1 4x6)(2r—6) =
2(4(r—3) x4(r—3)—1)+5(132) + (2r — 6))\4><6 = 2(4(r—3)x4(r—3)—1)+5(12x11)+
(2r — 6)24)\ = (6p1 + 4q1) + (6p2 + 4q2) + (6p3 + 4g3). By the induction hypothesis, there
exists a {p1 7, q154}-decomposition of Ky_3)(A), by Case 6 there exists {paP7,q254}-
decomposition of Kj3(A) and by Lemma 3.1 there exists {p3Pr, ¢354 }-decomposition of
Ky6. Therefore a {pPr, qS4}-decomposition of Ky, (\) exists. Hence by the method of
induction, we have Ky4,(\) is fully {P7, S4}-decomposable for any r > 2.

n =1 (mod 4). Let n = 4r+1, with » > 5. Assume that K41 () is fully decomposable
if 2 <t <r. Write Kyry1(A) = Kyr—3)41(A) + K13(A) + Kyr-3),12(A) = Kyr—3)+1(A) +
Ki3(A\)+(r=3)K412(N) = Ky(r—3)+1(A)+Ki13(A)+(2r—6)AKy 6. Suppose the non-negative
integers p and ¢ satisfy the obvious necessary conditions for a {pPy, qS4}-decomposition
in K4T+1()\) Then we have 6p + 4q = )‘(4T+1)X(4r+1) (161" +4r) = A\(8r? + 2r) =
8AP2 + 2\r = 8A\r? + 2X\r + 144\ — 144\ = 8)\r — 46>\r + 66X + T8 + 48Ar — 144\ =
A(872 — 467 + 66) + T8\ + 48A\r — 144\ = (161" — 92r 4 132) 4 78\ + 48\r — 144\ =
A(16r2 —48r — 4dr +132) + T8A+48)\r — 144\ = 2 (4r—11) x (47— 12) + T8A+48\r — 144\ =
A (4r—12+41) x (4r—12)+ 78\ +48)\r — 144X = 5(4(7’—3)4—1 x4(r—3))+T8A+24A(2r —6) =
2Ar—3) + 1 x4(r —3)+1—1) + 132 4 4% 6)\(2r —6) = 3(4(r —3) + 1 x 4(r — 3) +
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1—1)+3(156) + (2r —6)Md x 6 = 3(4(r — 3) + 1 x 4(r — 3) + 1 — 1) + 5(13 x 12) +
(2r — 6)24)\ = (6p1 + 4q1) + (6p2 + 4q2) + (6p3 + 4g3). By the induction hypothesis, there
exists a {p1P7, q154}-decomposition of Ky(,_3)11(A), by Case 7 there exists {p2P7,¢254}-
decomposition of Kj3(A) and by Lemma 3.1 there exists {p3Pr, ¢354 }-decomposition of
Ky 6. Therefore a {pPr, qS4}-decomposition of Ky4,41(A) exists. Hence by the method of
induction, we have Ky4,41(A) is fully {Pr, S4}-decomposable for any r > 2.
n =2 (mod 4). Let n = 4r+2, with » > 4. Assume that K442()) is fully decomposable
if 2 S t < r. Write K47-+2()\) == K4(T_1)()\) + K7(A) + K4(7"—1)—1,6()‘) == K4(T_1)(A) +
K7(\) + (r — 2)AKy6 + 5 K36(2). Suppose the non-negative integers p and ¢ satisfy the
obvious necessary conditions for a {pPr, ¢Sy }-decomposition in Ky, 42(A). Then we have
6p + dg = MIERXEEDTL _ A(1602 4 120 4+ 2) = A(8r2 4 6r 4+ 1) = 8\r2 + 6Ar + A =
SATZ + 6A7 + 49X — 48X = 8Ar? — 18Ar + 10X + 21\ + 24Ar — 48X + 18\ = A(872 — 18r +
10) + 21X + 24\7 — 48X + 18X = (1672 — 367 + 20) + 21\ + 24\r — 48X\ + 18X = (1612 —
20r—16r+20)+21)\+24)\7“—48)\+18)\ — 2(dr—4) x (4r —5) + 21\ + 24)\r — 48\ + 18X =
3((4r —4) x (4r —4) — 1) + 21\ + 24 r — 48X\ + 18\ = (4(r — 1) x 4(r — 1) — 1) +
21)\+24>\(r—2)+18/\ = 5( (r—1) x 4(r—1) 1) + 422 +4>< 6A(r — 2) + 5(36) =
2(4(r—1) x4(r—1 )—1) 2(42)+ (r—2)Mx6+2 (2><3><6) 2A(r—1)x4(r—1)—1)+
(7% 6) + (r—2)24\ + 3(36) = 3(4(r — 1) ><4(r—1) 1)+ (7><6) (r—2)24\+ 18X\ =
(6p1 + 4q1) + (6p2 + 4q2) (6ps3 —|— 4q3) + (6ps + 4q4). By the induction hypothesis, there
exists a {p1P7, q151}-decomposition of Ky,._1)(A), by Case 1 there exists {p2P7,q254}-
decomposition of K7(A), by Lemma 3.1 there exists {p3 Pr, ¢354 }-decomposition of K4 ¢ and
by Lemma 3.2 there exists {p4Pr, 454 }-decomposition of K3¢(2). Therefore a {pP7, ¢S4}-
decomposition of Ky, 2(\) exists. Hence by the method of induction, we have Ky,2())
is fully {Pr, S4}-decomposable for any r > 2.
n =3 (mod 4). Let n = 4r+3, with » > 4. Assume that K443()) is fully decomposable
lf 1 S t <. Write K4T+3()\) == K4(7“—1)+1()\) + K?()\) + K4(7’—1),6()\) == K4(,,._1)_|_1()\) +
K7(A) + (r — 1)AK46. Suppose the non-negative integers p and ¢ satisfy the obvious
necessary conditions for a {pPr, ¢Sy }-decomposition in Ky,13(\). Then we have 6p+4q =
AUrE8)x (i)l — A(16r24-20r+6) = A(8r24+10r+3) = 8Ar2+10Ar 43X = 8Ar2+10Ar +
27)\ 24)\ = 8\r? — 14)\7“ + 66X+ 21N+ 247 — 24\ = A(87% — 147 +6) 4+ 21\ + 24\ — 24\ =
A(16r2 — 281 + 12) + 21\ + 24Ar — 24\ = (1692 — 167 — 127 + 12) + 21X + 24\r — 24\ =
A (4r—3) x (4r —4)+ 21+ 24Ar — 24\ = 2 ((4r—4+1) x (4 —4)-+1-1)+ 204240247 =
((A(r =)+ 1) X (= 1)+ 1= 1)+ 210+ 2407~ 1) = A —1)+1) x (4(r—1)+1—
)+ L4 X 6A(r— 1) = 3(4(r — 1) +1) x (4(r—1)+1—1) 2(42) + (r— 1A x 6 =
3(A(r—1)+1)xA(r—1)+1— 1)+ 3 (7x6)-+ (r—1)24) = (6p1-+4q1)+ (6pa-+4g2)-+ (6ps-+Ags).
By the induction hypothesis, there exists a {p1 P7, ¢154 }-decomposition of Ky(,_1)11()), by
Case 1 there exists {p2Pr, 254 }-decomposition of K7(\) and by Lemma 3.1 there exists
{p3Pr, q3S1}-decomposition of K. Therefore a {pP;, ¢Si}-decomposition of Kypr13(N)
exists. Hence by the method of induction, we have Ky, 3(A) is fully { P7, S4}-decomposable
for any r > 1. O

o>

4. CONCLUSIONS

In this paper, we have obtained the necessary conditions for a { P11, Sy, }-decomposition
of K, (\) and proved that the necessary conditions are also sufficient when & = 6 and
m = 4.
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