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ABSTRACT 
In this paper we describe a new approach to 
cooperative design using distributed, off-the-shelf 
design components. Our ultimate goal is to enable 
assemblers to rapidly design their products and 
perform simulations using parts that are offered by a 
global network of suppliers. The obvious way to 
realize this goal would be to transfer desired 
component models to the client computer. However 
in order to protect proprietary data, manufacturers 
are reluctant to share their design models without 
non-disclosure agreements, which can take in the 
order of months to put in place. Due to bandwidth 
limitations, it is also impractical to keep the models 
at the manufacturer site and do simulations by simple 
message passing. To deal with these impediments in 
e-commerce we leverage the Modular Distributed 
Modeling (MDM) methodology, which enables 
transfer of component models while hiding 
proprietary implementation details. We augment 
MDM methodology with Routine Design (RD) 
methods to realize a platform (RD-MDM) that 
enables automatic selection of secured off-the-shelf 
design components over the Internet, integration of 
these components in an assembly, running 
simulations for design testing, and publishing the 
approved product model as a secured MDM agent. 
We demonstrate the capabilities of the RD-MDM 
platform on a fuel cell –battery hybrid vehicle design 
example. 
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1. INTRODUCTION 
A manufacturing company must make use of all 
resources that are available internal and external to 
the company to thrive in today’s marketplace. 
Internet and e-commerce affect engineering design 
profoundly by allowing companies to be more 
externally focused. However, the availability of vast 
number of suppliers on the Internet renders searching 
for candidates and locating the best candidate beyond 
the reach of a human designer. The changes in the 
acquisition process of enterprises need to be reflected 
in a new type of design and simulation environment, 
one that facilitates automated searching and locating 
of best products, integration of selected products in 
an assembly, and simulation of the overall design 
over the Internet. 

The target of our research is to enable system 
integrators to rapidly design their products and 
perform simulation based design testing using secure 
computational models that are distributed over the 
Internet. There are two key challenges in the current 
wired world for achieving our target. First, in order 
to protect their proprietary data, manufacturers are 
reluctant to share design models with window 
shoppers without non-disclosure agreements. The 
second problem stems from the unavailability of 
automated tools that are capable of both distributed 
design and simulation-based design testing over the 
Internet. Most current engineering design and 
analysis tools are either limited to a local computer, 
need a vigorous standardization of distributed 
resources, or designed to operate on an exclusive 
virtual design network.  

Protecting proprietary design models and openly 
sharing model functional capability has not been 
possible with traditional model-based approaches. 
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We are attacking the problem of sharing design 
models without revealing proprietary data by 
utilizing the Modular Distributed Modeling (MDM) 
methodology. The crux of the MDM methodology is 
to share input-output models of engineering artifacts 
without disclosing their internal connections or 
dynamics, hence protecting the proprietary 
information (Byam and Radcliffe 1999; Eskil, 
Sticklen et al. 2003). 

To address the second challenge, unavailability of 
automated design and simulation tools, we extend the 
Routine Design (RD) methodology (Brown and 
Chandrasekaran 1989) in two dimensions. First, we 
extend the methodology by enabling design 
parameterization using distributed components. 
Second, we add the capability of design testing 
through simulation at all abstraction levels of the 
design. The underlying reason for our focus on the 
RD methodology is the routine nature of most real-
world design problems. 

The thrust in our work is to integrate MDM, and in 
particular its capability to provide simulation, into 
the routine design framework. The synergy of RD 
and MDM methodologies facilitates automated 
design parameterization with off-the-shelf 
components distributed over the Internet, virtual 
assembly of selected components, and simulation of 
the distributed assembly in an open, competitive e-
commerce. With this approach, vendors will be able 
to make their core models available to the public 
without disclosing proprietary information. 
Designers on the other hand will be able to 
incorporate these models into their designs and 
simulate them as integrated components of the 
assembly.  

In the rest of this paper we give a brief introduction 
to our research field, discuss the integrated RD-
MDM system, present the current capabilities and 
limitations of the RD-MDM platform on a fuel cell – 
battery hybrid vehicle design example, and conclude 
with a summary and the status of our research. The 
next section describes existing distributed problem 
solving systems. Sections 3 and 4 outline the MDM 
platform and the RD methodologies. Our 
implementation is presented in Section 5. A hybrid 
vehicle design example is presented in Section 6, 
which is followed by results and conclusions.  

2. DISTRIBUTED PROBLEM SOLVING 
APPROACHES 

Solving complex problems as a whole proves to be 
intractable in many cases. Engineers’ approach to 
such problems is to decompose them into several 
subtasks that may fall into the realm of different 
engineering domains. Early distributed problem 
solving approaches assumed that the expertise from 
these engineering domains could be gathered and 
represented on a network of closely bound 
computers, in compliance with a particular 
architecture.  

For many real-world design problems however, 
gathering and organizing the widespread expert 
knowledge turns out to be infeasible. An example to 
such problems is automobile design, where expertise 
in mechanics (e.g. drive-train), vibrations 
(suspension), materials (tires, brake pads), electricity 
(accumulators, electric motors) and electronics (on-
board computers) are required. As correctly 
identified by Alexander (1964) decades ago, the 
design information is widespread, unorganized, and 
in general beyond the reach of a single designer. In a 
more recent work MacGregor (MacGregor and 
Thomson 2001) also emphasized the lack of common 
terminology between teams of expertise and 
unawareness of existence of knowledge. 

PACT is one of the most well-known projects that 
advocate encapsulation of tool data to solve the 
common terminology problem. In PACT, each tool 
uses the most appropriate internal data structures and 
representation of models and communicates with 
languages of varying complexities. To support the 
complicated nature of communication between 
PACT agents, a facilitator mechanism (Cutkosky, 
Engelmore et al. 1993) is implemented. The 
facilitator provides an interface between a local 
connection of agents and remote agents. The 
collection of autonomous agents under facilitators is 
called federation architecture. 

Distributed Object-Based Modeling Environment 
(DOME) aims to create a modeling infrastructure for 
individuals to share their simulation services related 
to their expertise (Wallace 2001). The ultimate goal 
is to allow individuals to design and understand 
complex systems by use of latest modeling 
technology offered by experts. The infrastructure 
serves as an interface for the modeling tool once it is 
published on the DOME server. The DOME 
approach capitalizes on sharing design and 
simulation tools rather than component models.  
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The approaches mentioned above did not address to 
simulation of distributed assemblies while protecting 
the proprietary resources. Researchers proposed 
cryptographic techniques (Silva and Katz 1995; 
Hauck and Knoll 1998) and simulation to take place 
on the manufacturer site (Fin and Fummi 2000). 
However, these approaches are either platform 
dependent, hard to maintain, or do not support design 
by multiple components from different vendors.  

Although the state-of-the art approaches prove to be 
valuable search and decision tools, they provide very 
limited capability in automated design and analysis 
in the context of open e-commerce. Shakeri and 
Brown (2004) point out the need for resource sharing 
across disciplines and provide a new knowledge-
based methodology for simulation of a design 
process. Spiller et al. (1997) envision the future of 
the Engineering Design and Analysis community 
organized in an integrated and distributed 
environment. Interoperability between tools and 
design libraries will create an evolvable, 
customizable, and adaptable virtual design network. 
Such an organization would also enable querying 
products and serve as a virtual consultant to 
researchers and individuals.  

Regli (1997) emphasizes the importance of online 
smart catalogs supported with intelligent agents that 
can also filter relevant information. Such computer-
interpretable information models augmented with the 
issues of security and trust can be integrated with 
existing tools and services to develop entirely 
automated and distributed design platforms. On the 
other hand, as Regli draws attention to, advances in 
distributed design brings about the problem of 
handling Gigabytes of information flow over slow 
WWW protocols.  

3. FUNCTIONAL RESPONSE MODELING 
A major impediment in simulations of distributed 
assemblies is the extent of the Internet traffic that 
entails iterative communications. This challenge can 
be met by conceptualizing an output form that both 
hides proprietary data and enables a functional 
response to be made by the responder per simulation. 
The requesting Modular Distributed Modeling 
(MDM) agent is then able to use this single 
Functional Response Model (FRM) as the basis for 
local (to it) simulation that incorporates the device 
into its own device assembly. This is the core 
concept that will make MDM communities possible 

in the Internet environment (Byam and Radcliffe 
2000; Eskil, Sticklen et al. 2003).  

Port 1 

u1    y1 

Port 2 
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Port p 

up    yp 

… 

Component 

 
Figure 1 – Modular Modeling Element Graphical 

Notation 

Power flows into Port i  if iu  and iy  are both 
positive. 

Figure 1 shows a diagram of a contracted model for 
an Internet design agent model. Modular modeling 
element graphical notation represents user-defined 
multi-port multi-DOF subsystem models with a 
rectangle. The bold lines represent the power ports 
with implicit standardized direction of positive power 
into the element and standardized input-output port 
causality. The direction of positive power and input-
output causality standardizes the modular modeling 
elements’ internal formulation, which is the essence 
of modular modeling. 

In this example, the detailed physical response model 
of a component is in the standard stiffness form: 

 uKy =       (1) 

where K  is the component stiffness matrix, y  is the 
component generalized displacement vector and u  is 
the component input vector. In general, component 
stiffness matrix is singular and cannot be inverted. 
This situation occurs because component models 
have zero eigenvalues from “rigid-body modes”, 
representing components with no applied boundary 
conditions. An example for this situation is an 
unconnected structural element, such as a beam that 
is free to translate in any direction. 

As equation (1) implies, FRM is currently applicable 
only to linear time-invariant components. This 
constraint brings important limitations as most real-
world design components exhibit nonlinear 
characteristics. In this paper we propose a method to 
implement nonlinear characteristics in an FRM 
application. Modeling nonlinear systems using the 
FRM technique is being studied in the Dynamic 
Systems Laboratory of Michigan State University. 
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3.1. Deriving FRMs for Assemblies 
The Subsystem Model (Figure 2) depicts a possible 
situation that can arise when components are 
assembled into subsystems. The subsystem model 
has two components connected via constraints on 
ports 3 and 4. It has internal component ports 2 and 5 
that are not connected externally. Finally, the 
assembly has ports 1 and 6 that can be connected 
externally. Once assembled, a new algebraic equation 
set in the form (Eq. 1) is required so that this system 
can be used in higher-level system models. Because 
the component models are often singular, the 
subsystem model will also be singular in general. 
Only when assembled with sufficient boundary 
constraints do models become non-singular and 
solvable. 
 

Assembly 
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Component 1 
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 u2    y2 

 u3    y3 

Figure 2 – Subsystem Model with Two Components 

Each component is depicted with external, internal 
and connected ports. 

For deriving a single FRM for the assembly, the 
equations for each of the components are first 
assembled into an unconstrained system matrix. 
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The subsystems components are uncoupled in this 
form. The modular matrix assembly equations 
transform the component input-output pairs ),( ii xf  
to the single assembly input-output pair ),( yu . The 
assembly output constraint defines each component’s 
output vectors ( x ) in terms of the assembly output 
vector ( y ).  

 Syx =        (3) 

The power constraint on the assembly requires the 
sum of the work into all joined component ports to 
equal the applied work at any assembly connection. 
The causality in energy domains is defined such that 

this holds for every physical system in these 
domains. Therefore, the external work done on a 
physical assembly by port inputs u must equal the 
external work done on the assembly's components by 
port inputs f.  

  uyfx TT =       (4) 

Applying the input-output constraint (Eq. 3) on the 
power constraint (Eq. 4) we find the input constraint 
between assembly’s component input vectors f and 
assembly input vector u  for all non-zero assembly 
outputs y . 

 ufS =T      (5) 

These results are all we need to derive an assembly 
FRM. We start model assembly as in Eq. 2, with the 
unconstrained grouping of all component models: 
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To obtain a concise modular model, we will now 
apply the constraints. The assembly output constraint 
is applied by substituting constraint Eq. 3 into Eq. 6: 

 fKSy =       (7) 

Multiplying both sides with TS and using Eq. 5 
yields the constrained assembly internal stiffness 
model 

 uyK =ˆ       (8) 

where  

KSSK T=ˆ       (9) 

This simple system shown in Eq. 9 is the dynamic 
inverse simulation model or functional response 
model (FRM) of the assembly. It has constants from 
the original system contributing to an algebraic 
combination of addition, subtraction and 
multiplication. The particular form of this function is 
dependent on the topology of the subsystem and is 
non-linear in the parameters. The original 
engineering data from which this model is developed 
is well protected from reverse engineering – one 
principle objective of this modeling system. 
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3.2. The MDM Platform 
Bandwidth is a major concern in distributed 
simulations, especially when the simulation is 
iterative in nature. In our work FRM serves as a 
simulation model that fully describes the functional 
behavior of a component. This property of the FRM 
technique enables us to overcome the bandwidth 
problem by reducing the required number of 
communications for each component to one for the 
entire simulation. FRMs serve for two main goals in 
our research: 

1. The external behavior of the manufacturing 
part is represented without revealing any 
proprietary information. 

2. The transfer of FRMs in design and/or 
analysis speeds up the design process while 
reducing the network traffic. 

Leveraging the FRM technique, we developed an 
infrastructure capable of supporting a community of 
Modular Distributed Modeling (MDM) agents. The 
ensemble of MDM agents are capable of supporting 
Internet based cooperative engineering design and  

simulation, but with the constraint of device 
knowledge hiding. The conceptual building block to 
enable modular distributed modeling is the MDM 
agent, a fixed but autonomous agent such that: 

1. Each MDM agent holds knowledge of a 
single manufactured device. 

2. Each MDM agent composes answers to 
queries such that implementation details of 
the device it holds are not revealed. 

3. Any MDM agent may hold a device that 
internally includes parts (or assemblies) held 
by other MDM agents. 

The sketch shown in Figure 3 depicts three MDM 
agents connected physically via the Internet. It is 
important to note that in response to queries, MDM 
agents would not reveal the proprietary internal 
virtual linkage; such virtual linkages can be used to 
express an internal structure that includes 
parts/assemblies of other MDM agents. Query 
Ontology is an MDM network resource that makes 
available to any MDM agent the typology of legal 
queries. Agent Registry makes available to any 

Figure 3 – Sketch of MDM agent community 

Each agent is composed of an Assembler, Component(s) and Model(s). Components and Models are 
assembled with Join operations. 
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MDM agent both the typology of agent types and the 
list of all existing MDM agents by agent type. In 
other words, Agent Registry serves as a database of 
agent categories and the registered agents under each 
category whereas Query Ontology provides a 
dictionary of legal queries for a chosen agent 
category.  

With the MDM approach we assert that how a 
specific product is designed and its design details do 
not have any relevance to how it integrates 
structurally and functionally in a larger design. 
Therefore a product model can reside on any 
platform of its designer’s convenience and 
communicate through one-shot queries and responses 
or FRMs that hide the proprietary knowledge.  

4. ROUTINE DESIGN 
When we engineers design similar artifacts over and 
over again, we often achieve a grasp of the routine 
nature of the process and start discovering effective 
ways to decompose the design process into smaller 
design problems. Although we may not know 
beforehand all possible situations that would occur in 
a design process, we acquire an understanding of 
design choices and plans that specify the order of 
making the choices. Routine Design (RD) is a 
procedure that aims to capture this “expert” 
knowledge from the designer and realize it in 
computer environment.  

In a series of studies over the past decade, the 
Intelligent Systems Laboratory (ISL) of Michigan 
State University developed several computer based 
tools for engineering design and analysis. Among 
these tools, Generic Task Routine Design (GT-RD) 
architecture was first suggested and implemented by 
Brown (Brown and Chandrasekaran 1989) and 
developed later on in the ISL (Kamel and Sticklen 
1994).  

GT-RD decomposes the design problem into a 
hierarchy of cooperating specialists, each responsible 
for a specific aspect of the overall design. Typically, 
lower-level specialists in this hierarchy represent 
actual components of the design and are responsible 
for parameterizing the design with a suitable 
component. As RD proceeds higher in the specialist 
hierarchy, conceptual aspects of the design problem 
become more and more pronounced.  

 

 
Figure 4 – The Architecture of GT-RD 

The structure of the Top Specialist and all other 
specialists are inherently the same. 

Each specialist in the decomposition structure is 
furnished with a set of design plans. These plans are 
specified by the designer during the structuring of the 
task-specific routine design system. To choose an 
appropriate design plan, a specialist invokes the plan 
selector, which in turn refers to the sponsors of each 
plan, as depicted in Figure 4. A plan sponsor matches 
the status of the design with the conditions for 
applicability of the plan and reports the level of 
appropriateness of the plan it represents. A plan is 
initiated only when it is evaluated as suitable by its 
plan sponsor and chosen by the plan selector.  

Design plans consist of ordered instructions for 
assigning values to parameters of generic 
components in accordance with the design goals of 
the specialist. To fulfill its task, an initiated design 
plan may invoke other specialists, execute design 
tasks and check constraints. In case the design of a 
subsystem fails, design critique at that abstraction 
level tries to determine the reason for the failure and 
invokes the redesigner to take corrective actions, 
which may result in selection of a new plan. 

When a specialist successfully completes the part of 
the design it is responsible from, it hands in the 
design parameters to its parent specialist, where all 
sub-designs from one lower level are merged into a 
higher-level design and checked for constraints. The 
design of the artifact becomes more complete as the 
design process progresses up in the design 
abstraction hierarchy.  
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5. THE RD-MDM PLATFORM 
Typically in GT-RD decomposition, higher-level 
specialists represent the conceptual aspects of the 
design whereas lower level specialists are responsible 
for selecting actual components. In the current RD 
platform, designers are allowed to use a pool of 
locally represented, generic components for 
parameterization of the design. We enhanced the RD 
platform by enabling the selection of alternatives 
among remotely distributed components, i.e. off-the-
shelf parts. 

From the perspective of a designer, any remote 
design agent is nothing but a representation of the 
external behavior of a subsystem. This perspective is 
also valid for an RD process; when a lower level 
specialist selects suitable subsystem parameters (for 
component, material, process or plan), the generated 
subsystem functions as a knowledge base that will 
have to be incorporated into the design. Thus, RD 
system can be extended to implement a Remote 
Agent Selection Task to parameterize the design by 
choosing a suitable remote agent that belongs to a 
specific category.  

Figure 5 depicts the integrated RD-MDM 
architecture. In this architecture, each specialist is 
furnished with an Assembler to incorporate the 
selected components in the design. Each specialist 
has access to computational resources to effectively 
respond to queries, depicted as External Services. An 
external service can be any local tool such as 

MathWorks MATLAB or a Dynamic Link Library. 
Off-the-shelf components are searched and 
contracted by the Remote Agent Selection Task, 
which carries out a multi-attribute evaluation of the 
queried MDM agents. In the current architecture all 
connections are point to point and asynchronous.  

With this improved RD tool, designers have the 
option to do multi-attribute search and select among 
design parts that are available locally and remotely in 
the form of an MDM agent. If a commercially 
available MDM agent is an option, the designer must 
create a remote agent selection task for the related 
low-level specialist. This task specifies a category of 
MDM agents (via Agent Registry) and the queries of 
concern (via Query Ontology) for selecting the right 
part. Agent selection is made by matching the design 
requirements with the agent performance figures.  

When the most suitable remote agent is selected by 
the RD process, it becomes a component of the 
design. The designer may prefer to keep a virtual link 
to the remote agent, or he/she may request and store 
a Functional Response Model (FRM) of the remote 
agent. Keeping only a virtual link would ensure up-
to-date responses from the remote agent, slightly 
slowing down the simulation for large number of 
components. When the FRM of the agent is stored on 
the local computer, analysis will be faster, but 
periodic updating of the FRM representation will 
become a necessity. 

Consider an automobile manufacturing company that 
is capable of manufacturing all of the needed 

Specialist 
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Design 
Critique 

Redesigner 

... 
Figure 5 – The integrated RD-MDM architecture 
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components except the drive train. An automobile 
designer in this company sets up the routine design 
structure creating a remote agent selection task in the 
plans of the drive train specialist. This situation is 
depicted in Figure 6. When the design process is 
started, remote agent selection task queries all MDM 
agents in the ‘Drive Train’ category, selects a 
suitable drive train and returns it to the drive train 
specialist. The queries made for finding the write part 
are in general “one-shot” queries, such as ‘price’, 
‘delivery time’, ‘maximum power’ or ‘maximum 
torque’. When a drive train agent model is selected, 
the design is parameterized with a remote component 
and it can proceed to selection of other local or 
remote components and their integration in the 
overall design. 

Selection of a component that is represented 
remotely as an MDM agent corresponds to selecting 
a commercially available part from a catalogue for 
use in design. In a real-world design problem, the 
next step would be incorporating these parts in the 
overall design and analyzing their interactions. For 
this purpose we use the FRM assembly operations 
(Section 3.2) and extend RD by implementing 
simulation capability.  

In extended GT-RD, only the lower level specialists 
are responsible for selecting remote agents. Involving 
with a single component, these specialists do not 
require any assembly operations. However, as the 

design proceeds up to higher-level specialists, 
different local and remote models will start merging 
together. In any one of these specialists, the designer 
may need to define an assembly that brings 
subassemblies together, optionally followed by a 
simulation.  

MDM methodology is incorporated in GT-RD as a 
recursive process that starts with merging the FRMs 
of locally represented components and/or distributed 
off-the-shelf parts and proceeds with merging the 
FRMs of subassemblies at higher abstraction levels 
(Figure 5). The addition of a design testing capability 
at every abstraction level resolves the design failures 
at the lowest abstraction level they occur. In this 
scheme a subassembly that does not conform to the 
rest of the design will be discarded in order to 
generate a new and viable subassembly, before the 
design progresses to higher levels of abstraction. 

The incorporation of MDM in GT-RD is 
accomplished by furnishing each parent specialist 
with an external service for simulation. In order to 
carry out a simulation, the responses of its every 
child have to be joined together. After the generation 
of each assembly, the parent specialist becomes a 
representative of an assembled, single component. 
This component is declared as a local MDM agent, 
which is not accessible from the outside world. 
Simulation of the assembly corresponds to querying 
this local agent with inputs and retrieving its outputs.  

Figure 6 – Automated routine design of an automobile using MDM agents 

Solid and dotted lines represent physical and virtual linkages, respectively. 
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As discussed in Section 4 and depicted in Figure 4, 
every parent specialist follows a strategy as dictated 
by one of its plans. When the simulation of the 
outcome of a plan fails, redesigners are invoked and 
the design proceeds downward with the selection of a 
new plan. If the simulation is successful, the design 
will proceed upwards, through parent specialists, 
their assembly operations and simulations. With each 
successful simulation, the designer is given the 
option of registering the local agent that was created 
for simulation purposes. When registered, it becomes 
accessible to the MDM community. This 
functionality will most often be used for the output of 
the top-level specialist, i.e. the product that is being 
designed.  

6. THE HYBRID VEHICLE EXAMPLE 
We chose to perform the distributed routine design of 
a hybrid vehicle to demonstrate the capabilities of the 
proposed architecture. We have several reasons for 
selecting this design problem. First, a hybrid vehicle 
power train is an inherently complicated and 
relatively new design problem, which gives us a 
chance to demonstrate the capabilities of our design 
platform on a cutting-edge application. Second, the 
drive train is composed of multiple components (e.g. 
fuel cell, battery, electric motor, transmission), 
allowing us to generate a reasonably sized population 
and ontology of MDM agents to demonstrate the 
automated agent selection process. Finally, design of 
a hybrid vehicle power train is a challenge in 
deriving FRMs and assembling mechanical and 
electrical components.  

6.1. Assembling the Electric Motor 
and the Drive Train 

To assemble the electric motor and the drive train 
components, we need to first define an unassembled 
dynamic modular model K  as we have shown in 
Sec. 3.1. K  is a diagonal matrix of modular models 
of components, such that:  

fKx =     (10) 

The unassembled dynamic modular model of the 
electric motor and the drive train is composed of the 
electric motor, transmission (including axle and tires) 
and the vehicle mass models. Each of these models 
are represented as transfer functions ( EMK , TRK , 

VEK ) in Eq. 11.  
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The component input vector f  is composed of input 
vectors of component models, 
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where EMe , EMτ  are the voltage and torque applied 
to the electric motor, 1τ , 2τ  are the torques applied 
at the two power ports of the transmission, and F  is 
the force of inertia on the assembly.  

The component output vector x  is composed of 
output vectors of component models: 
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where EMQ  and EMθ  are the current and angular 
displacement at the electric motor, 1θ  and 2θ  are the 
angular displacements at the two ports of the 
transmission, and x is the linear displacement of the 
assembly.  

Next, we will set the constraints on the power ports 
that define the linear mapping between 5 internal 
variables of x  (Eq. 13) and the external outputs in 
the assembly y . Number of output ports depends on 
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the number of constraints as dictated by the assembly 
output constraint S . These constraints are: 

1. The angular displacement output of the 
electric motor is joined with the first angular 
displacement output of the transmission: 

1θθ =EM    (14) 

2. The second angular displacement output of 
the transmission is joined with the 
displacement of the vehicle: 

TIREr
x

=2θ    (15) 

Using Eq. 3, the output constraint equation becomes: 
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and the output vector y  for the assembly matrix is: 
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Using the assembly output constraint (Eq. 16) we 
find the assembly input vector u  as: 
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where extτ  and extF  are the external torque and force 
applied on the electric motor – transmission 
connection and the vehicle, respectively. An example 
of external torque is the brake torque that is applied 
for deceleration. extF  input to the model could be 
utilized as an external force such as the gradient of 
the road or air drag. In our experiments we only take 
air drag into consideration as an external force. The 
external force due to the gradient of the road is 

( )αsingmVE  where g  is the gravitational constant 
and α  is the gradient angle, and implementing this 
force in the simulation simply corresponds to 
summing it with the air drag.  

Using the unassembled dynamic modular model and 
the constraint matrix, we assemble the dynamic 
modular models of components as shown in Eq. 19. 

Note in Eq. 19 that the assembled modular model K̂  
is the inverse of the simulation model we will be 
using in our experiments. In the next section we will 
introduce a fuel cell stack and a battery into this 
assembly. Note that once the drive train modular 
model is obtained, assembly of fuel cell is a simpler 
process that requires an additional Join operation. 
However, in the regular operation of the RD-MDM 
platform, the FRMs of each component will be 
downloaded separately and sometimes assembled at 
once.  

6.2. Modeling Hybrid Vehicles 
We demonstrated how to obtain the FRM for the 
electric motor - drive train assembly in Sec 6.1. 
Modeling a fuel cell vehicle simply amounts to 
adding a fuel cell stack model into this assembly. For 
details of a fuel cell stack modular model and 
modeling and simulating fuel cell vehicles, reader is 
referred to (Eskil 2005, Eskil, Sticklen et al. 2008).  

We are undertaking a more challenging problem of 
modeling a hybrid vehicle in this paper. It is 
important at this point that our formulation for FRMs 
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works only for linear time-invariant systems. On the 
other hand, the simulation of a hybrid vehicle has 3 
major nonlinearities associated with it. First, we 
cannot incorporate the depletion of the hydrogen tank 
or batteries in the overall FRM. Second, we cannot 
implement gearshift in the assembly model. And 
third, we cannot model switching between the fuel 
cell stack and the battery, which should be done 
according to road and driving conditions. We will 
deal with the first two of these problems by making 
the following assumptions:  

1. It is assumed that the hydrogen flow and the 
battery charge are externally controlled (i.e., 
not embedded in the assembly FRM).  

2. The transmission runs in a single mode and 
does not facilitate gearshift.  

Due to these nonlinearities we pursue the design of a 
fuel cell – battery hybrid vehicle with a combination 
of assembled and stand-alone modular models. In 
other words, we utilize the modular model of power 
train assembly that was derived in Section 6.1 
together with decision-making mechanisms to 
facilitate gearshift and switch battery on and off.  

 Figure 7 – The MATLAB Simulink model for fuel  
        cell vehicle simulation 

We connect the fuel cell and the battery in parallel as 
two sources of electrical potential. Sources connected 
in parallel must generate the same potential across 
the connection nodes to avoid internal and reverse 
electric flow. In this experiment, we use DC-DC 
converters coded in the simulation model to balance 
the potential provided by the fuel cell and the battery. 
Thus, when both sources are connected in the circuit, 
the current drawn from each source is exactly one 
half of the current demand of the electric motor. In 
real world applications, a decision-making 

mechanism evaluates the driving conditions for the 
power demand and connects the fuel cell, battery, or 
both to the circuit to power the electric motor. This 
mechanism also decides when the battery will be 
charged. The Battery vs. Fuel Cell Controller in 
Figure 7 does this operation by monitoring the 
position of gas and brake pedals and tracking the 
charge stored in the battery. One additional task of 
this module in our experiment is the computation of 
the hydrogen consumption. The decision-making 
mechanism in this block is as follows:  

1. When the battery charge level is above a set 
limit and the electric current demand is 
greater than zero, draw half of the electric 
charge from battery.  

2. When the vehicle is decelerating (brake 
torque is applied) and the battery is not full, 
charge the battery with the electric charge 
that is produced by the back EMF of the 
electric motor (regenerative breaking).  

3. Otherwise, keep the battery idle. 

As shown in Figure 7, we were able to develop a 
simulation model by leaving the battery and fuel cell 
modular models out of the assembly. However, there 
are drawbacks of not deriving an assembled modular 
model for the design, particularly when the design is 
meant to serve as a component in a higher-level 
assembly:  

1. The recursive structure of modular 
distributed models is broken. Transfer of 
unassembled modular models as the product 
model raises issues with the protection of 
proprietary knowledge.  

2. Modular models are concise descriptors that 
are simple matrices of transfer functions. A 
Simulink model is inherently harder to 
incorporate in an assembly. Moreover, 
transferring platform-specific models raises 
concerns about compatibility issues across 
platforms.  

We ran the routine design of a hybrid vehicle with 
design requirements on acceleration, speed and 
vehicle range (fuel consumption): 

1. Vehicle accelerates from 50 to 70 mph in 
less than 10 seconds. 

2. Vehicle top speed is greater than 100 mph.  

3. Requested vehicle range is greater than 120 
miles. 
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When the routine designer is run, it follows the 
process decomposition as dictated by the conceptual 
design and its plans. This is done through the GT-RD 
architecture (Sec 4). The component selection 
process in RD-MDM (Sec 5.1) queries and chooses 
the suitable design components based on their prices, 
delivery time, power, efficiency, etc. Next, the 
component FRMs are requested and the received 
FRMs are integrated (Sec 5.2) to come up with the 
assembly simulation model. Lastly, simulations are 
made and the overall design is tested with respect to 
the design requests.  

We carried out our experiments using an MDM 
population of 4 electric motor, 4 transmission and 12 
fuel cell agents, communicating over 32 predefined 
queries. These agents were distributed over 3 servers, 
communicating over TCP/IP. The Agent Registry 
and Query Ontology Agents were held on a separate 
server. A client computer was used to run the RD-
MDM designer and communicate with the Agent 
Registry, Query Ontology, and MDM model servers. 

When the simulations are over, RD-MDM returns the 
selected components as well as the simulation results. 
As shown in Figure 8, although it was not guaranteed 
for all inputs, routine designer had met the design 
requirements.  

7. CONCLUSION 
In this paper we describe a new approach to 
cooperative design using distributed, off-the-shelf 
design components. The proposed architecture, RD-
MDM is a conceptual framework that supports task 
directed, distributed Routine Design (RD) including 
simulation-based design testing. In our research, we 
leverage the Modular Distributed Modeling (MDM) 

methodology to simulate the interaction of design 
components in an assembly. The deliverable of our 
research is a distributed RD platform that is capable 
of automated multi-attribute search for remotely 
represented off-the-shelf design components, design 
parameterization by choosing suitable components 
for the design, integrating these components in an 
assembly, running simulations for design testing, and 
publishing the approved design as an MDM agent.  

RD-MDM enables design, virtual assembly and 
simulation of end products that integrate off-the-shelf 
components represented by remote supplier agents. 
With RD-MDM, integrators can design and virtually 
assemble their end products by taking advantage of a 
global network of suppliers and evaluate design 
alternatives without the necessity of non-disclosure 
agreements. An integrator can also serve as a 
supplier to other integrators by making its RD-MDM 
generated product model available in the MDM 
community for evaluation as a part of higher-level 
design, without disclosing proprietary design details.  

An integrated RD-MDM framework creates a 
platform that realizes the potential of automated 
design that has been mitigated by lack of global 
access to design knowledge. As the MDM 
community grows, RD-MDM will be more beneficial 
by decreasing the engineering design cycle time, 
increasing the commercial agility of the 
manufacturer, enabling custom-made designs while 
securing the proprietary design data and keeping the 
network traffic in manageable levels. 

At the current state we are running experiments to 
test the platform in an online reverse auction setting. 
In our future papers we will discuss our results and 
compare the RD-MDM platform with other 
cooperative design platforms.  

Figure 8 – Fuel cell – battery hybrid vehicle design and simulation results 
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