
Proceedings of the TMCE 2008, April 21–25, 2008, Izmir, Turkey, Edited by I. Horváth and Z. Rusák
© Organizing Committee of TMCE 2008, ISBN ----

 1

INTEGRATING VENDORS INTO COOPERATIVE DESIGN PRACTICES

Mustafa Taner Eskil
Computer Science Department

Işık University
eskil@isikun.edu.tr

Jon Sticklen

Computer Science and Engineering Department
Michigan State University

sticklen@msu.edu

ABSTRACT
In this paper we describe a new approach to
cooperative design using distributed, off-the-shelf
design components. Our ultimate goal is to enable
assemblers to rapidly design their products and
perform simulations using parts that are offered by a
global network of suppliers. The obvious way to
realize this goal would be to transfer desired
component models to the client computer. However
in order to protect proprietary data, manufacturers
are reluctant to share their design models without
non-disclosure agreements, which can take in the
order of months to put in place. Due to bandwidth
limitations, it is also impractical to keep the models
at the manufacturer site and do simulations by simple
message passing. To deal with these impediments in
e-commerce we leverage the Modular Distributed
Modeling (MDM) methodology, which enables
transfer of component models while hiding
proprietary implementation details. We augment
MDM methodology with Routine Design (RD)
methods to realize a platform (RD-MDM) that
enables automatic selection of secured off-the-shelf
design components over the Internet, integration of
these components in an assembly, running
simulations for design testing, and publishing the
approved product model as a secured MDM agent.
We demonstrate the capabilities of the RD-MDM
platform on a fuel cell –battery hybrid vehicle design
example.

KEYWORDS
Cooperative Design, Simulation, Proprietary Data,
Modular Distributed Modeling, Routine Design

1. INTRODUCTION
A manufacturing company must make use of all
resources that are available internal and external to
the company to thrive in today’s marketplace.
Internet and e-commerce affect engineering design
profoundly by allowing companies to be more
externally focused. However, the availability of vast
number of suppliers on the Internet renders searching
for candidates and locating the best candidate beyond
the reach of a human designer. The changes in the
acquisition process of enterprises need to be reflected
in a new type of design and simulation environment,
one that facilitates automated searching and locating
of best products, integration of selected products in
an assembly, and simulation of the overall design
over the Internet.

The target of our research is to enable system
integrators to rapidly design their products and
perform simulation based design testing using secure
computational models that are distributed over the
Internet. There are two key challenges in the current
wired world for achieving our target. First, in order
to protect their proprietary data, manufacturers are
reluctant to share design models with window
shoppers without non-disclosure agreements. The
second problem stems from the unavailability of
automated tools that are capable of both distributed
design and simulation-based design testing over the
Internet. Most current engineering design and
analysis tools are either limited to a local computer,
need a vigorous standardization of distributed
resources, or designed to operate on an exclusive
virtual design network.

Protecting proprietary design models and openly
sharing model functional capability has not been
possible with traditional model-based approaches.

2 Mustafa Taner Eskil, Jon Sticklen

We are attacking the problem of sharing design
models without revealing proprietary data by
utilizing the Modular Distributed Modeling (MDM)
methodology. The crux of the MDM methodology is
to share input-output models of engineering artifacts
without disclosing their internal connections or
dynamics, hence protecting the proprietary
information (Byam and Radcliffe 1999; Eskil,
Sticklen et al. 2003).

To address the second challenge, unavailability of
automated design and simulation tools, we extend the
Routine Design (RD) methodology (Brown and
Chandrasekaran 1989) in two dimensions. First, we
extend the methodology by enabling design
parameterization using distributed components.
Second, we add the capability of design testing
through simulation at all abstraction levels of the
design. The underlying reason for our focus on the
RD methodology is the routine nature of most real-
world design problems.

The thrust in our work is to integrate MDM, and in
particular its capability to provide simulation, into
the routine design framework. The synergy of RD
and MDM methodologies facilitates automated
design parameterization with off-the-shelf
components distributed over the Internet, virtual
assembly of selected components, and simulation of
the distributed assembly in an open, competitive e-
commerce. With this approach, vendors will be able
to make their core models available to the public
without disclosing proprietary information.
Designers on the other hand will be able to
incorporate these models into their designs and
simulate them as integrated components of the
assembly.

In the rest of this paper we give a brief introduction
to our research field, discuss the integrated RD-
MDM system, present the current capabilities and
limitations of the RD-MDM platform on a fuel cell –
battery hybrid vehicle design example, and conclude
with a summary and the status of our research. The
next section describes existing distributed problem
solving systems. Sections 3 and 4 outline the MDM
platform and the RD methodologies. Our
implementation is presented in Section 5. A hybrid
vehicle design example is presented in Section 6,
which is followed by results and conclusions.

2. DISTRIBUTED PROBLEM SOLVING
APPROACHES

Solving complex problems as a whole proves to be
intractable in many cases. Engineers’ approach to
such problems is to decompose them into several
subtasks that may fall into the realm of different
engineering domains. Early distributed problem
solving approaches assumed that the expertise from
these engineering domains could be gathered and
represented on a network of closely bound
computers, in compliance with a particular
architecture.

For many real-world design problems however,
gathering and organizing the widespread expert
knowledge turns out to be infeasible. An example to
such problems is automobile design, where expertise
in mechanics (e.g. drive-train), vibrations
(suspension), materials (tires, brake pads), electricity
(accumulators, electric motors) and electronics (on-
board computers) are required. As correctly
identified by Alexander (1964) decades ago, the
design information is widespread, unorganized, and
in general beyond the reach of a single designer. In a
more recent work MacGregor (MacGregor and
Thomson 2001) also emphasized the lack of common
terminology between teams of expertise and
unawareness of existence of knowledge.

PACT is one of the most well-known projects that
advocate encapsulation of tool data to solve the
common terminology problem. In PACT, each tool
uses the most appropriate internal data structures and
representation of models and communicates with
languages of varying complexities. To support the
complicated nature of communication between
PACT agents, a facilitator mechanism (Cutkosky,
Engelmore et al. 1993) is implemented. The
facilitator provides an interface between a local
connection of agents and remote agents. The
collection of autonomous agents under facilitators is
called federation architecture.

Distributed Object-Based Modeling Environment
(DOME) aims to create a modeling infrastructure for
individuals to share their simulation services related
to their expertise (Wallace 2001). The ultimate goal
is to allow individuals to design and understand
complex systems by use of latest modeling
technology offered by experts. The infrastructure
serves as an interface for the modeling tool once it is
published on the DOME server. The DOME
approach capitalizes on sharing design and
simulation tools rather than component models.

INTEGRATING VENDORS INTO COOPERATIVE DESIGN PRACTICES 3

The approaches mentioned above did not address to
simulation of distributed assemblies while protecting
the proprietary resources. Researchers proposed
cryptographic techniques (Silva and Katz 1995;
Hauck and Knoll 1998) and simulation to take place
on the manufacturer site (Fin and Fummi 2000).
However, these approaches are either platform
dependent, hard to maintain, or do not support design
by multiple components from different vendors.

Although the state-of-the art approaches prove to be
valuable search and decision tools, they provide very
limited capability in automated design and analysis
in the context of open e-commerce. Shakeri and
Brown (2004) point out the need for resource sharing
across disciplines and provide a new knowledge-
based methodology for simulation of a design
process. Spiller et al. (1997) envision the future of
the Engineering Design and Analysis community
organized in an integrated and distributed
environment. Interoperability between tools and
design libraries will create an evolvable,
customizable, and adaptable virtual design network.
Such an organization would also enable querying
products and serve as a virtual consultant to
researchers and individuals.

Regli (1997) emphasizes the importance of online
smart catalogs supported with intelligent agents that
can also filter relevant information. Such computer-
interpretable information models augmented with the
issues of security and trust can be integrated with
existing tools and services to develop entirely
automated and distributed design platforms. On the
other hand, as Regli draws attention to, advances in
distributed design brings about the problem of
handling Gigabytes of information flow over slow
WWW protocols.

3. FUNCTIONAL RESPONSE MODELING
A major impediment in simulations of distributed
assemblies is the extent of the Internet traffic that
entails iterative communications. This challenge can
be met by conceptualizing an output form that both
hides proprietary data and enables a functional
response to be made by the responder per simulation.
The requesting Modular Distributed Modeling
(MDM) agent is then able to use this single
Functional Response Model (FRM) as the basis for
local (to it) simulation that incorporates the device
into its own device assembly. This is the core
concept that will make MDM communities possible

in the Internet environment (Byam and Radcliffe
2000; Eskil, Sticklen et al. 2003).

Port 1

u1 y1

Port 2

u2 y2

Port p

up yp

…

Component

Figure 1 – Modular Modeling Element Graphical

Notation

Power flows into Port i if iu and iy are both
positive.

Figure 1 shows a diagram of a contracted model for
an Internet design agent model. Modular modeling
element graphical notation represents user-defined
multi-port multi-DOF subsystem models with a
rectangle. The bold lines represent the power ports
with implicit standardized direction of positive power
into the element and standardized input-output port
causality. The direction of positive power and input-
output causality standardizes the modular modeling
elements’ internal formulation, which is the essence
of modular modeling.

In this example, the detailed physical response model
of a component is in the standard stiffness form:

 uKy = (1)

where K is the component stiffness matrix, y is the
component generalized displacement vector and u is
the component input vector. In general, component
stiffness matrix is singular and cannot be inverted.
This situation occurs because component models
have zero eigenvalues from “rigid-body modes”,
representing components with no applied boundary
conditions. An example for this situation is an
unconnected structural element, such as a beam that
is free to translate in any direction.

As equation (1) implies, FRM is currently applicable
only to linear time-invariant components. This
constraint brings important limitations as most real-
world design components exhibit nonlinear
characteristics. In this paper we propose a method to
implement nonlinear characteristics in an FRM
application. Modeling nonlinear systems using the
FRM technique is being studied in the Dynamic
Systems Laboratory of Michigan State University.

4 Mustafa Taner Eskil, Jon Sticklen

3.1. Deriving FRMs for Assemblies
The Subsystem Model (Figure 2) depicts a possible
situation that can arise when components are
assembled into subsystems. The subsystem model
has two components connected via constraints on
ports 3 and 4. It has internal component ports 2 and 5
that are not connected externally. Finally, the
assembly has ports 1 and 6 that can be connected
externally. Once assembled, a new algebraic equation
set in the form (Eq. 1) is required so that this system
can be used in higher-level system models. Because
the component models are often singular, the
subsystem model will also be singular in general.
Only when assembled with sufficient boundary
constraints do models become non-singular and
solvable.

Assembly

u4 y4

Component 1

u5 y5

f3

x3

f4

x4

f1 x1

Component 2

f2 x2 f5 x5 f6 x6

join

u1 y1

 u2 y2

 u3 y3

Figure 2 – Subsystem Model with Two Components

Each component is depicted with external, internal
and connected ports.

For deriving a single FRM for the assembly, the
equations for each of the components are first
assembled into an unconstrained system matrix.

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

2

1

u
u

y
y

K0
0K

 (2)

The subsystems components are uncoupled in this
form. The modular matrix assembly equations
transform the component input-output pairs),(ii xf
to the single assembly input-output pair),(yu . The
assembly output constraint defines each component’s
output vectors (x) in terms of the assembly output
vector (y).

 Syx = (3)

The power constraint on the assembly requires the
sum of the work into all joined component ports to
equal the applied work at any assembly connection.
The causality in energy domains is defined such that

this holds for every physical system in these
domains. Therefore, the external work done on a
physical assembly by port inputs u must equal the
external work done on the assembly's components by
port inputs f.

 uyfx TT = (4)

Applying the input-output constraint (Eq. 3) on the
power constraint (Eq. 4) we find the input constraint
between assembly’s component input vectors f and
assembly input vector u for all non-zero assembly
outputs y .

 ufS =T (5)

These results are all we need to derive an assembly
FRM. We start model assembly as in Eq. 2, with the
unconstrained grouping of all component models:

[] [] [] []
[] [] [] []
[] [] []
[] [] [] [] ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnn f

f
f

x

x
x

K000
000
00K0
000K

Kx
MMO
2

1

2

1

2

1

 (6)

To obtain a concise modular model, we will now
apply the constraints. The assembly output constraint
is applied by substituting constraint Eq. 3 into Eq. 6:

 fKSy = (7)

Multiplying both sides with TS and using Eq. 5
yields the constrained assembly internal stiffness
model

 uyK =ˆ (8)

where

KSSK T=ˆ (9)

This simple system shown in Eq. 9 is the dynamic
inverse simulation model or functional response
model (FRM) of the assembly. It has constants from
the original system contributing to an algebraic
combination of addition, subtraction and
multiplication. The particular form of this function is
dependent on the topology of the subsystem and is
non-linear in the parameters. The original
engineering data from which this model is developed
is well protected from reverse engineering – one
principle objective of this modeling system.

INTEGRATING VENDORS INTO COOPERATIVE DESIGN PRACTICES 5

3.2. The MDM Platform
Bandwidth is a major concern in distributed
simulations, especially when the simulation is
iterative in nature. In our work FRM serves as a
simulation model that fully describes the functional
behavior of a component. This property of the FRM
technique enables us to overcome the bandwidth
problem by reducing the required number of
communications for each component to one for the
entire simulation. FRMs serve for two main goals in
our research:

1. The external behavior of the manufacturing
part is represented without revealing any
proprietary information.

2. The transfer of FRMs in design and/or
analysis speeds up the design process while
reducing the network traffic.

Leveraging the FRM technique, we developed an
infrastructure capable of supporting a community of
Modular Distributed Modeling (MDM) agents. The
ensemble of MDM agents are capable of supporting
Internet based cooperative engineering design and

simulation, but with the constraint of device
knowledge hiding. The conceptual building block to
enable modular distributed modeling is the MDM
agent, a fixed but autonomous agent such that:

1. Each MDM agent holds knowledge of a
single manufactured device.

2. Each MDM agent composes answers to
queries such that implementation details of
the device it holds are not revealed.

3. Any MDM agent may hold a device that
internally includes parts (or assemblies) held
by other MDM agents.

The sketch shown in Figure 3 depicts three MDM
agents connected physically via the Internet. It is
important to note that in response to queries, MDM
agents would not reveal the proprietary internal
virtual linkage; such virtual linkages can be used to
express an internal structure that includes
parts/assemblies of other MDM agents. Query
Ontology is an MDM network resource that makes
available to any MDM agent the typology of legal
queries. Agent Registry makes available to any

Figure 3 – Sketch of MDM agent community

Each agent is composed of an Assembler, Component(s) and Model(s). Components and Models are
assembled with Join operations.

6 Mustafa Taner Eskil, Jon Sticklen

MDM agent both the typology of agent types and the
list of all existing MDM agents by agent type. In
other words, Agent Registry serves as a database of
agent categories and the registered agents under each
category whereas Query Ontology provides a
dictionary of legal queries for a chosen agent
category.

With the MDM approach we assert that how a
specific product is designed and its design details do
not have any relevance to how it integrates
structurally and functionally in a larger design.
Therefore a product model can reside on any
platform of its designer’s convenience and
communicate through one-shot queries and responses
or FRMs that hide the proprietary knowledge.

4. ROUTINE DESIGN
When we engineers design similar artifacts over and
over again, we often achieve a grasp of the routine
nature of the process and start discovering effective
ways to decompose the design process into smaller
design problems. Although we may not know
beforehand all possible situations that would occur in
a design process, we acquire an understanding of
design choices and plans that specify the order of
making the choices. Routine Design (RD) is a
procedure that aims to capture this “expert”
knowledge from the designer and realize it in
computer environment.

In a series of studies over the past decade, the
Intelligent Systems Laboratory (ISL) of Michigan
State University developed several computer based
tools for engineering design and analysis. Among
these tools, Generic Task Routine Design (GT-RD)
architecture was first suggested and implemented by
Brown (Brown and Chandrasekaran 1989) and
developed later on in the ISL (Kamel and Sticklen
1994).

GT-RD decomposes the design problem into a
hierarchy of cooperating specialists, each responsible
for a specific aspect of the overall design. Typically,
lower-level specialists in this hierarchy represent
actual components of the design and are responsible
for parameterizing the design with a suitable
component. As RD proceeds higher in the specialist
hierarchy, conceptual aspects of the design problem
become more and more pronounced.

Figure 4 – The Architecture of GT-RD

The structure of the Top Specialist and all other
specialists are inherently the same.

Each specialist in the decomposition structure is
furnished with a set of design plans. These plans are
specified by the designer during the structuring of the
task-specific routine design system. To choose an
appropriate design plan, a specialist invokes the plan
selector, which in turn refers to the sponsors of each
plan, as depicted in Figure 4. A plan sponsor matches
the status of the design with the conditions for
applicability of the plan and reports the level of
appropriateness of the plan it represents. A plan is
initiated only when it is evaluated as suitable by its
plan sponsor and chosen by the plan selector.

Design plans consist of ordered instructions for
assigning values to parameters of generic
components in accordance with the design goals of
the specialist. To fulfill its task, an initiated design
plan may invoke other specialists, execute design
tasks and check constraints. In case the design of a
subsystem fails, design critique at that abstraction
level tries to determine the reason for the failure and
invokes the redesigner to take corrective actions,
which may result in selection of a new plan.

When a specialist successfully completes the part of
the design it is responsible from, it hands in the
design parameters to its parent specialist, where all
sub-designs from one lower level are merged into a
higher-level design and checked for constraints. The
design of the artifact becomes more complete as the
design process progresses up in the design
abstraction hierarchy.

INTEGRATING VENDORS INTO COOPERATIVE DESIGN PRACTICES 7

5. THE RD-MDM PLATFORM
Typically in GT-RD decomposition, higher-level
specialists represent the conceptual aspects of the
design whereas lower level specialists are responsible
for selecting actual components. In the current RD
platform, designers are allowed to use a pool of
locally represented, generic components for
parameterization of the design. We enhanced the RD
platform by enabling the selection of alternatives
among remotely distributed components, i.e. off-the-
shelf parts.

From the perspective of a designer, any remote
design agent is nothing but a representation of the
external behavior of a subsystem. This perspective is
also valid for an RD process; when a lower level
specialist selects suitable subsystem parameters (for
component, material, process or plan), the generated
subsystem functions as a knowledge base that will
have to be incorporated into the design. Thus, RD
system can be extended to implement a Remote
Agent Selection Task to parameterize the design by
choosing a suitable remote agent that belongs to a
specific category.

Figure 5 depicts the integrated RD-MDM
architecture. In this architecture, each specialist is
furnished with an Assembler to incorporate the
selected components in the design. Each specialist
has access to computational resources to effectively
respond to queries, depicted as External Services. An
external service can be any local tool such as

MathWorks MATLAB or a Dynamic Link Library.
Off-the-shelf components are searched and
contracted by the Remote Agent Selection Task,
which carries out a multi-attribute evaluation of the
queried MDM agents. In the current architecture all
connections are point to point and asynchronous.

With this improved RD tool, designers have the
option to do multi-attribute search and select among
design parts that are available locally and remotely in
the form of an MDM agent. If a commercially
available MDM agent is an option, the designer must
create a remote agent selection task for the related
low-level specialist. This task specifies a category of
MDM agents (via Agent Registry) and the queries of
concern (via Query Ontology) for selecting the right
part. Agent selection is made by matching the design
requirements with the agent performance figures.

When the most suitable remote agent is selected by
the RD process, it becomes a component of the
design. The designer may prefer to keep a virtual link
to the remote agent, or he/she may request and store
a Functional Response Model (FRM) of the remote
agent. Keeping only a virtual link would ensure up-
to-date responses from the remote agent, slightly
slowing down the simulation for large number of
components. When the FRM of the agent is stored on
the local computer, analysis will be faster, but
periodic updating of the FRM representation will
become a necessity.

Consider an automobile manufacturing company that
is capable of manufacturing all of the needed

Specialist

Plan Selector

Plan Sponsors

Design
Critique

Redesigner

...
Figure 5 – The integrated RD-MDM architecture

Assembler
(Join)

Remote Agent
Selection TaskSpecialist

Agent
Registry

Query
Ontology

MDM
Agents

...

Communication
Interface

FRM or one-shot
queries

External
Services

8 Mustafa Taner Eskil, Jon Sticklen

components except the drive train. An automobile
designer in this company sets up the routine design
structure creating a remote agent selection task in the
plans of the drive train specialist. This situation is
depicted in Figure 6. When the design process is
started, remote agent selection task queries all MDM
agents in the ‘Drive Train’ category, selects a
suitable drive train and returns it to the drive train
specialist. The queries made for finding the write part
are in general “one-shot” queries, such as ‘price’,
‘delivery time’, ‘maximum power’ or ‘maximum
torque’. When a drive train agent model is selected,
the design is parameterized with a remote component
and it can proceed to selection of other local or
remote components and their integration in the
overall design.

Selection of a component that is represented
remotely as an MDM agent corresponds to selecting
a commercially available part from a catalogue for
use in design. In a real-world design problem, the
next step would be incorporating these parts in the
overall design and analyzing their interactions. For
this purpose we use the FRM assembly operations
(Section 3.2) and extend RD by implementing
simulation capability.

In extended GT-RD, only the lower level specialists
are responsible for selecting remote agents. Involving
with a single component, these specialists do not
require any assembly operations. However, as the

design proceeds up to higher-level specialists,
different local and remote models will start merging
together. In any one of these specialists, the designer
may need to define an assembly that brings
subassemblies together, optionally followed by a
simulation.

MDM methodology is incorporated in GT-RD as a
recursive process that starts with merging the FRMs
of locally represented components and/or distributed
off-the-shelf parts and proceeds with merging the
FRMs of subassemblies at higher abstraction levels
(Figure 5). The addition of a design testing capability
at every abstraction level resolves the design failures
at the lowest abstraction level they occur. In this
scheme a subassembly that does not conform to the
rest of the design will be discarded in order to
generate a new and viable subassembly, before the
design progresses to higher levels of abstraction.

The incorporation of MDM in GT-RD is
accomplished by furnishing each parent specialist
with an external service for simulation. In order to
carry out a simulation, the responses of its every
child have to be joined together. After the generation
of each assembly, the parent specialist becomes a
representative of an assembled, single component.
This component is declared as a local MDM agent,
which is not accessible from the outside world.
Simulation of the assembly corresponds to querying
this local agent with inputs and retrieving its outputs.

Figure 6 – Automated routine design of an automobile using MDM agents

Solid and dotted lines represent physical and virtual linkages, respectively.

… … … …

Drive Train
Specialist DB: Agent

Registry

Drive Train
Agent

Drive Train
Agent

Drive Train
Agent

Top
Specialist

Suspension
Specialist

Engine
Specialist

INTEGRATING VENDORS INTO COOPERATIVE DESIGN PRACTICES 9

As discussed in Section 4 and depicted in Figure 4,
every parent specialist follows a strategy as dictated
by one of its plans. When the simulation of the
outcome of a plan fails, redesigners are invoked and
the design proceeds downward with the selection of a
new plan. If the simulation is successful, the design
will proceed upwards, through parent specialists,
their assembly operations and simulations. With each
successful simulation, the designer is given the
option of registering the local agent that was created
for simulation purposes. When registered, it becomes
accessible to the MDM community. This
functionality will most often be used for the output of
the top-level specialist, i.e. the product that is being
designed.

6. THE HYBRID VEHICLE EXAMPLE
We chose to perform the distributed routine design of
a hybrid vehicle to demonstrate the capabilities of the
proposed architecture. We have several reasons for
selecting this design problem. First, a hybrid vehicle
power train is an inherently complicated and
relatively new design problem, which gives us a
chance to demonstrate the capabilities of our design
platform on a cutting-edge application. Second, the
drive train is composed of multiple components (e.g.
fuel cell, battery, electric motor, transmission),
allowing us to generate a reasonably sized population
and ontology of MDM agents to demonstrate the
automated agent selection process. Finally, design of
a hybrid vehicle power train is a challenge in
deriving FRMs and assembling mechanical and
electrical components.

6.1. Assembling the Electric Motor
and the Drive Train

To assemble the electric motor and the drive train
components, we need to first define an unassembled
dynamic modular model K as we have shown in
Sec. 3.1. K is a diagonal matrix of modular models
of components, such that:

fKx = (10)

The unassembled dynamic modular model of the
electric motor and the drive train is composed of the
electric motor, transmission (including axle and tires)
and the vehicle mass models. Each of these models
are represented as transfer functions (EMK , TRK ,

VEK) in Eq. 11.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

VE

TR

EM

K
K

K
K

00
00
00

()
()

()
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

++
−

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
++

+
+

=

2

2
22

2
2

21

21

2
11

2
1

2
1

2
2

0
0
0
00
00

000
00
00

0
0

sm
RkscsJ

RRk

RRk
RkscsJ

scsJsK
sKsRsL

VE

TRTRTR

TR

TR

TRTRTR

EMEMEM

EMEMEM

L

LK

 (11)

The component input vector f is composed of input
vectors of component models,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

F

e

EM

EM

VE

TR

EM

2

1

τ
τ
τ

f
f
f

f (12)

where EMe , EMτ are the voltage and torque applied
to the electric motor, 1τ , 2τ are the torques applied
at the two power ports of the transmission, and F is
the force of inertia on the assembly.

The component output vector x is composed of
output vectors of component models:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

x

Q

EM

EM

VE

TR

EM

2

1

θ
θ
θ

x
x
x

x (13)

where EMQ and EMθ are the current and angular
displacement at the electric motor, 1θ and 2θ are the
angular displacements at the two ports of the
transmission, and x is the linear displacement of the
assembly.

Next, we will set the constraints on the power ports
that define the linear mapping between 5 internal
variables of x (Eq. 13) and the external outputs in
the assembly y . Number of output ports depends on

10 Mustafa Taner Eskil, Jon Sticklen

the number of constraints as dictated by the assembly
output constraint S . These constraints are:

1. The angular displacement output of the
electric motor is joined with the first angular
displacement output of the transmission:

1θθ =EM (14)

2. The second angular displacement output of
the transmission is joined with the
displacement of the vehicle:

TIREr
x

=2θ (15)

Using Eq. 3, the output constraint equation becomes:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

x

Q

r
x

Q

EM

EM

TIRE

EM

EM

θ
θ
θ
θ

100
/100

010
010
001

2

1

Syx

 (16)

and the output vector y for the assembly matrix is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

x

Q

EM

EM

θy (17)

Using the assembly output constraint (Eq. 16) we
find the assembly input vector u as:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

ext

ext

EMEM

EM

TIRE

T

F

e

F

e

r
τ

τ
τ
τ

2

1

1/1000
00110
00001

fSu

 (18)

where extτ and extF are the external torque and force
applied on the electric motor – transmission
connection and the vehicle, respectively. An example
of external torque is the brake torque that is applied
for deceleration. extF input to the model could be
utilized as an external force such as the gradient of
the road or air drag. In our experiments we only take
air drag into consideration as an external force. The
external force due to the gradient of the road is

()αsingmVE where g is the gravitational constant
and α is the gradient angle, and implementing this
force in the simulation simply corresponds to
summing it with the air drag.

Using the unassembled dynamic modular model and
the constraint matrix, we assemble the dynamic
modular models of components as shown in Eq. 19.

Note in Eq. 19 that the assembled modular model K̂
is the inverse of the simulation model we will be
using in our experiments. In the next section we will
introduce a fuel cell stack and a battery into this
assembly. Note that once the drive train modular
model is obtained, assembly of fuel cell is a simpler
process that requires an additional Join operation.
However, in the regular operation of the RD-MDM
platform, the FRMs of each component will be
downloaded separately and sometimes assembled at
once.

6.2. Modeling Hybrid Vehicles
We demonstrated how to obtain the FRM for the
electric motor - drive train assembly in Sec 6.1.
Modeling a fuel cell vehicle simply amounts to
adding a fuel cell stack model into this assembly. For
details of a fuel cell stack modular model and
modeling and simulating fuel cell vehicles, reader is
referred to (Eskil 2005, Eskil, Sticklen et al. 2008).

We are undertaking a more challenging problem of
modeling a hybrid vehicle in this paper. It is
important at this point that our formulation for FRMs

() ()

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

−++++

+

==

2

2
2

2
22

2
221

212
11

2
11

2
2

0

0

ˆ

TIRE

TR

TIRE

TR

TIRE

TR
VE

TIRE

TR

TIRE

TR
TREMTREMTREM

EMEMEM

T

r
Rk

s
r
c

s
r
J

m
r

RRk
r

RRk
RksccsJJsK

sKsRsL

KSSK

(19)

INTEGRATING VENDORS INTO COOPERATIVE DESIGN PRACTICES 11

works only for linear time-invariant systems. On the
other hand, the simulation of a hybrid vehicle has 3
major nonlinearities associated with it. First, we
cannot incorporate the depletion of the hydrogen tank
or batteries in the overall FRM. Second, we cannot
implement gearshift in the assembly model. And
third, we cannot model switching between the fuel
cell stack and the battery, which should be done
according to road and driving conditions. We will
deal with the first two of these problems by making
the following assumptions:

1. It is assumed that the hydrogen flow and the
battery charge are externally controlled (i.e.,
not embedded in the assembly FRM).

2. The transmission runs in a single mode and
does not facilitate gearshift.

Due to these nonlinearities we pursue the design of a
fuel cell – battery hybrid vehicle with a combination
of assembled and stand-alone modular models. In
other words, we utilize the modular model of power
train assembly that was derived in Section 6.1
together with decision-making mechanisms to
facilitate gearshift and switch battery on and off.

 Figure 7 – The MATLAB Simulink model for fuel
 cell vehicle simulation

We connect the fuel cell and the battery in parallel as
two sources of electrical potential. Sources connected
in parallel must generate the same potential across
the connection nodes to avoid internal and reverse
electric flow. In this experiment, we use DC-DC
converters coded in the simulation model to balance
the potential provided by the fuel cell and the battery.
Thus, when both sources are connected in the circuit,
the current drawn from each source is exactly one
half of the current demand of the electric motor. In
real world applications, a decision-making

mechanism evaluates the driving conditions for the
power demand and connects the fuel cell, battery, or
both to the circuit to power the electric motor. This
mechanism also decides when the battery will be
charged. The Battery vs. Fuel Cell Controller in
Figure 7 does this operation by monitoring the
position of gas and brake pedals and tracking the
charge stored in the battery. One additional task of
this module in our experiment is the computation of
the hydrogen consumption. The decision-making
mechanism in this block is as follows:

1. When the battery charge level is above a set
limit and the electric current demand is
greater than zero, draw half of the electric
charge from battery.

2. When the vehicle is decelerating (brake
torque is applied) and the battery is not full,
charge the battery with the electric charge
that is produced by the back EMF of the
electric motor (regenerative breaking).

3. Otherwise, keep the battery idle.

As shown in Figure 7, we were able to develop a
simulation model by leaving the battery and fuel cell
modular models out of the assembly. However, there
are drawbacks of not deriving an assembled modular
model for the design, particularly when the design is
meant to serve as a component in a higher-level
assembly:

1. The recursive structure of modular
distributed models is broken. Transfer of
unassembled modular models as the product
model raises issues with the protection of
proprietary knowledge.

2. Modular models are concise descriptors that
are simple matrices of transfer functions. A
Simulink model is inherently harder to
incorporate in an assembly. Moreover,
transferring platform-specific models raises
concerns about compatibility issues across
platforms.

We ran the routine design of a hybrid vehicle with
design requirements on acceleration, speed and
vehicle range (fuel consumption):

1. Vehicle accelerates from 50 to 70 mph in
less than 10 seconds.

2. Vehicle top speed is greater than 100 mph.

3. Requested vehicle range is greater than 120
miles.

12 Mustafa Taner Eskil, Jon Sticklen

When the routine designer is run, it follows the
process decomposition as dictated by the conceptual
design and its plans. This is done through the GT-RD
architecture (Sec 4). The component selection
process in RD-MDM (Sec 5.1) queries and chooses
the suitable design components based on their prices,
delivery time, power, efficiency, etc. Next, the
component FRMs are requested and the received
FRMs are integrated (Sec 5.2) to come up with the
assembly simulation model. Lastly, simulations are
made and the overall design is tested with respect to
the design requests.

We carried out our experiments using an MDM
population of 4 electric motor, 4 transmission and 12
fuel cell agents, communicating over 32 predefined
queries. These agents were distributed over 3 servers,
communicating over TCP/IP. The Agent Registry
and Query Ontology Agents were held on a separate
server. A client computer was used to run the RD-
MDM designer and communicate with the Agent
Registry, Query Ontology, and MDM model servers.

When the simulations are over, RD-MDM returns the
selected components as well as the simulation results.
As shown in Figure 8, although it was not guaranteed
for all inputs, routine designer had met the design
requirements.

7. CONCLUSION
In this paper we describe a new approach to
cooperative design using distributed, off-the-shelf
design components. The proposed architecture, RD-
MDM is a conceptual framework that supports task
directed, distributed Routine Design (RD) including
simulation-based design testing. In our research, we
leverage the Modular Distributed Modeling (MDM)

methodology to simulate the interaction of design
components in an assembly. The deliverable of our
research is a distributed RD platform that is capable
of automated multi-attribute search for remotely
represented off-the-shelf design components, design
parameterization by choosing suitable components
for the design, integrating these components in an
assembly, running simulations for design testing, and
publishing the approved design as an MDM agent.

RD-MDM enables design, virtual assembly and
simulation of end products that integrate off-the-shelf
components represented by remote supplier agents.
With RD-MDM, integrators can design and virtually
assemble their end products by taking advantage of a
global network of suppliers and evaluate design
alternatives without the necessity of non-disclosure
agreements. An integrator can also serve as a
supplier to other integrators by making its RD-MDM
generated product model available in the MDM
community for evaluation as a part of higher-level
design, without disclosing proprietary design details.

An integrated RD-MDM framework creates a
platform that realizes the potential of automated
design that has been mitigated by lack of global
access to design knowledge. As the MDM
community grows, RD-MDM will be more beneficial
by decreasing the engineering design cycle time,
increasing the commercial agility of the
manufacturer, enabling custom-made designs while
securing the proprietary design data and keeping the
network traffic in manageable levels.

At the current state we are running experiments to
test the platform in an online reverse auction setting.
In our future papers we will discuss our results and
compare the RD-MDM platform with other
cooperative design platforms.

Figure 8 – Fuel cell – battery hybrid vehicle design and simulation results

INTEGRATING VENDORS INTO COOPERATIVE DESIGN PRACTICES 13

References

Alexander, C. (1964). “Notes on the Synthesis of
Form”. Cambridge, MA, Harvard
University Press.

Brown, D. C. and B. Chandrasekaran (1989).
“Design Problem Solving: Knowledge
Structures and Control Strategies”. San
Mateo, California, Morgan Kafumann
Publishers, Inc.

Byam, B. P. and C. J. Radcliffe (1999). Modular
“Modeling of Engineering Systems
Using Fixed Input-Output Structure”.
Symposium of Systematic Modeling,
Orlando, FL, ASME International
Mechanical Engineering Congress and
Exposition

Byam, B. P. and C. J. Radcliffe (2000). Direct
“Insertion Realization of Linear Modular
Models of Engineering Systems Using
Fixed Input-Output Structure”. 26th
Design Automation Conference,
Baltimore, Maryland, ASME

Cutkosky, M. R., R. S. Engelmore, et al. (1993).
"PACT: An Experiment in Integrating
Concurrent Engineering Systems". IEEE
Computer 26(1): 28-37.

Eskil, M. T., J. Sticklen, et al. (2003). “Modular
Distributed Modeling”. 4th International
Collaborative Technology Symposium,
Orlando, Florida, Society for Modeling
and Simulation International: D3-202.

Eskil, M. T. (2005). “Distributed Routine Design
over the Internet with Collaborating
MDM Agents”. PhD Dissertation,
Michigan State University.

Eskil, T., Sticklen, J., Radcliffe, C., (2008). “The
Routine Design–Modular Distributed
Modeling Platform for Distributed
Routine Design and Simulation-Based
Testing of Distributed Assemblies”.
Artificial Intelligence in Engineering
Design and Manufacturing, vol. 22, no.1,
pp. 1-18.

Fin, A. and F. Fummi (2000). “A Web-CAD
Methodology for IP-Core Analysis and
Simulation”. IEEE and ACM

Proceedings of Design Automation
Conference, Los Angeles, California:
597-600.

Hauck, S. and S. Knoll (1998). “Data Security
for Web-Based CAD”. ACM/IEEE
Design Automation Conference, San
Francisco, California: 788-793.

Kamel, A. and J. Sticklen (1994). “Multiple
Design: An Extension of Routine Design
for Generating Multiple Design
Alternatives”. Artificial Intelligence in
Design, Netherlands, Kluwer Academic
Publishers: 275-292.

MacGregor, S. P. and A. I. Thomson (2001). “A
Case Study on Distributed, Collaborative
Design: Investigating Communication
and Information Flow”. Sixth
International Conference on Computer
Supported Cooperative Work in Design,
London, Ontario, Canada: 249-254.

Regli, W. C. (1997). "Internet-Enabled
Computer-Aided Design". IEEE Internet
Computing 1(1): 39-51.

Reichenbach, D. (2003). “Modeling of Dynamic
System Using Internet Engineering
Design Agents”. Ms Thesis, Mechanical
Engineering Department, Michigan State
University, E. Lansing.

Shakeri, C. and Brown, D. C. (2004).
"Constructing Design Methodologies
Using Multiagent Systems". Artificial
Intelligence for Engineering Design,
Analysis and Manufacturing 18: 115-
134.

Silva, M. J. and R. H. Katz (1995). “The Case
for Design Using the World Wide Web”.
ACM/IEEE: 579-585.

Spiller, M. D. and A. R. Newton (1997). “EDA
and the Network”. IEEE International
Conference on Computer-Aided Design:
470-476.

Wallace, D., Yang, E. and Senin, N. (2001).
“Integrated Simulation and Design
Synthesis”. Cambridge, MA, Center for
Innovation in Product Development,
Massachusetts Institute of Technology.

