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APPLICATION OF THE OPERATOR ¢>< a&béc .q, fDq> FOR THE

POLYNOMIALS Y, (a,b,c;d, e;x,y|q)
HUSAM L. SAAD!, RASHA H. JABER!, §

ABSTRACT. In this paper, we construct the exponential operator qb( aélb;c 5 q, fDq)
that has five parameters a, b, ¢, d, e and we define a more general polynomials
Yn(a,b,c;d, e;x,ylq), in which case, the bivariate Rogers-Szegd polynomials h,(z,y|q)
become special cases of Y, (a,b,c;d,e;x,y|q). Furthermore, we involve the operator’s
technique to give an elegant proof for the generating function with its extension, Mehler’s
formula with its extension, and Rogers formula for the polynomials Y5 (a, b, ¢; d, e; z, y|q).
As well as, we present some special values for the parameters a, b, ¢, d, e that will
be inserted in the identities of Y5 (a,b,¢;d, e; z,y|q) in order to establish the generating
function and its extension, Mehler’s formula and its extension, and the Rogers formula
for hn(z,y|q).

Keywords: The bivariate Rogers-Szegd polynomials, the generating function, Mehler’s
formula, Rogers formula.

AMS Subject Classification: 05A30, 33D45.

1. INTRODUCTION

In this paper we will use the standard notations for basic hypergeometric series given
in [6], we assume that |q| < 1.
The g¢-shifted factorial is defined by

1, if n =0,
n—1
(a;0)n = [T -ad), itn=12-.
k=0
We define
(a; @)oo = [ [ (1 = ag").
k=0
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The following notation is used for the multiple ¢-shifted factorials:

(a1,a2, -+, am; Qn = (a1;¢)n(a2; On - - (@m; @ns n=012,---

(1,02, ,am; @)oo = (a1;0)0(a2; @)oo * (Am; @) oo-

The generalized basic hypergeometric series is defined by [6]:

s ( (Ziz :ZL: ;q7$> _ Z ((a1,... ,Qr; Q)n [(—1)"(](3)} 1+s—rxn

n—=0 q, bl?' c 7b57q)n

The case r = s+ 1 is the most important class of series

00
ay, -, Qstl <a17"' 7as+1;Q)n n
S+1¢5 < bla"‘ 7bs & > n=0 (qabla"' ,bs;Q)n ’

The g-binomial coefficient is defined by

nl —(q;q)n , f0<Ek<n
el = @Dk (g Dn—r
0, otherwise.
One of the most important identities is the Cauchy identity

o0

> (@ Dn 0 _ (0800
= (@G Dn (% @)oo
Euler found the following special case of Cauchy identity:
= a" 1
ngo @an = Y |z| < 1.

The following identity is the ¢g-Chu-Vandermonde summation formula:

201 ( b ;q,q> = Mb”.

¢ (€ @n
The g-differential operator Dy is the one defined by [4]
fx) = flxq)
D, {f()y = 1= T00)

The Leibniz rule for D, is [10]

lz| < 1.

Dy {f)g(@)} =3 [} D ) Dy Hatod ),
k=0

The following identities are easy to verify:

kg Mxn—k
Do ot} = (@G Dn—r

. 1 tk
Dy { } = .zl < 1.
(25 ¢) oo (2t; 9)

(6)

Based on the Euler identity (2), Chen and Liu [4] defined the g-exponential operator

T'(bDy) as follows:

T(bDg) = (b?;)):.

n=0 (q
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They used the g-exponential operator T'(bD,) to derive the generating function, Mehler’s
formula and Rogers formula for classical Rogers-Szego6 polynomials h, (x|q) which is defined
by

hn(z]q) = Zn: m z*.

k=0
The Cauchy polynomials is defined by [7, 8]

k—1y
xz—y)(x — v — , if k>0,
Pk(m,y)—{ g (@ —qy)(z—yd" ) #E>0

In 2003, Chen et. al. [3] constructed the homogenous g-difference operator Dy, as

follows:
flz.q7'y) - flgz,y)
Day{f(ay)) = =0T L AR
Based on the operator D,,, they construct the following homogeneous g¢-shift operator
oo Dn
E(Dyy) = v
(Dey) nzo (4 0)n

Also, they defined the bivariate Rogers-Szego polynomials as follows:

n

ha(@,ylg) = m Py(z,y).

k=0
By using the homogeneous ¢-shift operator E(D,,), they derived the generating function
for hy(z,y|q)

o0
¢ (¥t @)oo
hn(z,ylg = ; 7
ny{) " = et g @)

provided that max {|¢|, |zt|} < 1.
In 2007, Chen et. al. [5] used the g-exponential operator T'(bD,) and the homogeneous
g-shift operator E(D,,) to derive Mehler’s formula and Rogers formula for the polynomials

hn (2, ylq)-
In 2009, Saad and Sukhi [11] observed that h,(z,y|q) can be rewritten in the form

n

sl = Y- | e ®)

k=0
In 2013, Saad and Sukhi [12] defined the g-exponential operator R(bDy) as follows:

R(bD,) = i M

k=0
By using this operator, they derived Mehler’s formula and Rogers formula for the polyno-
mials h,(x,y|q).
Based on the ¢-Chu-Vandermonde summation formula (3), Zhang and Yang [14] con-
sidered the finite g-exponential operator with two parameters

N

N (—-N
U IR
w ,q,th] =

iy

n=0

2%[4’_
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Inspired by the basic hypergeometric series 2¢1, Li and Tan [9] introduced the general-
ized g-exponential operator with three parameters

T{ “1’0“ }q;th] = i M(wq)".

= (¢, wiq)n

Our work embraces four major parts that can be evidently organized as follows: In the

a(,lb;c ;1 q, fDq> and then we define the

polynomials Y, (a, b, ¢; d, e; x, y|q) which generalizes the the bivariate Rogers-Szego polyno-
mials hy, (z,y|q). Then, we proceed further to demonstrate three factors in the polynomials
which are the generating function with its extension, Mehler’s formula with its extension,
and Rogers formula for the polynomials Y,,(a, b, ¢;d, e; x,y|q) by using an appropriate op-
erator. In the final step, we employ some special values for the parameters a, b, ¢, d, e of
the operator ¢ that would be utilized in the identities of Y,,(a, b, ¢; d, e; z, y|q) to obtain the
generating function and its extension, Mehler’s formula and its extension, and the Rogers
formula for h,(z,y|q).

first part, we set up the exponential operator ¢

2. THE ¢-EXPONENTIAL OPERATOR ¢ AND ITS IDENTITIES
We define the g-exponential operator with five parameters as follows:

a,b,c — (a,b,¢;q)n n
(b( de 3 q 7fD) Zo(q,d,e;Q)n(fDQ) . (9)

-N
The finite g-exponential operator with two parameters 5.7} [ 1 w’ v ;q,th] defined by

Zhang and Yang [14] can be considered as special case of our operator for a = g N, b=,
d=w and ¢ = e = 0. Also the generalized g-exponential operator with three parameters

T [ UZ’UU |q; th] defined by Li and Tan [9] can be considered as special case of our operator

fora=u,b=v,c=0,d=w, e=0and f =t. In this section, we give some operator
identities that will be used later to give a proof operator for some identities.

Lemma 2.1. We have

a,b,c 1 B 1
¢( d,o ’q’fDq> {<xt xs-q)m} = (et o g

xZZ (00,6 @i (105 gy, (10)

== (d e Qi (G 9k (439);

provided that max {|xs|, |zt|} < 1.

Proof. By the definition of the operator ¢ <
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By using Leibniz rule (4), we have

a,b,c 1
(" o) (G }

Pz e P S Lt

k=0
> (a,b,¢; (a;b,¢;9)k 1 iG—k) s (qit)k—J _
= . b 6
= (@, d e q) Z [ } (255 ¢)oo (21673 @)oo (by using (6))
f: a,b,c;q)g Zk: sIth=I (zt, q);
(d, e;q)k “ (4 0)k—j(4:0) (25, Tt ¢)oo
1 - a,b,¢c; Q) ks (2t q); -
- (0D s (5 gy
(wt7x87q)00 k=0 j— (d €; q)k+](Q7 q)k (q7q)j

Setting s = 0 in (10), we get the following corollary:

Corollary 2.1.

a,b,c_ 1 . 1 abc
¢( de ’q’fDq>{(xt;q)oo}_(a:t;q)oo 3¢2< de ™ ’ft> -

provided that max {|xt|,|ft|} < 1.

Lemma 2.2. For a nonnegative integer n, we have

a,b,c " o
¢< dc ""’fD"){u-q) }‘m;q)m

4 a,b, ¢ @)y (t; ) (f1)F(f /)]
ZZ [ ] (d, & @)kt (g Qn ’ -

k=0 j=0

provided that |zt| < 1.

Proof. From definition of the operator ¢ < (}b’ :q, fDq>, we have

b " — (.0, ki [ 2"
qb( d.e ,q,fDq>{ } 2} (g, d,e;9)r @deay! P {(mt;q)oo}'
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By using Leibniz rule (4), we have
Z (a7b7 & Q)k kak { T }
(¢,d,e;9)r (2t; @)oo
00 k q
(a,b,¢;Q)k L1 k] G-k i 1
— f Uk pifgmyph=id  —
kz ; ]Z: J ™ (¢ 2t; ¢)oo

=0

:im Y Kl g0 (G Dn_ ey (@) (by using (5) and (6))
P =
k

7 (5 Qn—j (¢Pxt; q)oo

S (a>b7 C Q)k k n ik 1
kz_: (d,e;q)k Z j (@72t;q)oo (45 i

_ (a, b cq) (@, 0,6 q)k+j5 k+]|: } —Jyk (zt,9),
— (d, €5k j (2t @)oo (45 0k

a, b, ¢; @)k (@t; ) (f1)* (f/x)
N xt 1 q) oo ZZ[ ] (d, e Q)k+J(Q7Q)

k=0 j=0

3. THE GENERATING FUNCTION FOR Y, (a,b,c,d,e, f;q;x)

We define the following polynomials:

< [n] (a,b,¢;q -
Yn(a, b7c; d, 6,1‘,y|q) e |:k‘:|(<de))]€ kf[: k;
k=0 »€:4)k

The bivariate Rogers-Szeg6 polynomials h,(z,y|q) can be regarded as special case of the
polynomials Y, (a, b, c;d, e;x,y|q) for b =c=d =€ =0, y = 1 and then a = y. Setting
b=c=d=e=0 and exchange x and y, we get the generalized Hahn polynomials [1]. In
this section, we provide a working guide for the generating function and its extension for
Y, (a,b,c;d,e;z,y|q). Then we give some parameter values to get the generating function
and its extension for hy(z,y|q).

The following result is easy to verify:

7b7
o (%0 um,) ) = Valab.id o) (13)

Theorem 3.1. (The generating function for Y, (a,b, ¢;d, e;z,y|q)). We have

3 t" 1 a,b,c
Yala,b,c;d, 52, ylq = ¢ ( ¢ ;q,yt>a 14
n;) ( | )(q; Dn (Ttiq)eo ° 2\ dye (14)

provided that max {|xt|,|ft|} < 1.
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Proof.
tn
ZY (a,b,c;d,e;z,y|q)
= (¢ On
=S o ( 0 ) ) o (o g (19)
= de (4 @)n
a,b,c 1 .
= ¢ ( d’ e ,q,qu> {Mo (by using (2))
=L (2P g ut). (by using (11)

O

Setting b =c=d =€ =0, y =1 and then a = y in (14) and by using (8) and (1), we
recover the generating function for the polynomials hy,(z,y|q) (7).

Theorem 3.2. (Extension of generating function of Y,,(a, b, c;d, e; x,y|q))

o0 tn
7;)Ymrm(a, b,c;d, e;x,ylq) @O
a,b,¢; Q) ti(xt; ) (y )k (y/x)’
- (2t9)00 kzojz% [ ] (d; € Q)k+5(0 )k ' (15)

Proof.

ZYn+mabcdezyIQ)
n=0 (
X

s a,b,c
=Z¢>< e 190:YDq
0 7
—¢<a’b’c'qu>{m} (by using 2)
e T (atsq)

T L (a,b, ¢ @i (2t @) (yt) " (y/2)! in
) (d, & Qi (a5 D

(by using (13))

0

Setting b = ¢ =d = e = 0, y = 1 and then a = y in the extension of generating
function for the polynomials Y, (a, b, c;d, e; z,y|q) (15), we get the following extension of
the generating function for the polynomials h,(z,y|q):

o0
t" ™ (yt; @)oo qg ", xt,y
Potm (2, ylq) = 391 7,4 )
nz:; o (@@)n (2t t:0)0 vt

4. MEHLER’S FORMULA FOR Y, (a,b,c;d, e;z,y|q) AND hy,(x,y|q)

ac,lb;c 1q,Y Dq> to derive Mehler’s formula and

its extension for the polynomials Y, (a,b, ¢;d, e; x,y|q). Then we give some special values
to the parameters to obtain Mehler’s formula and its extension for h,(z,y|q).

In this section we use the operator ¢
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Theorem 4.1. (Mehler’s formula for Y,,(a, b, c;d, e; x,y|q)). We have

Y (a,b,c;d, e;x,y|q)Yn(ar, b, c1;di, er; u,v|q)

> & [ ] (a1,b1, c1;q)iqj(zut; q); (vat) (v/u)?
(di,e159)i+;(q;9)i '

(16)

OMS
:QQ
o
RS
Q'Q
<
<
N
=

xutqoo

Proof.

t/n/
ZY a,b,c;d, e;x,y|q)Yn(ai, by, cisdy, e u, v|q) ———
et (@ Dn

= ai,by,c "
=Y Vatabadenlgs (500 ;q,qu> W

n=0

) s )

B ai,bi,c1 1 b,
- ( d17 5 q Dq> {(.ﬁU’lLt, Q)oo 3¢)2 ( ,6 aq,yUt>} by usmg 14))

> (a,b,c;q)x k a1, by, cy
— 9 ) . D
Z Q7deq )¢< dlvel 40 .T’U,tqoo

=0

7‘L

Applying the operator ¢ < az ble’ “ i q, qu) with respect to the parameter u and by
1,€1
using (12), we get the required result. O

By using special values of the parameters in the Mehler’s formula for the polynomials
Y, (a,b,c;d,e;x,y|q) (16), we recover Mehler’s formula for hy(z,y|q).

Corollary 4.1. (Mehler’s formula for hy,(x,y|q)). We have

" (yt, zvt; @)oo y, ot v/u
g B ( = T sq,ut ).
e )G = gy 2\ w10
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Proof. Settingb=c=d=e=0,y=1and thena=y,and h=u=v=w=0,r=1
and then g = v in Mehler’s formula for Y;,(a, b, ¢, d, e, f;z;q) (16), we get

tTL
Zh % 910)nlus,2l0) (¢ Dn
- 1 — (v ku Uqlﬂxutq) i1 /)
_(fvut;q)ookzzo(, A ZOJOH a0
- 1 e (y:q )kﬂ k+j (Q;Q)k+j (U;q)i+j(IUt;q)j SHY(1 /)
=~ utidn Z;JZO,;) s s (s (DG iy

LSS o) (Y $ o

D (¢:9); = (%9

]:0 k=0 )
L S ks () (v, auts q);(1/u) (vated g)es usin
 (zut; @)oo Jgokz:o (@ @)k (g;9); (@; @)oo " =
(20t oo o~ (s 2ty 0)t - ng Ji
B (zut, xt; q) oo Z (g, zot; q; Z 1

k=0

_(av9) i (v, ut, y; @)t (yute’; @)oo (by using (1))

(zut, vt; @)oo = (a,201:q);  (uli @)oo

_ (zvt, uty; q) oo Z (v, zut, y; q) it
(zut, zt, ut; q)co = (q, zvt, yut; q)

_ (zxvt, uty; q) oo s v, Yy, Tut ”
(zut, zt, ut; q)co yut,xvt ")

By using transformation of 3¢ series [6, Appendix , Eq. (IIL.9)], we get

, U, xut ut, yt; q ,xt,v/u
3¢2(y ‘qt>=( )S)o 3¢2<y / ;q7Ut>-

zvt,yut (yut,t;q xut, yt

Substituting the above equation into (17), we get the required result. ]

Theorem 4.2. (Extension of Mehler’s formula for Y;,(a,b, ¢, d, e, f;2;q))

ZY”“” a,b,c;d, e;x,y|q)Yn (a1, b1, c1;di, er;u, v|q)
vt (¢ @)n

a,b, ¢; Qi (y/x) (ytv)* (vta; ),
B vtwq ZZ[ ] a

—0j=0 (d e7q)k+](q7 Q)k’

" ilzk: { } alabl,cl;C])i+l(vtfcqj;Q)l(ﬂfvtqj)i(v/u)l.

P (d1,e159)14i(q q)i
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Proof.
o0 tn
> Yarm(a,b,cid, e;2,y;q)Ya(a1, b, 15 dis exsu, v5.9)
n=0 (¢ Dn
> a1, by, c .
= Yorm(a,b,c;d, e;2,y; )0 ( 1dl 161 ' §q7qu> {u"} (by using (13))
n=0 ’

( ¢ Dn
_ @1’b1761~q0D ZY abcdexyq )
dl,el sy Yy q — ntm

¢< aglljle,lcl o Dq) e ZZ { ] a, b, ¢; Q) s (wut; ) (yut)* (y /)7

== (d; & Qrri (¢ D
(by using (15))

_ zmzz (a,b, ¢ @)k (yt)* (y/x)j¢< alailb,lejlcl ;q,qu> {( Uk }

k=0 j=0 (d7 €; Q)kJr] (Q7 q)k U.%tq-% Q)OO

_ xmii m (0.0, Dy (19" w/2)! ii [ } (a1,b1, 13 9)ic

(d,e; @ r+j(q: @)k uwtqﬂ (d1,e1;9)14+4(q; q)i

== =0
uxtq’: vate? ) (v/u)
" ( th’Q)é((];q)tiq ) ( / ) (by using (12))
_ " Ny (a, b, ¢ Q)rers (y/2) (ytw)* (uta; g),
= (ut: ) kzzojz:% [J] (d, e; q)k+j(q; Q)k

k] (a1,b1, c1; Qipi(utag’; ¢ (zvtg?) (v/u)'
X .
Z 2 } (d1,e1;9)1+i(q; q)i

O

Settinga=y, b=c=d=e=0,f=1,2=z,9g=v,h=u=v=w=0,r=1and
x = u in the extension of Mehler’s formula for Y, (a, b, c,d, e, f;x;q) (18) and by using (8),
we get the following extension of Mehler’s formula for the polynomials h,(x, y|q):

tn
Zhn+m 2, y|q)hn(u, vg)

_ e (vat, yut; q)o ii (y; @)j1(uzt, xt; q)5 (v, 2ug’s @i (1/2) 1!
uxt, xt, ut; q)oo : xvt, yut; q)i+1(q;q): '
k=0 j=0 Jt

5. THE ROGERS FORMULA FOR Y, (a,b, c;d, e;z,y|q) AND hy,(x,y|q)

a,b,c
d,e
the polynomials Y, (a,b,c;d,e;z,y|q). Then we give some special values for the parame-
ters in Rogers formula for polynomial Y,,(a,b, c;d, e; x,y|q) to recover Rogers formula for

hn(x,y|q).

In this section we use the operator ¢ 1 q, qu> to derive Rogers formula for
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Theorem 5.1. (The Rogers formula for Y, (a,b,c;d, e;z,ylq)). We have

Sm
Yoim(a,b,c,d e, f;2;5q)
;:0;:0 " (¢; ) (43 @)m
2 = (a, b, t; t)F
(at, 25 0)o0 £ d € Q)k-i-J(q q) ((LQ)]
provided that max {|zt|, |zs|} < 1.
Proof.
t" s™
ZZYn+mabcde fiziq)
== (¢ Dn (¢ O)m
= n (¢ Q)m
o “P gy ) Ly using (2))
- d7€ ’q7y q (.’L‘t,x87q)oo . y g
By using (10), we get the required result. O

Settinga = y,b=c=d =e =0and f = 1in the Rogers formula of Y,,(a, b, ¢, d, e, f; q; )
(5.1), we recover the following Rogers formula for the bivariate Rogers-Szegé polynomials
hn (2, ylq) [5]:

m

(Y85 q) oo Yy, s
hn m - ' ; at )
ZZ +m(@ y'q< >n< (s, 5,0t 0)m 20\ ys 7

n=0m=0 Q)m

provided that max {|s|, |zt|, |zs|} < 1.

6. CONCLUSIONS

-N
(1) The finite g-exponential operator 2.7] [ 9 w, v iq, th} and the generalized

g-exponential operator ']I‘[ ‘q, th} are special cases of the operator

a,b,c
¢( d.e 7q,qu>-

(2) We may give special values in polynomial identities for Y (a,b,c;d,e;z,y|q) to
obtain polynomial identities for h,(x,y|q) versus a = y, b = 0, ¢ = 0, d = 0,
e =0 and f =1 as seen in the generating function, Rogers formula and Mehler’s
formula.

(3) Generalized Han polynomials [1] are a special case of our polynomial Yy, (a, b, ¢; d, e; x, y|q)
versus b=c=d =e =0, z = y and then f = x.

(4) The operator proof is simpler than the classical proof.

Acknowledgement. We are deeply grateful to the referees for valuable comments that
lead to an improvement of an earlier version.
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