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NEW SOLUTION OF CONFORMABLE FORNBERG-WHITHAM

DIFFERENTIAL EQUATION VIA CONFORMABLE SUMUDU

DECOMPOSITION METHOD

S. ALFAQEIH1, G. BAKICIERLER1, E. MISIRLI1, §

Abstract. In this work, a new analytical method called the conformable Sumudu de-
composition method is introduced to obtain approximate solutions of fractional Fornberg-
Whitham differential equation. The proposed method is a combination between con-
formable Sumudu integral transform and the Adomian decomposition method. The
fractional derivatives are taken in terms of the conformable sense. In order to demon-
strate the applicability, efficiency and simplicity of the presented method, we compare
the behavior of the obtained approximate solutions with the exact solution given in the
literature.

Keywords: Conformable fractional derivative (CFD), Fornberg-Whitham equation, Ado-
mian decomposition method (ADM), Sumudu transform (ST), Laplace transform (LT).
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1. Introduction

In the past and present decades, nonlinear fractional differential equations have a great
deal of interest due to their substantial contributions in life science and engineering
[27, 24, 20, 10], therefore, many researchers have turned their attentions to solve such equa-
tions. In literature, many powerful methods have been used to obtain the approximate
or the exact solutions of nonlinear fractional partial differential equations. For instance,
variation iteration method [17, 18], Adomian decomposition method (ADM) [2, 6], homo-
topy perturbation method (HPM) [29, 19], reduce differential iteration method [22, 23],
reliable methods [25], simplest equation method [31], and many others.
(ADM) was first introduced by G. Adomian in 1980, and it was applied to solve many
nonlinear problems [5, 14, 26, 3, 4] in applied science and engineering. The main idea of
this method is to solve partial differential equations by expressing the solution in terms of
an infinite series, moreover, separate the linear and nonlinear terms. The nonlinear parts
can be expressed in terms of Adomian polynomials and the initial approximation solution
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can be come from the initial condition and the terms of independent variables, then by a
recurrence relation, we can find other terms of the series.
Integral transformation method [7, 8, 9, 13, 11, 16] is considered to be one of the most
attractive and effective methods to solve fractional differential equations cause it trans-
forms the differential equation to an algebraic equation. The main disadvantage of inte-
gral transformation method that it is not able to solve nonlinear problems so, to overlap
this problem, we must combine the integral transform with other analytical methods like
(ADM), (HPM). Among the integral transformations, the Sumudu transform, which was
first introduced by Watugala in 1993 [30] and it has been implemented to obtain the solu-
tion of many problems in real-life science and engineering. In order to solve conformable
differential equations, the idea of single Sumudu transform was extended in [12] to the
so-called conformable Sumudu transform (CST).
Now we feel compelled to combine the Adomian decomposition method with conformable
Sumudu transform, in what is known conformable Sumudu decomposition method (CSDM).
The pivotal aim of this article is to propose a new analytical technique namely, conformable
Sumudu decomposition method (CSDM) to get an approximate analytical solution of the
nonlinear conformable fractional Fornberg-Whitham equation which can be written in
operator form as,

∂βϕ

∂τβ
− ∂2ν

∂x2ν

(
∂βϕ

∂τβ

)
+
∂νϕ

∂xν
= ϕ

∂3νϕ

∂x3ν
− ϕ∂

νϕ

∂xν
+ 3

∂νϕ

∂xν
∂2νϕ

∂x2ν
, (1)

with the initial condition

ϕ (x, 0) = ke
0.5

(
xν

v

)
,

where, ϕ (x, τ) is the fluid velocity, x is the spatial coordinate, τ is the time, β and ν are the
parameters defining the structure of the conformable fractional derivatives (0 < ν, β ≤ 1) ,
and k is constant.

2. Preliminaries

In this section, we present basic notations about the conformable fractional derivatives
(CFD) and the conformable Sumudu transform (CST).

Definition 2.1. [1, 21] Let ∂sϕ
∂xs , s = 1, 2, · · ·m− 1, be defined on

ϕ (x, τ) : I × (0,∞)→ R, then the (CFD) of a function ϕ (x, τ) : I × (0,∞)→ R of order
ν is defined by:

∂νϕ (x, τ)

∂xν
= lim

ϑ→0

ϕ
(m−1)
x (x+ ϑxm−ν , τ)− ϕ(m−1)

x (x, τ)

ϑ
, ν ∈ (m− 1,m] , x, τ ≥ 0.

Definition 2.2. [1] Let ∂sϕ
∂τs , s = 1, 2, · · ·m− 1, be defined on

ϕ (x, τ) : I × (0,∞)→ R, then the (CFD) of a function ϕ (x, τ) : I × (0,∞)→ R of order
β is defined by:

∂βϕ (x, τ)

∂τβ
= lim

ε→0

ϕ
(m−1)
τ

(
x, τ + ετm−β

)
− ϕ(m−1)

τ (x, τ)

ε
, β ∈ (m− 1,m] , x, τ ≥ 0.

Definition 2.3. [1] Let ν ∈ (m− 1,m], if ϕ is m-differentiable at x > 0, then

∂νϕ (x, τ)

∂xν
= xm−ν

∂mϕ (x, τ)

∂xm
.
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2.1. (CFDs) of some functions:

Example 2.1. We have the following

(1) ∂ν(k)
∂xν = 0, ∂β(k)

∂τβ
= 0, k is constant.

(2) ∂ν

∂xν

(
k
(
xν

ν

)n ( τβ
β

)m)
= nk

(
xν

ν

)n−ν ( τβ
β

)m
,

(3) ∂β

∂τβ

(
k
(
xν

ν

)n ( τβ
β

)m)
= mk

(
xν

ν

)r ( τβ
β

)m−β
, ∀k,m, n ∈ R.

(4) ∂ν

∂xν

(
e
c
(
xν

ν

)
+d

(
τβ

β

))
= ce

c(x
ν
ν )+d

(
τβ

β

)
,

(5) ∂β

∂τβ

(
e
c
(
xν

ν

)
+d

(
τβ

β

))
= de

c(x
ν
ν )+d

(
τβ

β

)
,∀c,d ∈ R,

(6) ∂ν

∂xν

(
sin
(
c
(
xν

ν

))
sin
(
d
(
τβ

β

)))
= c. cos

(
c
(
xν

ν

))
sin
(
d
(
τβ

β

))
,

(7) ∂β

∂τβ

(
sin
(
c
(
xν

ν

))
sin
(
d
(
τβ

β

)))
= d sin

(
c
(
xν

ν

))
cos
(
λ
(
τβ

β

))
,∀c, d ∈ R,

(8) ∂ν

∂xν

(
cos
(
c
(
xν

ν

))
cos
(
d
(
τβ

β

)))
= −c. sin

(
c
(
xν

ν

))
sin
(
d
(
τβ

β

))
,

(9) ∂β

∂τβ

(
cos
(
c
(
xν

ν

))
cos
(
d
(
τβ

β

)))
= −d cos

(
c
(
xν

ν

))
sin
(
d
(
τβ

β

))
, ∀c,d ∈ R.

Definition 2.4. [12] The (CST) of a piecewise continuous function ϕ : [0,∞) → R of
exponential order is defined on the set;

Ωβ =

{
ϕ (τ) : ∃λ1, λ2 > 0, |ϕ (τ)| < K exp

(∣∣τβ∣∣
βλj

)
, j = 1, 2 and τβ ∈ (0,∞]

}
,

by the following integral

Sβτ (ϕ (τ) : u) =

∫ ∞
0

e
− τ

β

β ϕ (uτ) τβ−1dτ. (2)

Definition 2.5. [12] Let ϕ (x, τ) be m times β− differentiable and β ∈ (0, 1], then the

(CST) of ∂mβϕ(x,τ)
∂τmβ

with respect to τ can be calculated as

Sβτ

(
∂mβϕ (x, τ)

∂τmβ

)
=
Sβτ (ϕ (x, τ))

um
− ϕ (x, 0)

um
−
m−1∑
i=1

ui−m
(
∂iβ

∂xiβ
ϕ (x, 0)

)
. (3)

In particular for β ∈ (0, 1]

Sβτ

(
∂βϕ (x, τ)

∂τβ

)
=
Sβτ (ϕ (x, τ))

u
− ϕ (x, 0)

u
. (4)

Example 2.2. Let k ∈ R and β ∈ (0, 1], then the (CST) for certain functions is calculated
by:

(1) Sβτ (k) = k, k is constant.

(2) Sβτ
((

τβ

β

)s)
= Γ(s+ 1)us,

(3) Sβτ

(
e
k
(
τβ

β

))
= 1

(1−ku) , ku > 1,

(4) Sβτ
(

sin
(
k τ

β

β

))
= k

(1+k2u2)
, |k|u > 1,

(5) Sβτ
(

cos
(
k τ

β

β

))
= 1

(1+k2u2)
, |k|u > 1.
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3. The procedure of (CSDM)

In this section, the (CSDM) is discussed for the solutions of conformable fractional Fornberg-
Whitham equation, we first recall the conformable fractional Fornberg-Whitham partial
differential equation.

∂βϕ

∂τβ
− ∂2ν

∂x2ν

(
∂βϕ

∂τβ

)
+
∂νϕ

∂xν
= ϕ

∂3νϕ

∂x3ν
− ϕ∂

νϕ

∂xν
+ 3

∂νϕ

∂xν
∂2νϕ

∂x2ν
, (5)

with the initial condition

ϕ (x, 0) = e
0.5

(
xν

v

)
, (6)

with the exact solution [28] when ν, β = 1, ϕ (x, τ) = e(−
2
3
τ+x

2 ).

Taking the (CST) Sβτ , on both sides of (5), we have

Sβτ

[
∂βϕ

∂τβ

]
= Sβτ

[
∂2ν

∂x2ν

(
∂βϕ

∂τβ

)
− ∂νϕ

∂xν
+ ϕ

∂3νϕ

∂x3ν
− ϕ∂

νϕ

∂xν
+ 3

∂νϕ

∂xν
∂2νϕ

∂x2ν

]
, (7)

using the differentiation property of the (CST), we obtain

Sβτ (ϕ (x, τ)) = ϕ (x, 0) + uSβτ

[
∂2ν

∂x2ν

(
∂βϕ

∂τβ

)
− ∂νϕ

∂xν
+ ϕ

∂3νϕ

∂x3ν
− ϕ∂

νϕ

∂xν
+ 3

∂νϕ

∂xν
∂2νϕ

∂x2ν

]
,

(8)

operating with the inverse (CST) both sides of (8), we get

ϕ (x, τ) = ϕ (x, 0) + S−1τ

(
uSβτ

[
∂2ν

∂x2ν

(
∂βϕ

∂τβ

)
− ∂νϕ

∂xν
+ ϕ

∂3νϕ

∂x3ν
− ϕ∂

νϕ

∂xν
+ 3

∂νϕ

∂xν
∂2νϕ

∂x2ν

])
.

(9)

Now, Adomian solution is

ϕ (x, τ) =
∞∑
i=0

ϕi (x, τ) , (10)

and we can decompose the nonlinear terms by the series of Adomian polynomials as

N1 (ϕ) = ϕ
∂3νϕ

∂x3ν
=
∞∑
i=0

Ai, (11)

N2 (ϕ) = ϕ
∂νϕ

∂xν
=
∞∑
i=0

Bi,

N3 (ϕ) =
∂νϕ

∂xν
∂2νϕ

∂x2ν
=

∞∑
i=0

Ci,

where,

Ai = 1
i!
di

dqi

[
N1

(∑∞
j=0 q

jϕj

)]
q=0

,

Bi = 1
i!
di

dqi

[
N2

(∑∞
j=0 q

jϕj

)]
q=0

,

Ci = 1
i!
di

dqi

[
N3

(∑∞
j=0 q

jϕj

)]
q=0

.
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Substituting (10) and (11) in (9), we get

∞∑
i=0

ϕi = ϕ (x, 0) + S−1τ

(
uSβτ

[
∂2ν∂β

∂x2ν∂τβ

( ∞∑
i=0

ϕi

)
− ∂ν

∂xν

( ∞∑
i=0

ϕi

)
+

∞∑
i=0

Ai −
∞∑
i=0

Bi + 3

∞∑
i=0

Ci

])
,

(12)

comparing both sides of (12), we get

ϕ0 (x, τ) = ϕ (x, 0) , (13)

ϕn (x, τ) = S−1τ

(
uSβτ

[
∂2ν∂β

∂x2ν∂τβ
(ϕn−1)−

∂ν

∂xν
(ϕn−1) +An−1 −Bn−1 + 3Cn−1

])
n = 1, 2, 3, . . . .

Hence,

ϕ0 (x, τ) = e
0.5

(
xν

v

)
,

ϕ1 (x, τ) = S−1τ

(
uSβτ

[
∂2ν∂β

∂x2ν∂τβ
(ϕ0)−

∂ν

∂xν
(ϕ0) +A0 −B0 + 3C0

])
,

= S−1τ

(
uSβτ

[
∂2ν∂β

∂x2ν∂τβ
(ϕ0)−

∂ν

∂xν
(ϕ0) + ϕ0

∂3νϕ0

∂x3ν
− ϕ0

∂νϕ0

∂xν
+ 3

∂νϕ0

∂xν
∂2νϕ0

∂x2ν

])
= S−1τ

(
uSβτ

[
−1

2
e
0.5

(
xν

v

)])
=
−1

2
e
0.5

(
xν

v

)
S−1τ (u)

=
−1

2

(
τβ

β

)
e
0.5

(
xν

v

)
.

ϕ2 (x, τ) = S−1τ

uSβτ
 ∂2ν∂β

∂x2ν∂τβ
(ϕ1)− ∂ν

∂xν (ϕ1) + ϕ1ϕ0
∂4νϕ0

∂x4ν
+ ϕ1

∂νϕ0

∂xν
∂3νϕ0

∂x3ν
−

ϕ1ϕ0
∂2νϕ0

∂x2ν
− ϕ1

(
∂νϕ0

∂xν

)2
+ 3ϕ1

∂νϕ0

∂xν
∂3νϕ0

∂x3ν
+ 3ϕ1

(
∂2νϕ0

∂x2ν

)2


= S−1τ

(
uSβτ

[
−1

8
e
0.5

(
xν

v

)
+

1

4

(
τβ

β

)
e
0.5

(
xν

v

)])
=
−1

8
e
0.5

(
xν

v

)
S−1τ (u) +

1

4
e
0.5

(
xν

v

)
S−1τ

(
u2
)

=
−1

8

(
τβ

β

)
e
0.5

(
xν

v

)
+

1

8

(
τβ

β

)2

e
0.5

(
xν

v

)
.

Similarly, we have

ϕ3 (x, τ) = S−1τ

(
uSβτ

[
∂2ν∂β

∂x2ν∂τβ
(ϕ2)−

∂ν

∂xν
(ϕ2) +A2 −B2 + 3C2

])
=
−1

32

(
τβ

β

)
e
0.5

(
xν

v

)
+

1

16

(
τβ

β

)2

e
0.5

(
xν

v

)
− 1

48

(
τβ

β

)3

e
0.5

(
xν

v

)
,

ϕ4 (x, τ) = S−1τ

(
uSβτ

[
∂2ν∂β

∂x2ν∂τβ
(ϕ3)−

∂ν

∂xν
(ϕ3) +A3 −B3 + 3C3

])
=
−1

128

(
τβ

β

)
e
0.5

(
xν

v

)
+

1

32

(
τβ

β

)2

e
0.5

(
xν

v

)
− 1

64

(
τβ

β

)3

e
0.5

(
xν

v

)
+

1

384

(
τβ

β

)4

e
0.5

(
xν

v

)
.



S. ALFAQEIH, G. BAKICIERLER, E. MISIRLI: NEW SOLUTION OF CONFORMABLE ... 719

Consequently, the approximate solution of the (5) is given by

ϕ (x, τ) = ϕ0 (x, τ) + ϕ1 (x, τ) + ϕ2 (x, τ) + ϕ3 (x, τ) + ϕ4 (x, τ) + · · ·

= e
0.5

(
xν

v

)
+
−1

2

(
τβ

β

)
e
0.5

(
xν

v

)
+
−1

8

(
τβ

β

)
e
0.5

(
xν

v

)
+

1

8

(
τβ

β

)2

e
0.5

(
xν

v

)
+
−1

32

(
τβ

β

)
e
0.5

(
xν

v

)

+
1

16

(
τβ

β

)2

e
0.5

(
xν

v

)
− 1

48

(
τβ

β

)3

e
0.5

(
xν

v

)
+
−1

128

(
τβ

β

)
e
0.5

(
xν

v

)
+

1

32

(
τβ

β

)2

e
0.5

(
xν

v

)

− 1

64

(
τβ

β

)3

e
0.5

(
xν

v

)
+

1

384

(
τβ

β

)4

e
0.5

(
xν

v

)
+ · · ·

Simplifying,

ϕCSDM (x, τ) = e
0.5

(
xν

v

) [
1 +
−85

128

(
τβ

β

)
+

7

32

(
τβ

β

)2

+
−7

192

(
τβ

β

)3

+
1

384

(
τβ

β

)4

+ · · ·

]
.

(14)

4. Results and discussion

In this section, we illustrate the efficiency of the (CSDM) by comparing the exact
solution and approximate solutions. First, in Table.1 and Table.2 we compare the ap-
proximate ϕCSDM with the exact solution ϕexact, at some point in case of ν = 1, β = 1
and ν = 1, β = 0.75. Figure.1a and Figure.1b show the absolute error between the exact
and approximate solutions for ν = 1, β = 1 and ν = 1, β = 0.75. The obtained results
illustrate that the (CSDM) is highly accurate. The exact solution ϕexact is presented by
Figure.2a for −2 ≤ x ≤ 2, 0 ≤ τ ≤ 2, Figure.2b shows the surface graph of ϕCSDM in
case −2 ≤ x ≤ 2, 0 ≤ τ ≤ 2, ν = 1, β = 1. Figure.3a, Figure.3b, show the approximate
solutions ϕCSDM in case ν = 1, β = 0.75 and ν = 0.1, β = 0.98, respectively, we observe
that when both x and τ increase the value of ϕCSDM increases for β = 0.75, 0.98 and
β = 1. In Figure.4, we present the the exact and approximate solutions graphically at
x = 0.75 for different values of τ, ν, β. It is clear from Figure.4 that the approximate
solution ϕCSDM is very close to the exact solution as the values of ν, β increasing to 1.

Table 1. Comparison between the approximate solution ϕCSDM and the
exact solution ϕexact for ν = β = 1.

x τ ϕexact ϕCSDM Absolute error
-2 0.2 0.321958 0.322134 0.000176
-1 0.4 0.464559 0.465275 0.000716
0 0.6 0.670320 0.672775 0.002455
1 0.8 0.967216 0.974642 0.007426
2 1 1.39561 1.415770 0.020160
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Table 2. Comparison between the approximate solution ϕCSDM and the
exact solution ϕexact for ν = 1, β = 0.75.

x τ ϕexact ϕCSDM Absolute error
-2 0.2 0.321958 0.282434 0.039524
-1 0.4 0.464559 0.389739 0.07482
0 0.6 0.670320 0.551519 0.118801
1 0.8 0.967216 0.793367 0.173849
2 1 1.395610 1.156040 0.239570

(a) (b)

Figure 1. (A) The absolute error for ν = β = 1. (B) The absolute error
for ν = 1, β = 0.75.

(a) (b)

Figure 2. (A) The behavior of the exact solution ϕexact (x, τ). (B) The
behavior of the approximate solution ϕCSDM (x, τ) in case ν, β = 1.

5. Conclusions

In this article, we have successfully implemented a novel computational method called
the conformable Sumudu decomposition method (CSDM) to get the approximate solu-
tions of the conformable fractional Fornberg-Whitham equation. (CSDM) is based on
the conformable Sumudu transform method and the Adomian decomposition method. To
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(a) (b)

Figure 3. (A) The behavior of the approximate solution ϕCSDM (x, τ)
in case ν = 1, β = 0.75. (B) The behavior of the approximate solution
ϕCSDM (x, τ) in case ν = 0.1, β = 0.98.

Figure 4. The behavior of the approximate solution ϕCSDM (x, τ) in case
x = 0.75 for different values of ν, β.

show the good agreement of the obtained approximate solutions and the exact solution, we
compare our results with the exact solution obtained in the literature. Moreover, we have
discussed and drawn the absolute error. The solution graphs for the problem show that
the proposed method has good agreement with the exact solution. The obtained results
reveal that the proposed approach is considered to be an attractive, easy and straight-
forward to solve the nonlinear conformable partial differential equations and a system of
conformable fractional differential equations.
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