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a b s t r a c t

In this paper, we provide an algebraic cryptanalysis of a recently proposed chaotic image
cipher. We show that the secret parameters of the algorithm can be revealed using cho-
sen-plaintext attacks. Our attack uses the orbit properties of the permutation maps to
deduce encryption values for a single round. Once a single round encryption is revealed,
the secret parameters are obtained using simple assignments.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

During the last decade there has been a steady increase in the research effort towards designing cryptographic algorithms
and protocols which employ some form of a chaotic system at their core. Among the earliest attempts at chaotic encryption
was the use of the iterated logistic map as the encryption transformation and its parameter as the secret key [8]. This algo-
rithm was broken using a chosen ciphertext attack [5]. Still, one dimensional discrete maps in general and the logistic map in
particular are used in many chaotic encryption proposals because the simple expression of such maps make them suitable
for implementation in both hardware and software [1,4,9,12,14,17,18].

A particular area of interest within the chaos cryptography is the image encryption. Naturally, a fast and strong image
encryption has the potential for application in diverse areas of multimedia applications. By treating the image as a sequence
of bits, classical block ciphers like DES and AES can be used with an appropriate mode of operation. Still, the desire to obtain
faster ciphers motivates researchers to seek new ways to incorporate chaos in image encryption [2,6,11,12,16].

Recently, a new chaotic image encryption algorithm based on chaotic map lattices (CML) was proposed in [12]. Subse-
quently, some of the weaknesses and implementation problems of the algorithm was analyzed in [2]. One of the suggestions
for improvements offered in [2] was that digitized computations must be used within the phase-space. In this paper, we
show that whatever be the internal precision, the algorithm is vulnerable to attacks devised in [15]. In particular, we show
that an attacker can choose a moderate number of custom plaintext images and use these to compute the secret parameters
in an equivalent expression of the algorithm.

For the set of 2-pixel images, one round encryption is equivalent to a permutation over a set of size 216. The encryption
over r rounds becomes equivalent to rth power of this permutation. An attacker chooses all possible 2-pixel images as plain-
texts and obtains their corresponding ciphertext images. Thus, the attacker obtains the rth power of the permutation. Using
the results of [15], the attacker reconstructs the permutation and then the secret map.
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The organization of the paper is as follows. In the next section, we describe the original encryption algorithm. In Section 3,
we give the equivalent representation. In Section 4, we use permutation orbit attack and consistency check to reveal secret
parameters of the equivalent representation. We analyze the complexity of the attack in Section 5. We provide examples and
simulation results in Section 6. The paper finishes with some concluding remarks.

2. Description of the system

The plaintext is the vector c 2 Zm
256 obtained by the usual row-scan of an N �M image, where m is the total number of

pixels, i.e. m = NM. Z256 denotes the set {0,1,2, . . . ,255} of integers which are represented by 8-bit pixels. The algorithm en-
crypts plaintext c in three steps; D/A conversion, chained chaotic iteration and A/D conversion.

1. D/A conversion: each integer pixel value ci is mapped to one of 256 distinct real values xi in the chaotic attractor
X = (xmin,xmax) for the logistic map

f ðuÞ ¼ auð1� uÞ;

using

xi ¼ g1ðciÞ ¼ xmin þ ðxmax � xminÞ
ci

255
; 1 6 i 6 m; ð1Þ

where xmin = (4a2 � a3)/16 and xmax = a/4.
2. Chained chaotic iteration: the real values xi are transformed using repeated chaotic iteration as follows. We first initialize

cycle 0 values as yð0Þi ¼ xi, 1 6 i 6m. The transformation for the jth cycle is given as

yðjÞ1 ¼ Aðf nðyðj�1Þ
m Þ þ yðj�1Þ

1 Þ;
yðjÞi ¼ Aðf nðyðjÞi�1Þ þ yðj�1Þ

i Þ; i P 2; 1 6 j 6 r;
ð2Þ

where the function A : (2xmin,2xmax) ? X guarantees that the LHS of (2) falls within the attractor. The plot of A is given
in Fig. 1.
In (2), r denotes the number of cycles (rounds) in the encryption. Note that the logistic map f is iterated n times starting
with the initial value yðjÞi�1 for i P 2 and with yðj�1Þ

m for i = 1. The number of iterations n is part of the secret key.
3. A/D conversion: each yðrÞi is mapped back to an integer di in Zm

256 using

di ¼ g2ðy
ðrÞ
i Þ ¼ round ðyðrÞi � xminÞ

255
xmax � xmin

� �
: ð3Þ

The vector d 2 Zm
256 is the ciphertext.

In the original description of the systems given in [12], it might be interpreted that (3) is applied only after the last round.
However, such an implementation would make the whole encryption non-invertible as highlighted in [2]. Moreover, we
compared our description of the algorithms given in (1)–(3) against the actual implementation code of the authors of
[12]. Indeed, our description agrees with their implementation. Therefore, in the subsequent analysis, we assume that (3)
is applied in every round. For further discussion related to implementation issues of a similar algorithm see [3,13].

Fig. 1. The plot of the function A : (2xmin,2xmax) ? (xmin,xmax). The function wraps around the attractor like modulus.
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3. Equivalent representation

Here, we give the equivalent representation of the algorithm so that all the operations are done in Z256 and the secret
quantities are some unknown permutations.

Note that g1 and g2 denote the D/A and A/D conversion functions in (1) and (3), respectively. For one round of encryption,
we can write (2) as

di ¼ g2ðyiÞ ¼ g2ðAðf nðyi�1Þ þ yiÞÞ ¼ g2ðAðf nðg1ðdi�1ÞÞ þ g1ðciÞÞÞ; 2 6 i 6 m: ð4Þ

Note that the mapping in (4) is from the pair (di�1,ci) 2 Z256 � Z256 to di 2 Z256. Let us denote this map as s : Z256 � Z256 ? Z256.
Given the secret quantities a and n, one can calculate the map s as

sði; jÞ ¼ g2ðAðf nðg1ðiÞÞ þ g1ðjÞÞÞ; 0 6 i; j 6 255: ð5Þ

Now, we can write the single round encryption as

d1 ¼ sðcm; c1Þ;
di ¼ sðdi�1; ciÞ; 2 6 i 6 m:

ð6Þ

Similarly, we can trivially extend this expression for arbitrary number of rounds r. In this new expression of the algorithm,
the equivalent secret quantities are the map s and the number of rounds r. However, the number of rounds is a small number
in the range of 10. Thus, it can be safely assumed that the attacker knows r. Even when the attacker does not know r, he can
try several values for r and apply the rest of the attack for the tried r. If the attack succeeds then the attacker has found the
correct r.

In the next section, we give an attack that recovers the secret map s, assuming that r is known.

4. Recovering s

The map s has 2562 unknown entries each of which can take 256 different values. Hence, trying to reveal s using brute
force requires 2562562

¼ 2219

trials. Clearly, this is infeasible.
However, using a chosen-plaintext attack, the unknown map s can be recovered within a few hours. First, we need a few

results related to the powers of permutations. For the proofs of lemmas see [15].

Definition 1 [7]. An ordered orbit of a permutation p on a finite set is the ordered tuple (a0,a1, . . . ,an�1) such that p(a0) = a1,
p(a1) = a2, . . ., p(an�2) = an�1, p(an�1) = a0. n is the length of the ordered orbit.

Theorem 2 [7]. A permutation defined on a finite set partitions the set into disjoint ordered orbits.
From now on, we refer to an ordered orbit simply as an orbit.

Remark 3. Given a permutation p defined on a set V, determining its orbits is straightforward. We start from any element
a0 2 V and form the orbit elements as (a0,p(a0),p2(a0), . . . ,pn�1(a0)) until pn(a0) = a0. We then start over with an element not
included in the orbits found so far. We continue forming orbits until we exhaust all the elements in the set V.

Note that if a0 is an element in an orbit of length n in the permutation p, then, for all integers i,

piða0Þ ¼ pi mod nða0Þ:

Lemma 4. Let a = (a0,a1, . . . ,an�1) be an orbit of length n in the permutation p, where gcd(n, r) = v. Then, a is split into v equal
length orbits in pr.

Lemma 5. Let b = (b0,b1, . . . , bt�1) be the only orbit of length t in the permutation pr. Then,

pðbjÞ ¼ bðjþr�Þmod t; 0 6 j < t;

where r* is the multiplicative inverse of r in mod t, i.e. rr* � 1 (modt).

Remark 6. An immediate result of Lemmas 4 and 5 is that if we have an orbit a = (a0,a1, . . . ,an�1) in p such that gcd(n,r) = 1,
then in pr, a is not split but is rather shuffled as

b ¼ ða0; ar mod n; að2rÞmod n; . . . ; aððn�1ÞrÞmod nÞ:
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Lemma 7. Let b = (b0,b1,. . . , bt�1) be one of the q orbits of length t in the permutation pr. Let v be the least divisor of r larger than 1.
Assume that q < v. Then,

pðbjÞ ¼ bðjþr�Þmod t; 0 6 j < t; ð7Þ

where r* is the multiplicative inverse of r in mod t, i.e. rr* � 1 (modt).

Lemma 8. Let bð1Þ ¼ ðbð1Þ0 ; bð1Þ1 ; . . . ; bð1Þt�1Þ and bð2Þ ¼ ðbð2Þ0 ; bð2Þ1 ; . . ., bð2Þt�1Þ be two orbits of length t in pr. If pðbð1Þi Þ ¼ bð2Þj for some i, j
then

pðbð1ÞðiþkÞmod tÞ ¼ bð2ÞðjþkÞmod t ; 1 6 k < t:

We now give the attack based on the structure of the orbits of permutations.

Assume that the attacker chooses a two pixel image (c1,c2) as plaintext and obtains the corresponding ciphertext (d1,d2)
for a single round. Using (6) with m = 2, we obtain

d1 ¼ sðc2; c1Þ;
d2 ¼ sðd1; c2Þ:

ð8Þ

Thus, (8) defines a function p : Z256 � Z256 ? Z256 � Z256, p((c1,c2)) = (d1,d2). Since the encryption is invertible, p is a permu-
tation over the set Z256 � Z256.

Note that if attacker knows a point (d1,d2) = p((c1,c2)) on the permutation, then using (8), he can reveal the map s on two
points (c2,c1) and (d1,c2).

If p is a single round encryption, then r round encryption becomes pr. Hence, for his chosen-plaintext image (c1,c2), the
attacker observes pr((c1,c2)). Choosing all of the 216 possible 2-pixel plaintexts one by one and obtaining their corresponding
ciphertexts, the attacker constructs the permutation pr. Using the results given at the start of this section, the attacker re-
veals portions of p. Using the known points on p, the attacker finally recovers the secret map s.

We now give the details of the attack.

4.1. Permutation orbit attack

Once the attacker obtains pr, he calculates its orbit structure using the procedure in Remark 3. Given the orbit structure of
pr, he starts by using the orbits that are shuffled going from p to pr. The attacker uses such orbits in two distinct categories.

1. Look for lone orbits in pr: If there is a lone orbit of length t1 in pr, use Lemma 5 to reveal t1 points in p. From those, reveal
at most 2t1 points of s using (8). Hence, if b ¼ ðb0; b1; . . . ; bt1�1Þ is a lone orbit of pr, we can reveal some of the points on s
for 0 6 j < t1 as

sðbj;2; bj;1Þ ¼ bðjþr�Þmod t1 ;1;

sðbðjþr�Þmod t1 ;1; bj;2Þ ¼ bðjþr�Þmod t1 ;2:

Note that each bj is a pair (bj,1,bj,2), corresponding to a 2-pixel image.
2. Look for a collection of the same length orbits in pr: If the size q of the collection is less than the least divisor of r larger

than 1, then use Lemma 7 to reveal qt2 more points in p, where t2 is the length of an orbit in the collection. Again, use (8)
to reveal at most 2qt2 new points in s.
Using the permutation attack, the attacker recovers a portion of the map s. If the portion is the whole, then the attack
concludes successfully. If there are still unrevealed portions of s, the attacker performs the following consistency checks
on the orbits not used in the permutation attack.

4.2. Consistency check

Suppose there are q > 1 orbits of length t3 among the orbits of pr and that none of these orbits were used in the permu-
tation orbit attack. We now give consistency checks that can be applied to these orbits in order to reveal more points on the
partially revealed map s.

Let b be one of those q orbits in pr. There are two ways such a b might occur in pr. One way is that b might have been
obtained by the split of a larger orbit in p. The other possibility is that b was obtained by the shuffling of an orbit of the same
length in p, see Remark 6.

We first test if latter is the case.
Assume that b ¼ ðb0; b1; . . . ; bt3�1Þ was obtained by the shuffling of an orbit of p. In this case, gcd(n3,r) = 1. Note that each

bj is a pair (bj,1,bj,2) 2 Z256 � Z256. By Lemma 5, pðbjÞ ¼ bðjþr�Þmod t3 ; 0 6 j < n3. Thus, we conclude that, for 0 6 j < t3,

sðbj;2; bj;1Þ ¼ bðjþr�Þmod t3 ;1;

sðbðjþr�Þmod t3 ;1; bj;2Þ ¼ bðjþr�Þmod t3 ;2:
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Thus, on the assumption that b was obtained by shuffling, we reveal possibly 2t3 new points of the map s. However, if the
assumption was wrong, then we expect to encounter inconsistencies. The newly revealed points might conflict with the al-
ready revealed points on s. Also, they might conflict among themselves.

To better see how two kinds of conflicting values might arise, let us assume that the attacker already knows x,y,z 2 Z256

such that s(x,y) = z. If, for some j, bj,2 = x and bj,1 = y but bðjþr�Þmod t3 ;1 – z, then we have the conflict of the first kind, i.e. the
newly revealed point conflicts with the already known point.

On the other hand, if we have j1 and j2 such that bj1 ;2 ¼ bðj2þr�Þmod t3 ;1 and bj1 ;1 ¼ bj2 ;2 but bðj1þr�Þmod t3 ;1 – bðj2þr�Þmod t3 ;2, then we
have newly revealed points conflicting among themselves.

The attacker can test both conflicts together. For every set of newly revealed points, he tries to add these to the map. If he
fails due to a conflict with the already known portion, he concludes that b was not obtained by a simple shuffling, but instead
was obtained by the split of a larger orbit in p.

By going through all the orbits not used in the permutation attack, and testing if they were obtained by simple shuffles,
the attacker enlarges the revealed portion of s.

Now, the attacker is left with sets of orbits which are certainly obtained by the split of larger orbits in p. Let b(1) and b(2) be
two such orbits of the same length t4. We cannot directly use Lemma 4 because it is still possible that they were obtained by
the split of different orbits in p.

In order to better see how this can happen, assume p has two orbits of length 10 and 15 and that r = 6. Then, by Lemma 4,
in p5, the length 10 orbit will be split into two length 5 orbits and length 15 orbit will be split into three length 5 orbits.
Hence, in p5, we see length 5 orbits coming from the split of different orbits.

Even if b(1) and b(2) come from the split of the same orbit in p, we may not directly use Lemma 8, because we lack a sample
point mapping from one orbit to another.

Hence, the test for the second case proceeds as follows. The attacker chooses two same length orbits b(1) and b(2) in pr. Let
n4 be the common length of these two orbits. He assumes that b(1) and b(2) come from the split of the same larger orbit in
pand that there exist two integers 0 6 i, j < t4 such that bð1Þi 2 bð1Þ, bð2Þj 2 bð2Þ and pðbð1Þi Þ ¼ bð2Þj . Fixing i = 0, he tries every j,
0 6 j < t4, each time assuming that pðbð1Þ0 Þ ¼ bð2Þj . If b(1) and b(2) are consecutive splits of a larger orbit in p, then there is such
a j. If the attacker hits upon the correct j, he uses Lemma 8 and possibly reveals 2t4 new points on the map s as

sðbð1Þ0;2; b
ð1Þ
0;1Þ ¼ bð2Þj;1 ; 0 6 j < t4;

sðbð2Þj;1 ; b
ð1Þ
0;2Þ ¼ bð2Þj;2 ; 0 6 j < t4:

On the other hand, if the attacker encounters an inconsistency with the already revealed portion of the map s, he discards j. If
all the j’s in 0 6 j < t4 are discarded as such, then either b(1) and b(2) do not come from the same orbit p, or they come from the
same orbit but their ordering was wrong, i.e. they are not consecutive splits.

By trying all the ordered pairs of orbits of the same length, the attacker is highly likely to eliminate the wrong assump-
tions with inconsistencies and reveal whole of the map s.

5. Complexity of the attack

Once the attacker obtains the permutation pr, it takes only 216 lookups to construct the orbit structure of pr. The compu-
tational complexity of the rest of the attack depends on the orbit structure of the permutation pr.

For a random permutation over the set {1,2, . . . ,n}, the expected number of orbits is approximately logn, [10, p. 227]. In
our case n = 216, so we expect to have about 11 orbits in p. In the worst case, all orbits are split into r smaller orbits in pr and
we expect to have about 11r split orbits in pr. If we were to check all pairs of orbits in pr for consistency, we would perform
about 121r2 consistency checks. Consistency checks can be done by a fixed number of lookups and comparisons. Let C denote
the fixed cost of one consistency check for an orbit pair. For each pairing of two orbits of length L, we have to perform the
consistency check for L shift amounts. The average orbit length for the original permutation p is n/logn. Hence, for the aver-
age case with n = 216, we can take L as 5960. The split orbits in pr will have an average length of 5960/r.

Thus, the average complexity of the attack is 216 + 121 � rC � 5960 lookup or comparison operations. For a particular case
of r = 5, C = 20, the attack takes about 108 basic operations on average.

6. Simulations

We first illustrate the calculations involved in the attacks using a small map s.
Assume that there are only 4 pixels values {0,1,2,3}, so we will be using mod4 instead of mod256. For the purpose of

illustration, let us choose the secret map s as in Table 1. Let us choose the number of rounds r = 2.
The attacker first chooses all 16 of the 2-pixel images (c1,c2) for 0 6 c1 6 3, 0 6 c2 6 3 and requests corresponding cipher-

text images (z1,z2) = p2(c1,c2). These are given in Table 2.
In Table 1, the row and column numbers start from 0 and correspond to c1 and c2, respectively. Thus, (1,2) is encrypted to

(0,3) in 2-round encryption and so on. Upon the orbit decomposition of the permutation p2, the attacker sees that it has one
orbit of length 9, one orbit of length 1 and two orbits of length 3 each. The orbits are given as
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o1 ¼ ð0;0Þ; ð2;3Þ; ð3;0Þ; ð1;2Þ; ð0;3Þ; ð2;1Þ; ð1;0Þ; ð0;2Þ; ð3;1Þ;
o2 ¼ ð0;1Þ; ð2;2Þ; ð3;3Þ;
o3 ¼ ð1;3Þ; ð2;0Þ; ð3;2Þ;
o4 ¼ ð1;1Þ:

For the first lone orbit o1, the attacker uses Lemma 5. Note that the inverse of 2 in mod9 is 5. Hence, by Lemma 5,
p((0,0)) = (2,1), p((2,3)) = (1,0), and so on. Using (8), the attacker reveals that s(0,0) = 2, s(2,0) = 1, s(3,2) = 1, s(1,3) = 0,
and so on. In total, the attacker manages to reveal nine points of the secret map s using the lone orbit o1.

The other lone orbit o4 helps to reveal that s(1,1) = 1.
There are two remaining orbits, o2 and o3. Since 3 ¥ r, the attacker cannot use Lemma 7 directly.
The attacker tries if any one of these orbits were obtained by the shuffling of an orbit in p. First, he tries o2. Note that the

inverse of 2 in mod3 is 2. Assuming that o2 were obtained through shuffling, the attacker obtains p((0,1)) = (3,3),
p((2,2)) = (0,1) and p((3,3)) = (2,3). Using these points on the permutation p with (8), the attacker reveals a consistent
set of new points on s as s(1,0) = 3, s(3,1) = 3, s(2,2) = 0, s(0,2) = 1, s(3,3) = 2, s(2,3) = 3. Thus, all of the secret map is revealed
at this stage of the attack, and the attack concludes successfully.

In order to simulate our proposed attack on a realistic image representation with 256 pixel levels, we chose a random
secret map s and r = 6. The map s is displayed as an image in Fig. 2a.

When we find the orbit structure of p6, we find that there are three lone orbits of lengths 58,501, 1597 and 109. Also,
there are three orbits of length 877, 12 orbits of length 198, four orbits of length 79 and six orbits of length 1. Starting with
the longest lone orbit and applying Lemma 5, the attacker reveals 58,501 points of the secret map s. The other two lone orbits

Table 2
The permutation p2 which corresponds to 2-round encryption of the pairs (c1,c2) 2 Z4 � Z4.

c1 c2

0 1 2 3

0 (2,3) (2,2) (3,1) (2,1)
1 (0,2) (1,1) (0,3) (2,0)
2 (3,2) (1,0) (3,3) (3,0)
3 (1,2) (0,0) (1,3) (0,1)

Table 1
The secret map s(i, j), s : Z4 � Z4 ? Z4.

i j

0 1 2 3

0 2 3 1 0
1 3 1 2 0
2 1 3 0 2
3 0 3 1 2

Fig. 2. (a) The secret map s. (b) The revealed (white) and unrevealed (black) portions of the map after the lone orbits are used.
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reveal 1597 and 109 new points, respectively. Note that after using the lone orbits, the attacker reveals about 92% of the
secret map s. In Fig. 2a, the revealed points are shown in white and unrevealed points are shown in black. The three orbits
of length 877 turn out be split from a larger orbit and they reveal a total of 877 new points. Twelve orbits of length 198 also
turn out to be split orbits. They reveal a total of 2376 new points on the secret map s. Four orbits of length 79 reveal 316
points. Finally, six singleton orbits reveal one new point each. Thus we reveal the full secret map.

The attack takes about 40 min under MATLAB running on Mac OS X 10.6.2 with Intel Core 2 Duo 2.16 GHz processor and
3.3 GB RAM.

7. Conclusions

In an encryption algorithm, it is essential that the algorithm provides an equal degree of security for the whole range of
inputs. Otherwise, an attacker can launch a chosen-plaintext attack using the set of plaintexts for which the algorithm leaks
information about secret parameters.

In this paper we demonstrated a chosen-plaintext attack on an equivalent representation of a CML-based image encryp-
tion algorithm. Our attack uses orbit structures of permutation functions defined by the encryption of 2-pixel images. We
showed that an attacker can use these orbit structures to deduce the equivalent secret parameters of the algorithm.

The computational complexity of the attack is moderate so that the attack takes less than 1 h with a non-optimized soft-
ware implementation.

The main weakness of the encryption scheme is the use of small blocks of 8 bits in calculating the initial conditions to the
chaotic map. In general, using n bits in the scheme yields a permutation map of 22n elements. Thus, in order to prevent our
proposed attack, one possible modification would be to combine a few adjacent pixels in calculating the initial condition.
This would increase the size of the permutation. Of course, the whole scheme needs to be analyzed again for any new weak-
nesses brought about by any such modifications.
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