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Abstract

In this research work, we presented a one-dimensional CNN-based person iden-

tification system which depends on the combination of both speech and ECG

modalities to improve the overall performance compared to traditional systems.

The proposed method has two approach: one is to develop combination of text-

independent speech and fingertip ECG fusion system, the other one is to develop

a robust rejection algorithm to prevent unauthorized access to the fusion system.

In addition to the system robustness, we have developed an ECG spike and incon-

sistent beats removing algorithm, which detect and remove the problems caused

by either portable fingertip ECG devices or movements of the patients.

First approach has been tested on 30, 45, 60, 75 and 90 people which were taken

from LibriSpeech Corpus database and combination of both CYBHi and our pri-

vate fingertip ECG database. The 3-fold cross validation test setup has been

conducted while system working time was set to 10 seconds. In the first exper-

iment, we achieved 90.22% accuracy rate for 90 people for ECG based system.

For the speech based system, 97.94% accuracy rate has achieved for 90 people.

For the combination of both system, 99.92% accuracy rate has been achieved.

For the second approach, 90 people for ECG and Speech database were being used

as genuine class, 26 people as imposter class, and after the performance evaluation

in optimum rejection thresholds, 71.08% accuracy rate for imposters rejection and

71.05% accuracy rate for genuine recognition has achieved for ECG based system.

For the speech based system, imposter class were 87.82% accurately rejected while

genuine classes were 86.48% accurately identified. The combination of both sys-

tem has achieved 91.68% accuracy for genuine identification rate whereas 96.05%

accuracy for imposter rejection.

Keywords: Authentication, Convolutional Neural Network, Fingertip ECG,

Fusion, Identification, Imposter Rejection, MFCC, Machine Learning, Recog-

nition System, Signal Processing, Speech, Supervised learning, Text-Independent,

Verification
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PARMAK UCU ELEKTROKARDİYOGRAM VE SES

SİNYALİ TABANLI BİYOMETRİK TANIMA SİSTEMİ

Özet

Araştırmamızda, geleneksel sistemlere nazaran genel performansı iyileştirmek adına

hem konuşma hem de EKG sinyallerinin kombinasyonuna dayanan tek boyutlu

CNN tabanlı kişi tanıma sistemi geliştirilmiştir. Önerdiğimiz sistem, iki yaklaşım

içermektedir: Bunlardan ilki, metinden bağımsız konuşma ve parmak ucu EKG

füzyonu ile bir tanıma sistemi elde etmek, diğeri ise bu geliştirilen füzyon tanıma

sisteminin yetkisiz kişileri önlemesine yarayan güçlü bir reddetme algoritması

geliştirmektir. Bu yaklaşımlara ek olarak, taşınabilir parmak ucu EKG ciha-

zlarının ya da kullanıcının hareketlerinin neden olduğu tutarsızlıkları veya benzeri

sorunları tespit etmek ve ortadan kaldırmaya yarayan bir algoritma da geliştirilmiştir.

İlk yaklaşım, LibriSpeech Corpus ses veri tabanı ve CYBHi veri tabanı ile daha

önceden oluşturduğumuz parmak ucu EKG veri tabanlarının birleşiminden alınan

30, 45, 60, 75 ve 90 kişi üzerinde test edilmiştir. 3 kat çapraz doğrulama yöntemiyle,

sistem 10 saniyeye yanıt verecek şekilde ayarlanarak testler gerçekleştirilmiştir.İlk

deneyde, EKG tabanlı sistemin, 90 kişi üzerinden %90.22 doğruluk oranına ulaştığı

saptanmıştır. Konuşma tabanlı sistemin ise 90 kişi üzerinden %97.94 doğruluk

oranına ulaştığı tespit edilmiştir. Her iki sinyalin kombinasyonu ise %99.92 doğruluk

oranına sahip olduğu gözlemlenmiştir.

İkinci yaklaşımda ise, EKG ve konuşma veritabanlarından 90 kişi hakiki sınıf,

26 kişi ise sahtekar sınıfı olarak ikiye ayrılmıştır ve en uygun reddetme eşit

değerlerine ayarlandığı göz önünde bulundurarak %71.05 doğrulukla hakiki sınıfı

tanıdığı ve %71.08 doğrulukla sahtekar sınıfı reddettiği, EKG tabanlı sistemde

tespit edilmiştir. Konuşma tabanlı sistemin ise, %86.48 doğrulukla hakiki sınıfı

tanıdığı, %87.82 doğrulukla da sahtekar sınıfı reddettiği tespit edilmiştir. Her

iki sistemin kombinasyonu ile, %91.68 doğrulukla hakiki sınıfı tanıdığı, %96.05

doğrulukla da sahtekar sınıfı reddettiği gözlemlenmiştir.

Anahtar kelimeler: Kimlik Doğrulama, Evrişimli Sinir Ağı, Parmak Ucu

EKG, Füzyon, Tanımlama, Sahtekar Reddetme, MFCC, Makine Öğrenimi,
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Chapter 1

Introduction

In thousands of years, body characteristics, such as face, voice, and gait, are

being used by people to recognize each other. In the 19th century, Alphonse

Bertillon, the chief of a criminal police department in Paris, developed a number of

ideas about the measurement and identifications of criminals. Later on, his ideas

were gained new popularities, and in the late 19th century, the distinctiveness

of human fingerprints has been discovered. After the discovery of fingerprint,

police departments began to store criminals’ fingerprint in their database and

relate them with the fingerprints which collected on the crime scene and identify

the criminals. Although biometric recognition has emerged on extensive usage

of criminal analysis, it is now increasingly used on a large number of civilian

applications [1].

Any human physiological characteristics or behavior characteristic can be used as

biometric parameters as long as it satisfies distinctiveness, universality, perma-

nence, and collectability. However, there are several issues in practical biometric

systems, such as performance which refers to speed and accuracy of the system;

acceptability, which refers to the extent of people that are willing to accept the

system; and circumvention, which refers to how easily the system can be deceived

using fraudulent methods. Practical biometric systems should meet specific accu-

racy and response speed, be harmless to users, be accepted in a large population,

and be sufficiently robust to different kinds of fraudulent methods [1].
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Several biometric modalities have been accepted and are used in various applica-

tions. Each of the accepted biometric modalities has its strengths and weaknesses.

The choice of modalities depends on the type of application. Description, advan-

tages, and disadvantages of these modalities can be given as follows [1, 2]:

Iris: Iris is the annular region of the eye bounded by the pupil and the sclera

(white of the eye) on either side. It is formed while fetal development and is

stabilized after 2 years. The visual content of the iris texture has an advantage

over other modalities in the potential of high accuracy, the resistance of imposter,

long-term stability, and fast processing. However, iris can be easily replicated,

can be used as an external, plus iris-based systems are primarily high-cost systems

[1, 2].

Fingerprint: Fingerprint is the texture pattern over the surface of the finger-

tip, and it is formed and stabilized after 7 months of fetal development. The

fingerprint-based system is easily used, has high accuracy, has long-term stabil-

ity, the ability to enroll multiple fingers, and low cost compare to other modality-

based systems. However, the system can be affected by the skin condition or

dirtiness of the sensor’s surface [1, 2].

Face: Facial-based systems are the most commonly used non-intrusive system.

The most common approach is; finding the shape and location of the facial at-

tributes such as eyes, eyebrows, nose, lips, or chin. Although this type of system

is low-cost, the environment or appearances affect the system. It has a disadvan-

tage of a highly false non-match rate, the potential of privacy abuse; identical

twins attack [1, 2].

Signature: Signature is an individual’s way of expression by signing his or her

name on the paper. It is a widely accepted and non-intrusive method. This type

of system has resistance over forgery. However, the system has problems over

trivial and inconsistent signatures [1, 2].
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Voice: Voice is the physiological and behavioral human biometrics. The human

voice can change based on the shape and size of an individual’s vocal tracts,

mount, nasal cavities, and lips. This type of system can be easily applied by

using existing telephony infrastructure or a simple microphone, has no negative

effect on an individual. However, it can be easily fooled by pre-recorded individual

voice, can be affected by background noise, or variability of voice when individual

drunk or sick [1, 2].

Hand and Finger Geometry: Hand and finger geometry-based system view

the features of the human hand, including its shape, size of a palm, length, and

width of a finger, and palm lines. These type of system is easy to use, is not

affected by environment, and it is relatively stable over fingerprint system. How-

ever, these systems have disadvantages of low accuracy, high cost, and difficulty

to use for some users who have arthritis, missing fingers, or large hands [1, 2].

Electrocardiogram: Electrocardiogram (ECG) is a biological sign of the heart’s

electric activity and can be measured over human skins. It carries distinctive

features depending on personal characteristics such as age, gender, size, position,

and anatomy of the heart. This modality is being used not only because it is

highly reliable, but it is also obligatory for an individual’s presence. However,

it is relatively hard to use if conventional devices are being used. Therefore,

many kinds of acquisition systems were suggested and implemented to decrease

the cost for the last 20 years. They focused on extracting ECG signals using an

individual’s hand or fingers rather than the chest to increase usability. However,

this cost the accuracy of the system to decrease [2, 3, 4].

Many kinds of modalities are explained, and advantages, disadvantages between

these modalities are mentioned. In recent years, many systems are suggested and

developed to overcome these modalities’ weaknesses by combining and fusing their

strong aspect. For example, ECG based system has obligatory for an individual

presence; therefore, it is hard to fool the system with pre-recorded devices. How-

ever, the performance of the ECG system decreases whenever the number of users
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increases. Aging of the person or sudden emotional changes on people such as

anger, fear, excitement can also affect the ECG-based system negatively. For this

reason, the speech-based system used because speech does not drastically change

over time and relatively stable over the ECG-based system. However, speech-

based systems are easily fooled by using pre-recorded speech signals. Therefore,

we proposed a system that focuses on both ECG and speech signal and developed

a score fusion-based system by using their strong aspect.

In recent years, the popularity of ECG-based systems increases because of the

high demand for security. In 2011, Z. Zhao and L. Yang [5] proposed an ECG-

based algorithm that uses a matching pursuit algorithm to search the best time-

frequency atom of each individual. After that, they performed the system using a

Support Vector Machine classification algorithm to these individual features and

achieved a 95.3% recognition rate over 20 subjects in the QT database. In the

same year, Shen et al. [6] proposed a one-lead ECG human identification system

and extracted ECG signals by using the palm of each subject. Then the database

is constructed over 168 young college volunteers and used on an identification

system that has a combination of template matching and pre-screening process.

After extracting ECG feature templates, the Linear Discriminant Analysis clas-

sification method was performed on 168 people, and a 95.3% identification rate

was achieved.

In 2012, Sara Zokaee et al. [7] developed and achieved a multimodal human identi-

fication system by using both palmprint and electrocardiogram. In their system,

Mel-frequency Cepstral Coefficient (MFCC) method was being used to extract

features for ECG signals, Principal Component Analysis (PCA) was being used

to extract features for palmprint. Then for each of these features, distance similar-

ities were found by using K-nearest Neighbors (KNN) classification algorithm and

was tested on 50 people. Their system achieved a 100% recognition rate when only

ECG signals were being used, which were taken from the MIT-BIH database, and

was achieved an 89% recognition rate on the Dey-Hospital ECG database. Their

system achieved an 82.1% recognition rate when palmprint was only being used,
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and when both modalities are combined, their system achieved a 94.7% recog-

nition rate. In the same year, Fufu Zeng et al. [8] proposed a statistical-based

ECG identification method that applies the idea of matching Reduced Binary

Pattern and was suggested of having high accuracy with low complexity and fast

processing on ECG-based systems. P waves of each ECG signal were converted,

reduced, and counted as binary sequences consisting of digits 0 and 1. After that,

each of the ECG signal probabilities was being calculated by finding and giving

them rank. The system was tested on MIT-BIH Normal Sinus Rhythm database

consists of 13 women and 5 men, and was achieved a 90.19% identification rate.

Their system achieved a 95.79% identification rate when MIT-BIH Arrhythmia

Database consists of 25 men and 12 women were used.

In 2013, Emna Rabhi et al. [9] proposed a new set of features that took ten

morphological descriptors of each heartbeat, which were divided into homoge-

neous groups such as amplitude, surface, slope, and intervals. These homoge-

neous groups were described as maximum amplitude of positive and negative

peaks (Pp, Pn), area of positive and negative samples (ArP, ArN), the time inter-

val from QRS complex to maximum positive peak, and time interval from QRS

complex to maximum negative peak (Ima, Imi), QRS slope velocity between R

peak to Q point, and R peak to S point (S1, S2). The system was constructed

by combining these features with 60 Hermite Polynomials Expansion (HPE) co-

efficients which were extracted from each heartbeat. Then combination of these

extracted features is applied on Hidden Markov Model. After that, the system

was tested on 18 healthy people in the MIT-BIH database and achieved a 96.7%

recognition rate. In the same year, A.C. Matos et al. [10] introduced an ARM

cortex-based embedded ECG acquisition system. ECG signals of 10 subjects were

measured by using dry Ag/AgCl electrodes on patients’ left and right-hand index

fingers. After that, ECG signals were segmented into 64 ms windows with an

overlap of 54 ms, and Short Time Fourier Transform (STFT) was applied to each

of these windows, where for each frequency bin, an estimation of mean and vari-

ance was stored in the database. The system compared the mean and variance
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of each ECG signal with a pre-defined person’s mean and variance by using the

maximum likelihood estimation method. If the ECG signal was more likely to

the pre-defined user for the given threshold, then it accepted the person; if not, it

was rejected. 100% identification rate was achieved given 30 seconds ECG signal.

In 2014, J. Wu and Y. Zhang [11] presented a Neural Network-based ECG iden-

tification system which later tested on Lead-I ECG signals taken from 33 nor-

mal individuals in the MIT-BIH Arrhythmia Database. QRS complexes were

suggested that is the most distinct feature sets among the heartbeat features

and were being used for human identification. Their system consists of extract-

ing QRS complexes on each heartbeat, then applying the dimension reduction

method by using the PCA algorithm on the QRS complexes. Reduced QRS com-

plexes were then applied on Back Propagation Neural Networks (BPNN) as a

classifier to score and evaluate the system’s performance. In the research, the

accuracy of the classifier reached 99.6% for 33 subjects. In the same year, Kuo-

Kun Tseng et al.[12] proposed an identification system by constructing a sparse

matrix that contained ECG signals that reduced dimensions. Through their sur-

vey, transform-based such as wavelet transform frequency domain transform, dis-

crete cosine transform (DCT), and waveform-based feature extraction methods

were being observed, and the best feature extraction method was decided as a

waveform-based method for their system. The unique aspect of their research

was, not only Lead I ECG signals were being used, but also other leads were

being considered as features because of containing additional information of the

heart. This idea formed from research [13] focused on diagnosing acute myocar-

dial infarction using two-dimensional echocardiography. In their research, two

lead ECG signals were being mapped into two-dimensional coordinates to form a

matrix. After that, a special mask was applied onto the matrix, which desired to

be reduced in dimension so that it can transfer into a sparse matrix that easily

stored and addressed the signals. The important point of the sparse matrix was

that it reduced and stored the non-zero elements into three vectors which con-

tained rows of the non-zero elements, the column of the non-zero elements, and
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values of the non-zero elements. After finding the rows, columns, and values of

non-zero elements, coordinate format (COO) was being used to store the system;

as most of the matrix were zero, the corresponding value ’1’ was given. Then

correlation coefficient classifier was being used for the purpose of training and

individual identification. In the training process, for each of ECG sparse matrix’s

correlation and covariance were found among each other, and the best threshold

values were being found for each person so that in the test process, it was used

to classify the unknown ECG data. Accuracy of 95.3%, False Acceptance (FA)

of 0.094, False Rejection (FR) of 0 was achieved by using 18 long-term ECG

recordings in the MIT-BIH normal sinus rhythm database.

In 2015, Huan Zhang et al. [14] proposed an ECG Identification system that fused

two different feature extraction methods, which were harmonic fundamental wave

ratio and single-cycle inner time-frequency joint analysis. In the pre-processing,

a wavelet de-noising algorithm was applied on the ECG signal of 36 individuals

in the MIT-BIH database so that muscular noise on ECG signals was reduced.

After the noise reduction algorithm, R points of ECG signals were found, and

two adjacent R points were defined as one cardiac cycle. Firstly, a total of 32

harmonics were found by using discrete Fourier Series expansion for each cardiac

cycle. The taking mean of every 32 harmonics found in each consecutive ten car-

diac cycles was then stored as a feature vector to achieve minimum diversity. In

their experiment, 32 harmonics were the best value that fits the ECG waveform

well. Then Short Time Fourier Transform (STFT) was applied between each

QRS complex, and new feature sets were found. After that, by combining these

two feature sets, a 94.4% recognition rate was achieved. In the same year, Juan

Sebastian et al.[15] introduced an ECG authentication system for mobile devices.

The idea comes from the excessive need for security when compares with tradi-

tional password systems that are not enough for protection. With this in mind,

they suggested an authentication system that users press two metal electrodes

externally attached behind the cellphones to unlock their cellphones. In the al-

gorithm, fiducial points were extracted from ECG signals, which were P point,

7



Q point, R point, S point, T point, the starting point of the P wave (LP), and

ending point of T wave (TP). The idea comes from research [16] focuses on finding

the best temporal fiducial points for ECG identification system. In the labora-

tory experiment, the algorithm was tested on ten different people that recorded

at different times and achieved a 1.41% false acceptance rate and 81.8% true ac-

ceptance rate for 4 second recorded signals. In the same year, M. Dai et al. [17]

proposed a weighted correlation coefficient method for ECG-based identification.

Their research stated that correlation coefficient was the statistical indicator that

reflected the linear relation between two variables; by calculation it, determina-

tion and classification of ECG waveforms of the person can be achieved. In their

research, the contribution of the correlation coefficient was under debate given

the ECG template. Therefore they introduced a weighted correlation coefficient

system and achieved a recognition rate of 98% compare to traditional correlation

coefficient methods, which have 94.15% in the MIT-BIT database. It achieved

an 87.67% recognition rate, where the traditional method achieved 77.15% when

ECG signals were recorded from hands. In the same year, G. Altan et al. [18]

proposed an identification system that uses the Second-order Difference Plotting

(SODP) method to extract features for each segment of the heartbeat. It is men-

tioned in their research that SODP is a method that analyses non-linear signals

by visualizing two consecutive data points. Each segment found from ECG was

mapped into two dimensional coordinates by considering x(n+1)-x(n) for Y-axis,

x(n+2)-x(n+1) for X-axis. Then classification system was constructed by us-

ing the K-nearest Neighbor algorithm. After that, their system was performed

on 90 people’s ECG signals which were taken from the Physionet database and

achieved a 91.52% recognition rate. In the same year, Muhammad Najam Dar et

al. [19] presented an ECG recognition system based on hybrid feature extraction

methods, which are heart rate variability (HRV) and discrete wavelet transform

(DWT). First local maxima of ECG signals were found to extract R peaks, then

45 samples left, and 49 samples right side of the R peaks were defined as QRS

complex. After locating the QRS complex, discrete wavelet (Haar) transform

was applied on them so that extract more discriminating features for each beat.
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Then corresponding heart rates, which are time differences between R-R peak

interval and mean of R-R interval, were extracted as for time-domain features.

Greedy Best First Search (GBFS) was used to determine highly correlated feature

sets among the combined time and frequency domain features. Then it achieved

95.85% accuracy, 4.15% false acceptance rate, and 0.1% false rejection rate on 47

subjects by using Random Forest classifier.

In 2016, Xiafei Lei et al. [20] represented a deep learning feature-based system

that reduced the dependence of origin and length of the ECG signals on system

accuracy. Unlike traditional methods, feature combinations and fiducial point

detection were not required in their system, and it was stated that the test process

could use parallel processing to improve overall efficiency. Firstly, a 1 Hz – 40 Hz

bandpass filter was applied to ECG signals to remove unwanted noise. After that

sampling rate of ECG signals was decreased to 125 Hz to increase deep neural

network speed. Then a window with a length of d-window was pre-defined, and

ECG signals were segmented into vectors by the size of d-windows. Their system

consists of 1 dimensional two different convolutional neural networks. First CNN

was applied to analyze the temporal points for the given segmented ECG vectors,

and it had 1 input layer with the dimension of d-window, three convolutional

layers with 5 x 1, 5 x 1, and 4 x 1 filter lengths, respectively, average pooling

layer with a 2 x 1 subsampling step, one fully connected which used as feature

1. It was stated that convolutional layers are equipped with randomized leaky

rectified linear units (RReLU). After that, in the parallel process, the second

CNN, which had the same structure as the previous one, was applied to the

coefficients found by applying Discrete Cosine Transform (DCT) on segmented

ECG vectors and was used as feature 2. After combining these two features, Back

Propagation Neural Network (BPNN) and a non-linear Support Vector Machine

(SVM) were used as classifiers. BPNN had 3 layers with 200 neurons in the hidden

layers, whereas the Gaussian radial basis function (RBF) kernel was being used

on SVM. The system was tested on 100 subjects who were randomly selected

from the PTB Diagnostic ECG Database and achieved 99.33% accuracy. In the
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same year, Kuo-Kun Tseng et al. [21] proposed a Neural Network-based unknown

ECG identification system in which Frequency Rank Order Statistics (FROS) as

a feature extraction method and BPNN as classifier were used. In FROS, firstly,

ECG signals were mapped to binary number by comparing with the adjacent

sample. ’0’ was given when the value of the adjacent sample was bigger than

the current sample, whereas ’1’ was given when the value of the adjacent sample

was smaller than the current sample. After the ECG signals were converted to

binary numbers, they were converted to m-bit words by the length of m, which

will be counted and sorted in order of descending frequency. Then ECG ranks

were given according to their frequency, from the largest to smallest, and were

used as feature sets. System performance was tested on 18 subjects taken from

Arrhythmia Laboratory at Boston’s Beth Israel Hospital. Then 1 person was

used as an unknown class, the other 17 people were used for training the Neural

Network, and an unknown class was identified with an accuracy of 91.76%. In

the same year, M. Bassiouni et al. [22] presented a person identification method

by using an artificial neural network (ANN) on non-fiducial ECG features. ECG

signals were separated into vectors by the 10 seconds window length. After that,

autocorrelation (AC) of each of these separated ECG signals were calculated,

then discrete cosine transform (DCT) was applied on the AC and found AC/DCT

features of each separated ECG signal. These AC/DCT coefficients are then used

on ANN to construct a classification algorithm. 30 subjects in the MIT-BIH

Arrhythmia database were being used for performance, and accuracy of 97% was

achieved.

In 2017, L. Wieclaw et al. [23] proposed a biometric identification system based

on deep learning techniques. First, the raw ECG database was constructed from

the subject’s three fingers by using Ag/AgCl electrodes to make the system more

user-friendly. Then various digital filters were applied on raw ECG signals so

that baseline wanders, 50 Hz sinusoidal interference, muscle artifacts including

respiration movement, and noise generated from the electronic device would be

eliminated. Then each of the ECG signal’s R points was found, segmented into
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a fixed dimension, and used on a feed-forward network to train the system. The

system performed on raw ECG signals of 18 people and achieved a 96% identifi-

cation rate. In the same year, Gang Zheng et al. [24] also proposed a biometric

identification system based on deep learning techniques. The difference is, the

feature set was found from information entropy. This information entropy is the

measurement of confusion and dispersion degree of ECG signals of same peo-

ple to others. Their system was performed on three different databases, which

consisted of 13 individuals from the MITDB database, 28 individuals from self-

collected, 19 individuals with different emotion statuses. Respectively, 96.63%,

98.10%, and approximately 95.51% recognition rate were achieved. In the same

year, Ronald Salloum et al. [25] also presented an ECG identification method

in which recurrent neural network (RNN) was used. Firstly, their system was

found each heartbeat for a person and put them into fixed N x D vectors where N

represented the number of heartbeats, whereas ’D’ represented the dimension of

each heartbeat waveform. After that, newly constructed 2-D features were given

to the RNN algorithm for classification. Their system was tested on different

dimensions, and 9 heartbeats were selected because of giving the best perfor-

mance. Then it was performed on two different databases, which were ECG-ID

and MIT-BIH Arrhythmia databases that; the number of classes consisted of 18

individuals and was achieved approximately 0% EER and 100% recognition rate

when 9 heartbeats were being used for each individual.

In 2018, M. Bassiouni et al. [26] introduced intelligent hybrid approaches for

human ECG signal identification. Firstly, the de-noising and filtering process

was applied on ECG signals which were taken from the MIT-BIH Arrhythmia

database and ECG-ID database. Then both fiducial features, which were P, R, T

waves amplitude, Q and S point amplitude, and their respective intervals (QRS,

P-QRS, QRS-T, P-QRS-T) and non-fiducial features were extracted. AC/DCT

method, which was explained in their previous work, was applied for finding non-

fiducial features. After the combination of these two approaches, three different

classification methods were being used, which were SVM, ANN, KNN, and 99%,
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95%, 98% identification rates were achieved on 90 individuals in the ECG-ID

database, respectively. For 47 people in the MIT-BIH database, each method

achieved a 100% identification rate.

In 2019, Jae-Neung Lee et al. [27] presented a personal identification system that

used a robust principal component analysis network (RPCANet) and wavelet

analysis. First, the wavelet transform of ECG signals was found by taking the

inner product between the original signal and the so-called wavelet basis func-

tion. Newly found wavelet coefficients gave us similarities between analyzing and

analyzed signal, and these coefficients indicate how close the signal was to the

basis function. Scalogram was applied to wavelet coefficient to visualize it and

mapped it into two dimensions. It allowed us to detect the most representative

frequencies and contribution the most to the total energy. After that, RPCANet

was applied to the 2-D features by convolving them with PCANet filter banks

and by using multiple binary quantization operations to scale it to 1-D sparse

features. SVM was used on these 1-D sparse features, and a 98.25% recognition

rate was achieved on 95 individuals in their self-constructed database.

These are the most recent research about ECG identification. Before we begin

the speech-based identification, some concepts must be known. The speech-based

identification method is divided into two different categories, which are text-

dependent speaker recognition and text-independent speaker recognition. Text-

dependent speaker verification is connected with the fact that a pre-defined ut-

terance is used for both training and testing the system. It can also be stated

as Fixed Phrase Verification, in which a pre-defined phrase is used both during

the training and verification periods. In comparison, text-independent speaker

identification is not restricted to any fixed and prompted phrases [28]. Therefore,

although this type of system has more freedom on users, the system’s performance

is not that accurate with respect to a text-dependent system. Text-independent

methods mostly focused on spectral characteristics of each speaker by extract-

ing one or more codebook entities that were presentative of that speaker. We

will discuss with text-independent system and its recent development because
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the text-independent speaker identification method is being used in our proposed

method.

In 2007, Sandipan Chakroborty et al. [29] proposed a text-independent speaker

identification method by combining MFCC with a newly developed filter bank

structure. Over the years, MFCC was being used to model the human auditory

system. However, because of the structure of the standard MFCC filter bank,

it captured vocal tract characteristics in the lower frequencies. In their system,

a new set of features were extracted by using an additional complimentary fil-

ter bank structure which improved the distinguishability of speakers, specific in

higher frequency zone. These newly found MFCC coefficients were stated as In-

verse MFCC (IMFCC) because the filter bank was the inverse of the standard

filter bank. Additional to IMFCC, MFCC was also found, and these two fea-

tures were then put into Gaussian Mixture Model (GMM) classifier. GMM was a

non-parametric classifier, and it was defined as a multivariate probability distri-

bution model which was capable of modeling the arbitrary distribution of speaker.

During the training process, MFCC and IMFCC features were given to the Ex-

pectation and Maximization algorithm, which iteratively updates the parameters

until the log-likelihood converges to a stable value. Their system was tested on

138 speakers, each has 96 utterances in the YOHO database, and a 97.74% recog-

nition rate was achieved. In the Polycost database, their system was achieved an

81.57% recognition rate.

In 2009, Shung-Yung Lung [30] proposed a text-independent speaker recognition

system based on improved wavelet feature extraction using kernel analysis. In

general, discrete wavelet coefficients are not diagonalizable with respect to wavelet

bases, and these schemes may lead to an eigenvalues decomposition of a very large

covariance matrix which is computationally expensive. For this reason, the kernel

canonical correlation analysis (KKCA) was being proposed to conduct after the

wavelet transform. After the feature was extracted, GMM was being used as

a classifier. 100 telephone data in the TALUNG database, which consists of 65

male, 35 female speakers who pronounced free-text, have been used and achieved a
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96% recognition rate. In the King database, which consisted of 51 male speakers,

a 98% recognition rate was achieved.

In 2010, Sandipan Chakroborty et al. [31] introduced their new methods about

text-independent speech recognition by stating that eliminating redundant fea-

tures was important for the performance. They stated that redundant features

confuse the speaker model in multidimensional space resulting in degrading per-

formance. Carefully selecting features is not only helping achieved a higher rate

of accuracy but also lowers the computational cost. For this purpose, Singular

Value Decomposition (SVD) followed by QR Composition with Column Pivoting

(QRcp) methods applied to the features. Three different feature extraction meth-

ods had been used, which were MFCC, Linear Frequency Cepstral Coefficients

(LFCC), and a newly proposed method with a Gaussian shape filter on Mel-scale

(GMFCC) for comparing each other. The procedure for finding GMFCC was

exactly the same as MFCC expect for using triangle filter bank on Mel-scale,

Gaussian shape filter bank was being used. It was stated that GMFCC did not

only contain frequency information like MFCC, it was also carrying amplitude

information derived from the power spectrum. GMM was used as a classifier

and, the system tested on 131 people in Polycost and 138 people in the Yolo

database. By using MFCC, LFCC, and GMFCC features, their system achieved

96.65%, 96,75% and 97.03% recognition rates on the Polycost database, respec-

tively. However, In the Yolo database, their system achieved 77.85%, 77.85%, and

80.24% recognition rates, respectively. In the same year, M. S. Sinith et al. [32]

proposed text-independent speaker identification using MFCC and GMM. Their

system tested on 60 speech data which consisted of a combination of English,

Hindi, Tamil, and Malayalam languages, and achieved 98.8% recognition rate

when tested speech signal lengths were 10 seconds.

In 2011, Zhanyu Ma et al. [33] represented a super-Dirichlet mixture model using

differential line spectral frequencies for text-independent speaker identification.

Their system utilized the line spectral frequencies (LSFs) as an alternative feature

14



set for capturing speaker characteristics. Then LSF was transformed to the dif-

ferential (DLSF) space by cascading two neighboring frames which one of which

was past frames, whereas the other one was following and current frames. Then

combination of three vectors gave us a super vector, and the statistical distri-

bution of this super vector was modeled by the super-Dirichlet mixture model

(SDMM). The feature extraction procedure was exactly the same as MFCC until

three consecutive MFCC features were put to 3 x M vector where M was the

dimension of MFCC feature set while applying linear regression for each MFCCs.

Then super vector was mapped to a 1 x N vector by using the DLSF method. It

was stated that the proposed model had been achieved promising improvements.

Their system tested on 25 people in the TIMIT database where each speaker

spoke ten sentences, and in the pre-processing, speech data was segmented into

25 ms frames which have 10 ms step size, and silence frames were removed. It

achieved a 99.5% recognition rate by using an SDMM classifier. In the same year,

Khaled Daqrouq [34] proposed a text-independent speaker recognition system by

using wavelet entropy and neural network. By using Shannon entropy of wavelet

packet (WP), 4 feature sets were extracted from speech. Then, the features fed

to the feed-forward backpropagation neural network (FFBPNN) to classify the

speech signals. The system tested on 29 speakers who utter ’0’ to ’14’ digits and

a total of 696 utterances in the Arabic language. The first 6 utterances were be-

ing used for the training set, while others were being used for testing the system

for each person. In the experiment, a 91.09% recognition rate was achieved. In

the same year, Hesham Tolda [35] proposed a text-independent speaker identi-

fication method based on MFCC and Continuous-Time Hidden Markov Model

(CT-HMM) with Gaussian Mixture Model. It stated that Hidden Markov Model

was a non-parametric model, where the set of short-time training feature vectors

of a speaker compressed to a small set of representative points. CT-HMM was

an HMM in which both the transitions between hidden states and the arrival of

observations could occur at arbitrary times. Therefore, it is suitable for irregu-

larly sampled temporal data such as speech signals. However, it comes with a
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more computational cost. The system tested on 10 speakers whose speech con-

sists of two sentences recorded in different rooms. The first sentence was being

used on training, and the other one that collected from a different room used to

test the system, and approximately 80% recognition rate was achieved whereas

same sentences were used on both test and training, it was stated that it achieved

approximately 100% recognition rate.

In 2012, A.D. Jafeer et al. [36] proposed text-independent speech recognition

using MFCC and Hidden Markov Model. MFCC features were first put into

vector quantization so that redundant features could be eliminated. Then reduced

features were pass through HMM for classification purposes. 40 speakers with 20

utterances per speaker from the Switchboard Corpus dataset were being used, and

each utterance consisted of approximately 3.2 seconds speech signal. The average

length of each frame was about 32 ms, so each speaker had at least 3960 MFCC

feature vectors. In both test and training datasets, 128 significant MFCC features

were extracted from a total of 3960 MFCC feature set for each person by using

the K-mean clustering algorithm. Three different classifiers, which were Linear

Discriminant Analysis (LDA), Multilayer Perceptron, and Hidden Markov Model,

were being used, and 70.5%, 81.1%, and 100% recognition rate were achieved,

respectively.

In 2013, S.S. Nidhyananthan et al. [37] proposed robust language and text-

independent speaker identification, which used a combination of Dynamic Mel-

frequency Cepstral Coefficient (DMFCC) feature and MFCC feature. It was

stated that pitch frequency presented the speaker’s periodic characteristic of the

vocal cord’s vibration when speakers pronounced voice sounds, and because the

traditional MFCC algorithm used a fixed-size filter bank, it did not fully portray

the vocal characteristics of different people. Therefore dynamic-Mel filter-based

feature extraction algorithm was represented. Their system tested on 120 peo-

ple who have a speech length of 20 seconds. By using GMM classification, their

system achieved 1.2% error rates when the combination of DMFCC and MFCC

was used, whereas 5.8% and 2.9% error rates were achieved when only MFCC
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or DMFCC were used respectively. In the same year, Jalil Taghia et al. [38]

presented Von-Mises Fisher Mixture Model (vMFMM) based text-independent

speaker identification method. LSF algorithm was used for feature extraction,

and Von-Misses Fisher Mixture Model was used for classification. If the vectors

in which ’Direction’ is more important than ’Magnitude’ of the datasets, then this

classifier is being used. It models the signal based on distribution on a hypersphere

and mainly consists of two parameters which are mean direction (µ) and concen-

tration (κ). The algorithm starts with the initialization of the hyper-parameters

characterizing the parameter distributions. Then, the current distribution over

the model parameters is being used to evaluate the responsibilities, which will be

used for the optimization of the variational posterior distribution over parame-

ters. Variational lower bound will be monitored for each iteration until converging

to a specific value. Finally, the predictive density of the new observed variable

is calculated and used for classifying the system. TIMIT speech database was

used for the evaluation of the system. 100 randomly selected speech signals were

segmented into 25 ms frames with a length of 10 ms step size. Then silence

frames were removed from the database. It achieved a 78.43% recognition rate

on 3 seconds speech signals when vMFMM and LFSs were being used, whereas a

77.36% recognition rate was achieved when GMM and MFCC were being used.

In 2014, Hong Yu et al. [39] proposed a text-independent speaker identification

method that used a histogram transform model on MFCC features. Their system

used dynamic MFCC features, which took and put adjacent frames into a super

vector and calculated 3 neighboring MFCCs. Then probability density function

(PDF) of the super vector was estimated by using the histogram transform (HT)

algorithm. In the test procedure, seven sentences that were randomly selected

from one speaker were used as training, and the remaining three sentences for

each speaker were used for testing. When the super vector contained consecu-

tive 100 MFCCs, it achieved a recognition rate of 97.6%. In the same year, N.

Almaadeed et al. [40] proposed a text-independent speaker identification system

based on wavelet analysis and neural network. Their system consisted of three
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neural networks, which were RBF, PNN, and GRNN, and score fusion was estab-

lished by concerning majority vote. The system tested on 34 people in the Grid

database, which had 1000 sentences spoken. The signals were separated into 50

ms frames and applied to classification methods, and a 97.5% identification rate

was achieved.

In 2016, N. M. AboElenein et al. [41] introduced improved text-independent al-

gorithm by using MFCC and GMM methods. CHAINS Speech Corpus dataset,

which consisted of 36 people who were recorded with a time separation of 2

months, had been used in their system. Each signal passed through pre-process

stage, and in the pre-processing, downsampling and silence removing operations

were conducted. After that gender detection algorithm was used for separating fe-

males and males to improve accuracy; for that reason, a pitch detection algorithm

was used, voiced and unvoiced parts of speech signal were found. Then by using

the voiced part of the speech signal, gender of speech was detected. After that,

MFCC features were extracted for both male and female speech, separately. Then

vector quantization was applied for removing feature redundancy and model with

GMM algorithm. Their proposed system was achieved a 91% recognition rate,

whereas the traditional system, which uses only VQ and GMM methods, achieved

an 88% recognition rate. It was stated that the time it consumes was less than

20% from the traditional system. In the same year, N. Almaadeed et al. [42] pro-

posed a vowel-based recognition algorithm for real-time text-independent speaker

identification. The system contributed to designing a scalable system based on

vowel formants filters and a scoring scheme for the classification of an unseen

instance. Both MFCC and Linear Predictive Algorithm (LPC) had been used

to extract vowel formants in given 30 ms speech frames. LPC is a method that

extracts the resonating frequencies of formants from the remainder of the noisy

signal through inverse filtering. It analyses the speech signal by estimating the

formants, removing their effects from the speech signal, and estimating their in-

tensity and frequency. It was stated that frequency range and standard deviation

of vowel formants were found by the research of L.R. Rabiner et al. [43], and by
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series of bandpass filters, vowel formants can be found. In their system, the Win-

dow process, Normalization, Auto-Regression filter, Formant detection method,

Matched Filter/Smoother algorithms were applied in order to find vowel formants.

5 different features were extracted and used as score-based speaker identification.

These 5 different features were given as both first and second formants, all first,

second, third formants, both first and second formants, both second, third for-

mants, and averaging, comparison with least distance. These 5 feature sets were

then given to neural networks to score based identification. The system tested

on four databases which are YOHO, NIST, TI digits1, and TI digits2. It was

only stated TI digits databases consisted of 326 speakers who utter 77 digit se-

quences. All speech files, each at least 25 seconds long, had been used for training

the system, and it was stated that above the 25 seconds speech data was hardly

make any difference to the performance of the system. The system was tested

on 1, 2, and 3 seconds speech signals, and for the YOHO database, it achieved

83.78%, 89.46%, 94.23% recognition rate, respectively. For NIST database, it

achieved 72.54%, 85.28%, 92.15% recognition rate, respectively. For TI digits1

database, it achieved 78.56%, 91.25%, 96.87% recognition rate, respectively. And

finally for TI digits2 database, it achieved 80.12%, 91.89%, 97.34% recognition

rate, respectively.

For clarifying the differences between the voiced, unvoiced, and vowel formants,

A.G. Ramakrishnan in Indian Institute of Science stated that “Pitch is the fun-

damental frequency of vibration of the vocal folds, which are present at the top of

one’s trachea. They vibrate quasi-periodically only for voiced phonemes, namely

vowel, semivowel, and nasal sounds. So, for unvoiced stops such as /p/, /k/, /t/,

/th/, /ch/ and unvoiced fricatives such as /f/, /s/, etc. there is nothing called

pitch. The formant frequencies are due to the frequency shaping of the signal

from the vocal folds by the vocal tract. The vocal tract is everything from the

nasal tract, tongue, teeth, lips, palate, etc. The particular configuration of the

above organs (articulators) for every phoneme creates resonances at specific fre-

quencies called formants. So, formants exist for both voiced and unvoiced sounds.
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Pitch can be estimated by quantifying the period (using autocorrelation, say) or

measuring the harmonics. Formant frequencies can be found by linear prediction

analysis from the poles.” (A.G. Ramakrishnan, 2013)

In 2019, A. S. Imran et al. [44] proposed text-independent speaker identification

by using MFCC features and a deep neural network classifier. In their system,

MFCC features of 3-second audio signals for each speaker were extracted and

mapped into 299 x 13 2-D vector, whereas the value of ’13’ represents MFCC

coefficient and ’299’ represents the dimension of the 2-D vector. Then each of

these 2-D features was applied to a CNN algorithm. The CNN algorithm consisted

of the following order: Two 2-D convolutional layers which each has a dimension

of 3 x 3 in succession, a max-pooling which has a width of ’2’ and stride of ’1’,

dropout layer that 25% of nodes used as dropout, 2-D convolutional layer, max-

pooling layer, dropout layer, flatten layer, dropout layer, fully connected layer,

fully connected layer, and classification layer. The system tested on 119 speakers

in the MOOC database, and it achieved a 93.37% recognition rate for 3 seconds

speech signal. It achieved a 94.44% recognition rate for 5 seconds speech signal,

whereas 94.64% were achieved when 7 seconds speech was used.

The various research about ECG and Speech identification systems has been re-

viewed so far, and QRS complexes of ECG signal and MFCC features for speech

signal have been decided as the most promising feature set. In the ECG recog-

nition system, muscular noise, movement noise was stated as the cause of perfor-

mance decreasing, whereas background and silence, in speech signals. For these

reasons, various filters such as bandpass, smoothing, wavelet de-noising were ap-

plied in the pre-processing stage of their system. In speech processing, silence

removing operation was applied on speech signals to increase the performance.

Few researchers stated that vector quantization was applied to prevent the over-

fitting problem. Based on this information, the proposed system took shape, and

it will be presented in the following chapters.
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Chapter 2

Speaker Recognition System

2.1 Investigation of Speech Production

There are numbers of side branches in the vocal tract, which are the nose, piriform

fossa, etc., and during speech production, these branches have less variation in

some specific frequency regions. These frequency regions concerned with the side

branches may be related to paralinguistic, which involves words in spoken lan-

guage or non-paralinguistic information. The important point is the side branches

have large variations across each speaker, whereas having small changes during

speech production for the same person. They also do not change easily when

the person has reached adulthood. However, the frequency regions of these side

branches are not easily distinguishable. For these reasons, specific transforma-

tion is applied to extract acoustic features around those frequency regions which

describe the individual information.

In order to understand intrinsic speaker features, we must know how and where

the speaker features are encoded during speech production. Speech sound is

formed when the source sound is passing through vocal tract filters. Although

the vocal tract is treated as a single tube, it possesses a complicated shape that

consists of the main tract and multiple side branches. In the figure 2.1(a), the

human production system has been shown, and it can be seen that the vocal

tract consists of complex side branches and cavities [45]. In the figure 2.1(b),

21



(a) Vocal tract of human production system (b) Model of vocal tract with side branch

Figure 2.1: Human Speech Production [45]

the vocal tract is modeled, and the nasal passage is indicated as the biggest side

branch. “In producing nasal and nasalized sounds, the nasal cavity is coupled

with the oral cavity by lowering the velum. In some non-nasalized vowels such

as /i/ and the voice bar of voiced stop consonants, a quite strong coupling takes

place between the nasal and oral cavities via a transvelar coupling caused by the

velum vibration” (Dang and Honda, 1994, 1997). Several paranasal cavities con-

tribute anti-resonances to the transfer function of the vocal tract [45]. Because

of the nasal cavity’s complicated structure, nasal sounds do offer not only several

distinguishing phonetic units but also contain individual information. In the fig-

ure 2.1(b), it can be seen that the piriform fossa is the entrance of the esophagus,

and it is twin cone-like shaped. These side branches have anti-resonances from 4

to 5 kHz. The piriform fossa cavities are speaker-dependent and changeless during

speech production. Much research has been established to clarify the correspon-

dence of acoustical features to specific parts of the vocal tract. In these researches,

it found that when producing vowels, the first three formants vary with the vocal

tract while the fourth is almost constant. This phenomenon can be described by

looking in the Figure 2.1(a) where the throat part of the vocal tract consists of

the larynx and pharynx, and the larynx tube connects the pharynx via the outlet

of the larynx. The larynx length is different for each speaker and contains high-

frequency information. The vocal folds are also shown in Figure 2.1(a), locating
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between the larynx and trachea, serving air input to lungs. It was estimated in

the past research and, the fundamental frequency of the vocal fold’s vibration is

between 100 Hz and 400 Hz, depends on the length and stiffness of the vocal folds

of each speaker. In summary, the speaker-specific features caused by different ar-

ticulatory speech organs are distributed non-uniformly in low and high-frequency

bands [45]. In the next sections, the MFCC feature extraction method, which

focuses on both the low-frequency band and the high-frequency band of the vocal

tract, will be reviewed.

2.2 Introduction to Speaker Identification

Figure 2.2: Basic Speaker Identification Block Diagram

Speaker Identification is a widely used biometric system, and it is the process

of verifying the claimed identity of the registered speaker by using his/her voice

characteristics. This type of system divides into two groups which are text-

dependent and text-independent speaker identification. The difference is, the first

one studies the keywords of the users while the last one studies the construction of

the vocal tract of individuals. In Figure 2.2, the basic process of these two different

speaker identification methods has been shown. In the registration phase, the

speech signals of each speaker are given to the system. Then, significant features

are extracted for each user by using spectral analysis and store as a training

model. After constructing the training model, in the verification phase, spectral

analysis is applied for the given unknown utterances, and feature of unknown
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utterance is extracted. Then the decision is made by comparing the feature of

unknown utterance with the features in the training model. The most similar

feature in the training model to the unknown utterance is selected as the id of

the person.
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Chapter 3

Introduction to Biosignals

Human cells work like batteries, and these human cells produce small electric-

ity from inside to outside of the ion concentrations of their membranes in the

range of microvolts to millivolts. If the membrane got interrupted in any way,

this disturbance would cause the rising of an action potential of that cell which

eventually gets depolarized and repolarized. In Figure 3.1, the repolarization

and depolarization of human cell are shown.

Figure 3.1: Polarization and depolarization in human cells [46]

3.1 Electrocardiogram

The depolarization and repolarization cycle of the heart can be seen in the fig-

ure 3.2. Electrocardiogram consists of 6 processes, and it can describe as follows.
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Figure 3.2: Depolarization and Repolarization in hearth cycle [46]

1. Atrial depolarization, which is initiated by the SA node, causes the P wave

2. When atrial depolarization is complete, the impulse is delayed at the AV

node

3. Ventricular depolarization begins at the apex and causes the QRS complex.

Then Atrial repolarization occurs

4. Ventricular depolarization is complete

5. Ventricular repolarization begins at the apex and causes the T wave

6. Ventricular repolarization is complete

3.2 Electrocardiogram Measurement

The electrical activity of the heart produces currents that spread from surround-

ing tissue to the skin. By attaching electrodes to the skin, electric current activity
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can be easily detected. Then these electrical activities, which represent the depo-

larization and repolarization cycles of heath, turn into graphical waveform by a

differential amplifier. The issue is, electric currents are in the range of millivolts

to microvolts. In order to increase the accuracy of measurement, these current

activities are applied to the instrumentation amplifier so that they can bring to

the logical voltage level. The other issue is, these electrical activities radiate from

the heart to the skin in many directions. For this reason, multiple electrodes are

placed onto the human body so that the total picture of the human heart can

be represented. The ECG records which represent the different perspectives are

called leads, whereas recording of the electrical activity of the heart called elec-

trocardiogram [47]. Each lead provides the electrical activity of the heart, and

they can be measured between two points that are attached in opposite directions

of the heart. The magnitude of the waveform, which is recorded from these two

points, will change if the current of the heart and its direction to the skin change.

3.2.1 12-Lead ECG Measurement

12-Lead measurement setup provides 12 different views of electric activity of the

heart. By placing 9 electrodes on the patient’s limbs and chest, 12 waveforms of

the heart activity are obtained at different angles and planes. The measurement

points of each lead can be described as

Lead-I: Right Arm (−) and Left Arm (+), whereas Right Leg is reference point.

Lead-I observes the heart “from the left” because of placing a positive probe to

the left arm, and it is described as observation of 00 angle of heart activity in the

vertical plane

Lead-II: Right Arm (−) and Left Leg (+), whereas Right Leg is reference point.

Because of exploring electrode places onto Left Leg, it is described as observation

of 600 angle of heart activity in the vertical plane
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Led-III: Left Arm (−) and Left Leg (+), whereas Right Leg is reference point.

It observes the heart from an angle of 1200 in the vertical plane

Figure 3.3: Einthoven’s Triangle [47]

The measurement point provides information about the heart’s frontal plane

forms like a triangle. Axes of the three limbs, which are lead I, II, and III,

are known as Einthoven’s triangle lead.

Lead aVL: It is the combination of Lead-I and Lead-III and formulated as

aV L =
Lead-I − Lead-III

2
(Goldberger’s lead system aVL) and it observes the

heart from an angle of −300 in the vertical plane.

Lead aVR: It is the combination of Lead-I and Lead-II and formulated as

−aV R =
Lead-I − Lead-II

2
(Goldberger’s lead system aVR) and it observes the

heart from an angle of 300 in the vertical plane.

Lead aVF: It is the combination of Lead-II and Lead-III and formulated as

aV F =
Lead-II − Lead-III

2
(Goldberger’s lead system aVF) and it observes the

heart from an angle of 900 in the vertical plane.

Lead V1: It is the combination of Vw(−) and V1(+) point. V1 electrode is in

the position of the fourth intercostal space to the right sternum. It observes the

heart from an angle of 00 in the horizontal plane.
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Figure 3.4: Replacements of Einthoven’s Lead, and Goldberger’s Lead and their
review of the heart’s electric activity in the vertical plane [48]

Lead V2: It is the combination of Vw(−) and V2(+) point. V2 electrode is in

the position of the fourth intercostal space to the left sternum. Lead V1 and V2

are known as “septal leads”, and they observe the ventricular septum but may

occasionally show the changing originated from the right ventricle. It observes

the heart from an angle of 300 in the horizontal plane.

Lead V3: It is the combination of Vw(−) and V3(+) point. V3 electrode is in the

position under V2 and V4 points and diagonally placed between V2 and V4. It

observes the heart from an angle of 600 in the horizontal plane.

Lead V4: It is the combination of Vw(−) and V4(+) point. V4 electrode is in the

position between rib 5 and 6 in the midclavicular line. It observes the heart from

an angle of 750 in the horizontal plane.

Lead V5: It is the combination of Vw(−) and V5(+) point. V5 electrode is in the

position same as V4 but in the anterior axillary line. It observes the heart from

an angle of 800 in the horizontal plane.
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Lead V6: It is the combination of Vw(−) and V6(+) point. V6 electrode is in

the position same as V4 and V5 but in the midaxillary line. It observes the heart

from an angle of 1000 in the horizontal plane.

,whereas Vw =
1

3
(RA + LA + LL) and Right Leg is reference point.

(a) Replacement of Wilson’s Lead (b) Review of the heart’s electric activity in the hori-
zontal plane

Figure 3.5: Replacement of Wilson’s Lead and their review of the heart’s electric
activity in the horizontal plane [48]

Lead-I, II, and III are known as Einthoven’s Leads, aVL, aVR, and aVF are

known as Golberger’s Leads, and provide information about the frontal plane of

the heart, whereas V1, V2, V3, V4, V5 and V6 Leads are known as Wilson’s Leads

and provide the information of the horizontal plane of the heart [47, 48].

3.2.2 Common Monitoring Problems

Waveforms shown in the figures below illustrate the most common problem when

recording and monitoring the ECG signals.
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3.2.2.1 Baseline Wandering

Movements of patients’ restlessness or poor quality of electrodes placed on the

skin of patients cause such problems. It causes the baseline of ECG signals to

change over time.

Figure 3.6: Baseline wanders in ECG signal [47]

To solve the problem, 0.5 to 1 Hz, high pass filter should be applied onto the ECG

signals, which have baseline wanders. It can also be reduced by encouraging the

patient to relax and by replacing or repositioning the electrodes properly.

3.2.2.2 Power line Interference

The United States provides their citizens alternative current, which has a fre-

quency of 60 Hz, whereas Europe provides 50 Hz. Power line interference is seen

when a power supply of the ECG circuit is poorly grounded or not having filters

to filter out specific power noise. The corrupted ECG signal is seen in figure 3.7

where has additional frequency on the original signal causes ripples.

Figure 3.7: ECG signal which has AC interference [47]

Power line interference can be eliminated by applying band stop or notch filters.

Filter specifications must be calculated by considering the frequency of the power

line the countries provided.
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3.2.2.3 Muscle Tremor

During measurement of the ECG signals, the patient’s muscular signals will also

be recorded if the patients prop themselves up by their arms or patients are cold

and shivering. This type of noise is called muscle tremor, and it can be seen in

the figure 3.8. This type of noise is not easy to filter out because muscle noise

does not have a specific frequency range and can be occurred in the range ECG

signal’s frequency. For this reason, de-noising filters (transforms) such as wavelet,

EMD, or smoothing filter are applied to reduce the muscle noise in exchange for

losing some of the ECG information.

Figure 3.8: Muscle interference in ECG signal [47]

3.2.2.4 Misleaded Electrodes

Attention should be paid while placing electrodes because the direction of the

current flow changes whenever the polarization of the ECG signal changes.

Figure 3.9: Reversed lead ECG record [47]
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3.3 Components of an ECG Waveform

An ECG complex represents the electrical activity of the heart in one cardiac

cycle. ECG signals consist of three waveforms in one cardiac cycle; QRS complex,

P wave, and T wave. Additional to these waves, u wave can sometimes be seen.

The electrical activity can also be separated into segments and intervals, which

are the ST segment, the PR interval, and the QT interval. In the figure 3.10, J

point marks the end of the QRS complex and the beginning of the ST segment

[47].

Figure 3.10: Components of ECG waveform [47]

In the figure 3.11, the page grid illustrates the vertical, horizontal axis and their

measurement values.

Figure 3.11: The grid for ECG signal [47]
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3.3.1 P wave

The P wave is the first component of a normal ECG signal. It represents atrial

depolarization or transmission of an electrical impulse through the atria [47]. The

P wave characteristics of normal ECG are given as

Figure 3.12: P wave [47]

� Amplitude: between 0.2 to 0.3 mV

� Duration: between 0.06 to 0.12 sec.

� Location: before QRS complex

� Deviation: positive in Lead I, II, aVF and
V2 to V6, negative in other leads.

3.3.2 PR Interval

PR interval follows the atrial impulse from the atria to the AV node, the bundle

of this, right and left branches [47]. The PR interval characteristics of a normal

ECG are given as

Figure 3.13: PR Interval [47]

� Duration: between 0.12 to 0.20 sec.

� Location: It is between the beginning of
the P wave to the beginning of the QRS
complex

3.3.3 QRS Complex

QRS complex tracks the P wave, and it represents the depolarization of ventricles.

After the ventricles depolarize, the blood is ejected from the ventricles and is

pumped through the arteries [47]. QRS complex characteristics of a normal ECG

are given as
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Figure 3.14: QRS Complex [47]

� Amplitude: between 0.5 mV to 3 mV,
however it differs for each leads

� Duration: between 0.06 to 0.10 sec.

� Location: It tracks the PR interval
(between the beginning of the Q wave to
end of S wave)

� Deviation: positive in Lead I, II, III, aVL,
aVF, and V4 to V6, biphasic in V3,
negative in other leads

3.3.4 ST Segment

ST-segment represents the ventricular depolarization and the beginning of ven-

tricular repolarization [47]. ST-segment characteristics of a normal ECG are given

as

Figure 3.15: ST Segment [47]

� Location: It spreads from S wave to the
beginning of T wave

� Deviation: usually on baseline, may
change between −0.05 mV to 0.1 mV in
some leads

3.3.5 T Wave

T wave represents the ventricular recovery, or period of repolarization [47]. T

wave characteristics of a normal ECG are given as
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Figure 3.16: T Wave [47]

� Amplitude: vary between 0.05 mV to 0.5
mV

� Location: It tracks the ST segment

� Deviation: positive in Lead I, II, and V2

to V6 , negative in aVR ,vary in leads III,
and V1

3.3.6 QT interval

QT interval is the time needed for ventricular depolarization and repolarization.

QT interval changes according to heart rate. QT interval is shorter when heart

rate is increased [47]. QT interval characteristics of a normal ECG are given as

Figure 3.17: QT Interval [47]

� Location: It spreads from the beginning of
QRS complex to the end of T wave

� Duration: It varies according to gender,
age, and heart rate. It is between 0.36 to
0.44 sec.

3.4 Introduction to ECG based Person Identification System

A typical form of ECG-based Identification system is illustrated in figure 3.18,

and the pre-processing block and multiple filters are applied to the signals to

increase the performance of the system. The other processes are nearly the same

as speech-based identification systems, as previously mentioned in Chapter 2.

In an ECG-based system, feature extraction methods are separated into two

groups which are fiducial based and non-fiducial based points, and shown in

the figure 3.19. In the fiducial-based feature extraction, wave peaks, boundaries,

slopes of ECG signals are being used as features and categorized into three groups

which are temporal, amplitude, and morphological. Temporal relation between
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Figure 3.18: Typical ECG-based Person Identification System Block diagram [49]

various ECG waves such as P wave, QRS complex, and T wave reflects the stage

of heart’s stimulation along its electrical paths and can be used as a feature for

identification. P wave duration, QRS complex duration, T wave duration, PR

segment, ST segment, PR interval, QT interval can be given as an example to

the temporal features. The amplitude of the ECG waves can be easily recognized

and used as features which are P wave amplitude, Q, R, S point amplitude, T

wave amplitude. Morphological features are a bit different from temporal and

amplitude features, and it carries the information of ECG shapes, either as whole

or partial waves. In most morphological features extraction, slope among waves

such as ST, RS segment slopes, and angles described by Q, R, S waves have pri-

marily been used. Polynomial expansions which synthesize the heart morphology

or Hermite interpolation coefficients derived by fitting QRS complex are mostly

among the morphological-based features. These types of features require accurate

detection of fiducial, and results achieved by this kind of feature are dependent

on how clearly these points are being found. For this reason, a new approach that

does not require fiducial point has been reported to overcome this problem and is

called non-fiducial-based features. All the techniques described on non-fiducial-

based features are based on the assumption of ECG signal’s highly repetitiveness

and categorized into three groups. In autocorrelation-based features, normalized

autocorrelation coefficients are calculated by using randomly selected ECG sig-

nals that have a specific length in time, such as 5 seconds or 10 seconds, and used
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as a feature. In the phase space-based approach, ECG signals are characterized

into two dimensional or even three-dimensional space by using the time delay

technique so that they can highlight unexplored peculiarities of cardiac activity.

In the frequency-based approach, the frequency content of ECG signals is exam-

ined by using spectrum transformation methods such as LPC, MFCC, EMD, or

Hilbert-Huang transforms and are used as feature set [49].

Figure 3.19: Feature Extraction Methods for ECG-based Person Identification
System [49]
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Chapter 4

Design of Speech and Fingertip ECG Measurement

System

4.1 Block diagram of Speech and ECG Measurement System

Figure 4.1: Block Diagram of Speech and ECG Measurement System

Traditional ECG measurement system works with placing multiple Ag/AgCl elec-

trodes on the human body by considering the current direction of the heart. Al-

though this type of system measures the heart activity accurately with low muscle
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interference, it takes time to place the electrodes to the patient’s body which indi-

cates that it is not easy to use. For this reason, a new type of ECG measurement

system is needed, which both will stop consuming the user’s effort and time and

will only extract the necessary and significant current activity of the heart for

the identification system. Block diagram of the proposed system is given in fig-

ure 4.1. It consists of two independent analog structures in the same case that

do not affect each other’s working but are using the same Micro Controller.

The first analog structure is used to measure ECG signal from Lead-I connection

points, whereas the second structure is used to record speech signals. In the ECG

measurement part, the first two copper plates are used for patients to hold it

with both left and right thumbs while pressing the third copper plate with their

remaining fingers. Action potentials in the range of millivolts are captured from

these two copper plates by instrumentation amplifier, and ECG signal is formed by

differentiating these two action potentials over time while the third copper plate is

used as negative feedback to increase the Common Mode Rejection Ratio (CMRR)

because high CMRR must be so to amplifies the small signals, accurately. For

the safety of patients and proposed circuits both, electrostatic discharge (ESD)

protection and high input resistors have been used to prevent current leakage.

After the instrumentation amplifier, the operational amplifier is used to increase

the overall amplitude of ECG signals in the range of millivolts to the logic voltage

value. Therefore, instrumentation and operational amplifier’s gain are adjusted

until the total gain approaches 1000. Then anti-aliasing filter (low-pass filter)

is used for eliminating the high-frequency component of ECG before the analog-

digital converter so that high-frequency components can not disrupt the desired

ECG signal. The ideal low pass filter cut-off frequency is determined by looking

at the sampling rate of the analog-digital converter. Because of having a 1000 Hz

sampling rate, the high-frequency component on the ECG signal must be lower

than 500 Hz to obtain the digital signal perfectly. For this reason, the cut-off

frequency of the low pass filter is determined as 159 Hz. In addition to digital

output, it offers analog ECG output after an anti-aliasing filter. PC Interface
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protocol is established and developed in C language by using Keil Embedded

Development Tool for ARM microcontroller, which is STMF407VG. The protocol

is separated into two parts and can be changed by pressing the button in 3

seconds. The first interaction provides both visualization and registration of ECG

or Speech data in the Oscilloscope Open Source Application. Pressing the button

shortly gives us access to which data (Speech or ECG) is wanted to record and

visualize. The second interaction provides direct Speech and ECG data access

on the computer simultaneously. Because the Matlab interface does not provide

us real-time plotting, this type of solution was realized. In summary, the first

interaction is for creating an ECG and speech database to training the system,

whereas the second interaction is for testing the proposed system given ECG and

speech data simultaneously within a certain period of time. For future works,

fingerprint interface with PC by using Matlab is also established, and it is ready

to capture and transform the fingerprint data to RGB or grayscale image. The

system offers noise elimination on both recorded ECG and Speech data. 4th order

0.5 Hz IIR Butterworth high pass filter, 150 Hz window-based FIR Low pass filter

which the window function was hamming and window length was 48, 50 and 100

Hz 2th order IIR notch filters are applied on ECG data whereas 10 Hz 4th order

IIR Butterworth high pass filter, 4 kHz window-based FIR low pass filter which

the window function was hamming and window length was 48, 50 and 100 Hz IIR

notch filters are applied on Speech data. At the end of the filtered ECG signal,

a smoothing operation is applied to the signal to reduce the muscle noise by

considering losing the high-frequency component of the ECG signal. The length

of the smoothing filter is determined as 11.

The second analog structure is established to record two Speech signals where one

will be used as the original signal (recorded by microphone array, for the purpose

of a directional microphone), the other will be used as noisy speech which closes to

the noise environment (recorded by omnidirectional microphone). The differential

output port of these microphones is used to minimize external interference. 16

MEMs microphone is aligned into a circular shape with taking into account their
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distances to each other to establish a directional voice record system. Other than

instrumentation amplifier structure, anti-aliasing filter cut-off frequency, analog-

digital converters sampling rate, and in addition of adaptive RLS algorithm in

filters operations, it is the same as the first analog structure. However, in the

second analog structure, two speech signals are extracted and used to decrease,

if possible, eliminate the background and microphone internal noises. Because

the characteristic of MEMs microphones and its circuits are the same in both

omnidirectional and directional recordings, RLS algorithm does reduce not only

the background noise but also eliminate the noise caused by circuit or microphone

itself.

4.2 Schematic of Speech and ECG Measurement System

In figure 4.3, a schematic of ECG analog structure is illustrated. ECG circuit is

designed as both single supply mode where the device fed with 3.7 V regulator

which powered by USB and dual supply volt where the device fed with +/-

symmetric battery supply rail. The device is also designed to work with only 2

fingers where only the left and right fingers touch the copper plate. It is convenient

and easy to use with a single supply mode or 2 fingers measurement, but both

cause the power line noise to increase, especially using 2 finger mode. An INA333

instrumentation amplifier is used to differentiate the signal from the left and

right side of the fingers caused by the activity of the heart. “R5” and “R6” are

the gain resistors for the instrumentation amplifier, and they are calculated to

achieve the gain of 51. An integrator amplifier which is feed with the output of the

instrumentation amplifier, is given to the reference point of the instrumentation

amplifier to reduce the baseline wander as much as possible. Then raw ECG

signal passes through the first order low pass filter, which has a 159 Hz cut-off

frequency and gain of 20. This operational amplifier both increases the signal into

the range of 1 V to 5 V and eliminates the frequency components higher than

159 Hz. ECG analog output is provided by a 3.5mm audio port (J1) and ECG
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socket (P11). This also gives us the option of recording the ECG data through

the audio port on the PC.
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Figure 4.5: Circuit of Speech and ECG Measurement System (Noise Recording
Structure)

Figure 4.6: MEMs microphone module for noise and microphone array construc-
tion
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Figure 4.8: 3D model of Microphone Array Beam

Figure 4.9: 3D model of Speech and ECG measurement system

(a) 3D model of Fingertip Connector Front plane (b) 3D model of Fingertip Connector Back plane

Figure 4.10: Fingertip ECG Connector
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Figure 4.11: Speech and ECG circuit implementation

In figure 4.2, the schematic of the MicroController unit is illustrated. STM32F407

microcontroller is used to transfer the speech and ECG data signals to PC through

a USB port. It is a 32-bit ARM-Cortex M4 core-based microcontroller that has

a speed of 168 Mhz. STF202 (U9) EMI filter is used to suppress interference

generated by the device, other equipment and to protect the device from electro-

magnetic interference signals present in the environment because electromagnetic

interference (EMI), or radio frequency interference (RFI) are types of electronic

emission which impair the circuit performance. Protecting against the effect of

electrostatic discharge, MAX30034 (U4) ESD protection is an essential require-

ment, and it is used in the area where patients contact with the circuit. It protects

both the device’s reliability and patient safety.

In figure 4.4, the schematic of speech analog structure is illustrated. MEMs

microphone arrays are connected to P7 and P9 sockets. The first intention is

to use two microphone arrays putting back to back to create an end-fire array
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topology and by delaying and summing the speech signals by considering the

distance differences to increase the directionality. Later on, one of the ports is

disregarded, and only one microphone array which has broad-side array topology

is used. The first operational amplifier is used to differentiate the positive and

negative audio signals for eliminating the noise on the cable to obtain a raw speech

signal. Then second order low pass filter, which has a 4 kHz cut-off frequency,

is applied onto the raw speech signal to eliminate high-frequency components.

After that, the filtered speech signal is converted to a digital signal through an

analog-digital converter which has a sampling rate of 48 kHz.

In figure 4.5, the noise recording circuit is illustrated. The architecture of the

circuit and component’s value is the same as figure 4.4, so that characteristic of

directional and omnidirectional microphone become the same. This circuit is used

to record the background noise and noise caused by the circuit and eliminating

them by using RLS adaptive algorithm.

In figure 4.7, MEMs microphones are replaced with a distance to each other to

achieve broad-side array topology, and this will be reviewed in the next chapters.

In figure 25-a, the MEMs microphone schematic is illustrated. ICS-40730 MEMs

microphone, which is an ultra-low noise, has a differential analog output, and has

bottom ported architecture, is used to construct microphone array. Its 74 dB

SNR +/- 2 dB sensitivity tolerance makes it an excellent choice for far-field voice

application [50].

In summary, the properties of the speech and ECG measurement system can be

explained in figure 4.12.
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Figure 4.12: Speech and ECG
Measurement System

1. Digital analog converter output. It is used
to construct an analog ECG signal which
passes through digital filters.

2. Digital analog converter output. It is used
to construct analog speech signal which
passes through digital filters.

3. It will be used for future works. It will be
used if the analog audio signal is needed.

4. It is used for noise reduction. The
omnidirectional microphone will be
connected to this port. The device will
convert it to digital and use it on an
adaptive filter algorithm.

5. Analog Microphone Array output. It can
be used to take speech signals through the
audio jack of the PC.

6. Directional microphone array first input

7. Directional microphone array second input

8. It is used to attach copper plate for
Lead-I ECG measurement.

9. Analog ECG Signal output. It can be used to take ECG signals through

the audio jack of the PC.

10. It can be used if the system wants to feed with a battery to achieve low

noise recordings. A jumper is attached to P2, P1, and P6 to configure the

system to work with battery mode. These jumpers separate the regulator

voltages powered by USB with battery voltages.

11. It is used for future work. It will be used for fingerprint data collection.

12. JTAG input for the microcontroller to debug and program it.

13. USB output. Speech and ECG signals are converted to ASCII format and

sent to PC. ECG sampling rate is 1000 Hz, whereas the audio sampling rate

is 24 kHz.
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14. It will be used for future work. When the audio jack is connected, it will

automatically detect the jack and will convert the analog signal to digital.

4.3 ECG Signal Recording Results

Raw ECG signal, ECG signals applied various filters, and frequency spectrum is

shown in the following figures 4.13, and 4.14.

In the figure 4.13, a 12-bit Raw ECG signal is taken by the proposed speech

and ECG Measurement Device. The signal is shown in the first 6 seconds of the

record, and the final 2 seconds of the record are caused by not holding the copper

plates. While constructing the database, this type of undesirable signal must be

eliminated. Some traditional devices offer a lead-off detection circuit when the

electrodes do not touch the body. In our proposed system, an ECG spikes and

inconsistent beats detection algorithm is constructed to eliminate inconsistency of

data instead of using a lead-off detection circuit. This algorithm will be explained

later.

In figures 4.14, filter operation and its effect on the FFT are shown step by step.

In figure 4.14(a) and 4.14(b), the result shows us that there is a DC component

over the ECG signal. DC component’s magnitude is both seen in the frequency

spectrum of the signal or signal in the time domain as 1000. In figure 4.14(c)

and 4.14(d), 0.5 Hz 6th order high pass Butterworth filter is applied onto the raw

signal, and it is seen that the DC component is removed and the signal is brought

in the zero levels. When the scale of the signal changes due to removing of the DC

component, now it can be easily seen that there are 50 Hz and its harmonics over

the signal. To remove 50 Hz and 100 Hz, Notch filters are applied onto the signal,

and the result is shown in the figure 4.14(e), 4.14(f). The 150 Hz and higher

harmonics are eliminated after the window-based FIR low pass filter is applied

onto the signal, and the result is shown in the figure 4.14(g), 4.14(i). And finally,

a smoothing operation is applied, and the result is shown in the figure 4.14(h)

and 4.14(j).
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Figure 4.13: 12-bits Raw ECG Signal

(a) Raw ECG Signal (b) DFT of Raw ECG signal

(c) Filtered ECG Signal (High pass) (d) DFT of Filtered ECG Signal (High pass)
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(e) Filtered ECG Signal (Notch) (f) DFT of Filtered ECG Signal (Notch)

(g) Filtered ECG Signal (Low pass) (h) DFT of Filtered ECG Signal (Low pass)

(i) Filtered ECG Signal (Smoothing) (j) DFT of Filtered ECG Signal (Smoothing)

Figure 4.14: ECG Filtering Processes
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4.4 Design of Microphone Array Beam

(a) Broad Side Array Topology (2-Microphone) (b) Response of a 2-Microphone Broadside Array with
75 mm Spacing

Figure 4.15: Design of Broad Side Microphone Array Beam [50]

A broad-side microphone topology is a type of microphone array in which the

microphones are lined in placed perpendicular to the preferred direction of sound

waves (see in figure 4.15(a)). In that figure, d represents the dimension, and it

corresponds to the spacing between the two elements of the array. The sound

from the broad-side of the array is what is usually desired to be picked up [50].

The basic process of broad-side array topology is that summing the signal recorded

from microphones in the array. The disadvantage of such array topology is that it

can only attenuate the sound coming from the side of the array. The rear-facing

response always matches the front response since there is nothing differentiating

pressure waves approaching the microphones from the front and the rear because

of the asymmetry of the array. A broad-side array topology is useful in applica-

tions where there is not much sound incident from behind or above and below

the array, such as for television mounted on a wall [50].
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(a) Endfire Array Topology (2- Microphone) (b) Response of a 2-Microphone Endfire Cardioid
Beamform

Figure 4.16: Design of End Fire Microphone Array Beam [50]

Endfire array topology consists of multiple microphones arranged in the line and

put in the direction of desired sound. When the front microphone in the ar-

ray where the first sound reach is summed with an inverted and delayed signal

from the rear microphones, this configuration is called a differential array. Figure

4.16(a) shows a 2-microphone end-fire differential array with a distance (d) be-

tween two microphones and the rear microphone delayed by n samples before the

subtraction and inverting block. This topology can be used to create cardioid,

hyper-cardioid, or super-cardioid pickup patterns, where the sound from the rear

of the array is greatly attenuated [50].

The sound picked up by the different microphones in the end-fire array differs

only in the arrival time, assuming far-field propagation that can be approximated

by a plane wave. For creating a cardioid pickup pattern, the signal from the

rear microphones should be delayed by the time that it takes the sound waves

to travel between the two microphone elements. It gives the system designer two

degrees of freedom in designing an end-fire beamform: the distance between the

microphones and the delay applied in the processor. In many audio applications,

the choice of minimum delay time totally depends on the sampling rate of the
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signal pick up from microphones. When the signal is quantized by 48 kHz, then

the minimum delay is found as 21 µs for each sample. At 20 °C, the speed of sound

in air is 343 m/sec, so sound wave travels about 7 mm in 21 µs [50]. Designing

parameters and equation is given as

Distance of Sound Travels in a Specified Time:

d = c× t (4.1)

Microphone Spacing to Match an n-Sample Delay:

d = n× c/Fs (4.2)

Time Delay for an n-Sample Delay:

tD = n/Fs (4.3)

where

c: it represents the speed of sound in air, in m/sec (343 m/sec at 20 °C)

d: it represents the distance in meters

t: it represents the time in seconds

n: it represents the number of samples of delay in DSP.

Fs: it represents the sampling frequency in hertz

tD: it represents the time delay in seconds

Design specifics and experimental work for broad-side microphone array topology

are given in figure 4.17(a). Placements of 16 Microphones in broad-side topology

are designed by using Matlab. 4 microphones are placed in the center of the plate

in the form of polar coordinate is given radius as 0.050 meters, Angles for each 0,

90, 180, 270. 12 microphones are placed with a radius of 0.1 meters to the center,
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and angles are 25, 51, 77, 102, 128, 154, 205, 231, 257, 282, 308, 334, respectively.

In the proposed method, this broad-side microphone array placement is used.

(a) Broad-Side 16 Microphone Array Beam Place-
ment in 3D Space

(b) Response of 16- Broad side Microphone array
beam which replaced specific order

Figure 4.17: Design of Broad Side Array Beam with 16 Microphone

In figure 4.17(b), frequency response of Broad-side 16 Microphones is shown. The

lower frequency component of audio signals, which are vowels, pass through in

every angle and direction. However, the higher the frequency components of

audio, the higher the exposure to angular and directional suppression. If the

microphone distances in the array increase, the microphone array’s selectivity

to the frontal voice source also increases. In figure 4.18(a), 4.18(b), Frequency

spectrum of microphone array which designs in different radius distances are

shown.

(a) Broad-Side 16 Microphone Array Beam Place-
ment in 3D Space

(b) Response of 16- Broad side Microphone array
beam

Figure 4.18: Design of Broad Side Array Beam with 16 Microphone (Max Per-
formance)
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Specifications of maximum performance (maximum frequency component is as-

sumed as 4khz):

R=0.1 m for 4 microphones and angles are same as previous application

R=0.2 m for 12 microphones and angles are the same as the previous application

4.5 Fingerprint Recording Results

(a) GT-521F32 Fingerprint
Sensor

(b) Grayscale image taken by finger-
print sensor

(c) Binary image extracted by pro-
posed algorithm

Figure 4.19: Fingerprint Measurement

GT-521F32 sensor is a TTL-level fingerprint sensor. (see in figure 4.19(a)) It

produces 450 dpi resolution fingerprint image in the figure 4.19(b). The image

extracted from the fingerprint sensor is the first store in the proposed system,

then it is sent to PC by UART communication protocol. After that, the grayscale

image is converted to a binary image to use in future work.
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Chapter 5

Speech and Fingertip ECG Signal based Person

Recognition System

5.1 Block diagram of Speech and Fingertip ECG Signal based Person

Recognition System

Figure 5.1: Block diagram of Speech and Fingertip ECG Signal based Person
Recognition System

The algorithm in Figure 5.1 were designed to identify an individual based on

his/her fingertip ECG and speech signal. The fingertip ECG signal and speech

signal were acquired using a hybrid acquisition system that contains an instru-

mentation amplifier and an internal microphone. The fingertip ECG data of a

person were collected by the patient’s thumbs while speech signals were collected
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using an internal microphone. The algorithm can identify a person with a speech

signal which does not have to be a fixed phrase. It means that the algorithm

can differentiate speakers with a text-independent speech signal. The following

section only explains the person identification algorithm by using two different

modalities and their fusion in detail. The decision rule of genuine people identi-

fication and imposter people rejection were explained in section 6.1 in details.

Fingertip ECG signals are measured from 58 individuals in different weeks by

using the proposed measurement system. For each week, approximately 1 minute

ECG signals were recorded, and each ECG signal was passed through a filtering

process such as 0.5 Hz high pass filter, 50 and 100 Hz notch filter, 150 Hz notch

filter, and smoothing filter. From now on, ECG signals measured in the first week

will be used for the training phase, whereas ECG signals measured in the second

week will be used for the testing phase. In the first part of training process, Fin-

gertip ECG signals taken from 60 individuals are applied to the proposed system

(see in figure 5.1). Then ECG Spikes and Inconsistent beats detection algorithm

is applied to ECG signals to prevent unrelated noisy signals and uncorrelated

ECG signals because of the movement of individuals. Some spikes may occur on

the ECG signal, which causes some part of the ECG waves to corrupt because the

person does not hold the Fingertip ECG connector steady. This block diagram

finds the uncorrelated ECG signal, and if the total signal is not enough for the

recognition system, it deletes the person from the database. If it is possible, the

records will be taken again. However, in our proposed system, we continue with

ECG signals of 54 individuals because the ECG signal of 4 people was eliminated

in this block. After the ECG Spikes and Inconsistent beats detection, if the sep-

arated ECG signals are lower than 10 seconds, it will eliminate them to ensure

the integrity or unity of ECG waves. After the ECG separation block, ECG

segmentation is applied, and P waves, QRS waves, T waves, and their intervals

Q, R, and S points, QT intervals, PR intervals, PR segments, ST segments were

found. QRS Complex intervals were found as significant features for the ECG
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recognition system. For this reason, the ECG signal of each individual was ar-

ranged into vectors placing each R point of the ECG wave into the fixed location.

Fixed number of the left (165 samples) and right side (319 samples) of R points

are clipped and defined that area as P-QRS-T wave. Then vector quantization

is applied on the P-QRS-T wave of each individual to decrease the number of

features. It captures the significant P-QRS-T wave of overall data and prevents

the over-fitting problem in the machine learning algorithms. For each person, 16

significant P-QRS-T waves were found, and they were normalized in the range of

0 to 1. Then the system was trained by using a 1-D CNN algorithm.

In the second part of the training process, the RedDot speech database, which

was released on August 17 in 2015, is used. The database was initiated with

the collaboration of multiple sites during INTERSPEECH 2014. It was set out

to collect speech signals throughout mobile crowd-sourcing with the benefit of

a potentially wider population and greater diversity. It consists of 62 speakers,

including 49 male speakers and 13 female speakers in 21 countries, and English

was used as spoken language. Some of the signals in the database do not only

contain speech of person but also contains background noises such as mouse-

clicking sound, music, other people’s conversation, microphone internal noises,

whereas some signals contain pure voice. To further improve the system, this

database which forces the system performance, was used. In the database, the

speech file of each person was separated into folders, and each folder contains a

speech signal where the given text is read by an individual. Some texts are the

same for each speaker, whereas some texts are unique to individuals. Each text

can be read approximately 3 seconds to 7 seconds, so each speech file contains

approximately 5 seconds of speech data. The number of signals is also different

for each person. The minimum number of speech files in the folders is found as

24, whereas the maximum number of speech files is found as 744. Approximately

every folder contains 246 speech files by taking the mean of the number of speech

signals for each folder. Then randomly, 54 folders were selected, and speech

files in the folders separated into two parts where half of the speech files are
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used for training whereas the other half is used for testing the system. Voice

activity detection is used for detecting the voice and unvoiced (noisy) parts of

the speech file. After that, the unvoiced part of the speech is separated into 20

ms frames, and the standard deviation of each frame which consists of the noisy

signal, is found. We took the median of these standard deviations and used it as

a threshold. In the speech and background noise block, speech signal separated

into 20 ms frames with an overlap of 65%, and if the standard deviation of the

speech frame is lower than the threshold, which multiplies by 2, the speech frame

will be discarded. Then MFCC feature extraction method is applied to speech

frames. After that, vector quantization is applied to speech frames to decrease

the redundancy. For each person’s every 10 seconds speech signal, 32 significant

MFCC vectors were found, and they were normalized in the range of 0 to 1. Then

the system is trained by using a 1-D CNN algorithm.

In the test phase, P-QRS-T waves of ECG signals recorded in the second week

were found, and redundant P-QRS-T were eliminated. At the same time, MFCC

features of speech signal were found, and redundant MFCCs were eliminated.

After that, both speech and ECG features are normalized in the range of 0 to 1.

Then both features are applied to the 1-D CNN classification method, and person

id is found by comparing the scores, whereas the ratio for speech features were 3

and ECG features were 1.

In the following sections, blocks forming the proposed system will be explained

in detail.
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5.2 ECG Spikes and Inconsistent Beats Detection

Figure 5.2: ECG Spikes and Inconsistent Beats Detection Block Diagram

ECG Spikes and Inconsistent beats detection algorithm block diagram is shown

in the figure 5.2. This algorithm uses for eliminating inconsistent ECG signals

or undesired signals. The algorithm derived for the inability of portable ECG

measurement device that does not differentiate the signal when the copper plates

are not held from ECG signal. Later on, the patient’s movement is seen, which

affects the shape of ECG waves changing. This kind of inconsistent data affects

the performance of the recognition algorithm. For this reason, ECG Spikes and

Inconsistent beats detection method is proposed. The algorithm works with the

principle of finding and choosing the most repetitive peaks as R peaks. Then ECG

signal is framed by using R peaks, and inconsistent ECG waves are eliminated

because the standard deviation of an inconsistent signal is much lower or higher

than the average standard deviation of ECG frames. In the end, the location of

inconsistent ECG waves and undesired signals were deleted and were separated

into sub vectors. The prerequisite for the algorithms to work efficiently, a total

of consistent ECG signals in the record must be higher than undesired signals or

inconsistent beats. If the requirement does not meet, the algorithm can’t judge

which signals are desired or not. ECG spikes and inconsistent beats detection

algorithm is reviewed step by step in the below:
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1. Firstly, Raw fingertip ECG signal, which is measured by the proposed Fin-

gertip ECG acquisition system, is applied to the algorithm.

(a) Original Size (b) Zoom In

Figure 5.3: Raw ECG Signal

2. Then Raw ECG data pass through a Bandpass filter whose cut-off frequen-

cies are between 5 Hz to 15 Hz because desirable QRS energy is approxi-

mately in these frequencies, and what we need to do is to find QRS peaks

of ECG data and reject the other type of peaks. After that, we used a

differentiator to provide QRS complex slope information, and it suppresses

the low-frequency component of ECG data which are P and T waves. Af-

ter that, we used squaring operation to make all the data point positive.

Then, we used moving window integrator so that we sum of the N width

data to make three peak points where the maximum peak point is QRS

complex. If the width of the window integrator is too large, the output will

merge QRS peak with P peak and T peak. If P wave, T wave, and QRS

wave are merged, this will reduce the total amplitude of the peak because

there is an isoelectric line between these peaks which reduces total peak

amplitude. If the width of the window integrator is too small, it will cause

additional peaks, which we do not want to. These four filters are found by

PAN-TOMPKINS et al. [51] to find local ECG QRS peaks.
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(a) Original Size (b) Zoom In

Figure 5.4: ECG signal after filter operations

3. Then local peaks are found for every window (N) sample by using the output

of the Pan-Tompkins filters. Window length (N) is defined as 850 samples

for 1 kHz sampled data. The number 850 is found by considering the normal

heart rate of a person is 70 beats per second in a minute. The formula

(60seconds/70beats) × Fs gives us the window length.

(a) Original Size (b) Zoom In

Figure 5.5: Local Peaks of the ECG signal

4. In the local peaks block, the most repetitive ones are the ECG QRS (R

peaks); other noisy peaks are not stationary like ECG R peaks. Because of

that, the median of local peaks, which are the most repetitive ones is found,

and being saved as threshold 1.
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5. After that, the other type of peaks and their location are erased if they are

not in the range of ECG peaks.

6. From this on, most of the ECG peaks correctly selected, but it also contains

ECG waves that were caused by individual movement. We can’t expect pa-

tients to hold the proposed ECG device steady. For this reason, additional

measures were taken. The best way to analyze the differences between con-

sistent and inconsistent ECG waves is to find standard deviations. Firstly,

ECG waves which include P wave, T wave, isoelectric lines, and QRS com-

plex, were framed into vectors by considering the location of R peaks found

from step 5. Then standard deviation and expectation of each vector were

found.

7. Then, the median of standard deviations of ECG vectors were calculated

by using the formula below.

σk =

√√√√ N∑
i=1

(xik − µ)2

N
(5.1)

where,

σk represents standard deviation of ECG frame

xi is the values of single frame

µ is the mean of single frame

N is the number of ECG frame

Then the value of σk is sorted ascending. By using the equation, the median

of standard deviation was found.

m = σsort

[{
N + 1

2

}th
]

(5.2)

Then m is saved as threshold 2.

8. In this section, QRS peaks, and their locations were deleted if their standard

deviations are much more than threshold 2 or much less than threshold 2.
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This will ensure deleting the corrupted ECG signals caused by the movement

of fingers.

9. In some cases, some corrupted ECG data and noise are not removed. To

make sure to remove them, local maxima for each QRS point were found,

and if the local maxima points were more than threshold 1, these locations

were erased.

(a) Original Size (b) Zoom In

Figure 5.6: ECG R peaks

10. Finally, pure ECG signal points and their location were extracted. However,

some of these points are not close to each other. We don’t want to touch

or eliminate the integrity (unity, wholeness) of ECG signals. Because of

that, if the locations of ECG QRS peaks are much bigger than the nearest

QRS points, we will choose it as the local last location. Then ECG signal

puts into vector considering first peak location and local last peak location.

After that new ECG vector’s first location will be previously found local

last location. This will continue until last ECG peak arranged into vectors

(see in figure 5.7).
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Figure 5.7: ECG Signal split into vectors

Pseudo-code for ECG Spikes and Inconsistent Beats Detection Algorithm is given

in the below
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Algorithm 1 ECG Spikes and Inconsistent Beats Detection Algorithm
Inputs:
Fingertip ECG files from the databases

Outputs:
Noise-free ECG signal vectors

Algorithm:
1: Apply bandpass, differentiator, squaring operation, and moving-window integrator to ECG signal, and

obtain a signal which contains QRS information [51].
2: Define window length W = 850 where Fs = 1000
3: Frame the filtered signal into WN vectors
4: for each vector i=1 to N do
5: Mi ← Find maximum value,
6: li ← Find index of maximum value,
7: li ← li − filters group delay
8: end for
9: Sort M into descending order
10: Find value of M in the middle, Store it into Th1
11: Define S1 as Th1/35
12: for each vector i=1 to N do
13: if Mi < (Th1− S1) && Mi > (Th1 + S1) then
14: Erase li from locations
15: end if
16: end for
17: for ECG signal between li to li+1 until i = N − 1 do
18: if li+1 − li > 2Fs then
19: continue
20: end if
21: Find σi − µi and Store it into Vi

22: end for
23: Sort V into descending order
24: Find value of V in the middle, Store it into Th2
25: Define S2 as Th2/5
26: for ECG signal between li to li+1 until i = N − 1 do
27: if li+1 − li > 2Fs then
28: continue
29: else if Vi < (Th2− S2) && Vi > (Th2 + S2) then
30: Erase li from locations
31: end if
32: end for
33: for ECG signal between li to li+1 until i = N − 1 do
34: if li+1 − li > 2Fs then
35: continue
36: else
37: Find values of local maxima and Store them into L
38: end if
39: if Li < (Th1− S1) && Li > (Th1 + S1) then
40: Erase li from locations
41: end if
42: end for
43: Separate ECG signal from location li to li+1, if not bigger than 2Fs

From now on, the ECG vectors which are free from noise and corruption can

be used on the proposed recognition method. In the ECG separation block, the

duration of ECG signals in each vector is checked, and if any of the signals’

duration is lower than 10 seconds, that signal vector will be eliminated from the

database.
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5.3 ECG Segmentation

ECG Segmentation algorithm block diagram is shown in the figure 5.8. This al-

gorithm is used for extracting ECG fiducials features where will be later used for

the ECG-based person recognition system. The algorithm finds QRS complex, P

wave, T wave, QT-interval, PR-interval, respective points, and their locations, if

possible PR-segment and ST-segment. In these fiducial points, the most signifi-

cant feature is selected as a combination of P-QRS-T wave, and it will be used

on ECG recognition system.

Figure 5.8: ECG Segmentation Block Diagram

ECG Segmentation algorithm is reviewed step by step in the below:

1. First noise-free, separated ECG data is applied into the algorithm.

2. This block is the same as the block in ECG Spikes and Inconsistent beats

detection algorithm. The four filters are applied to the ECG signals so that

QRS information can be picked out.

3. This block is also the same as the block in ECG Spikes and Inconsistent

beats detection algorithm. The local peaks and their location by every 850

samples are found. However, this time, the result will give us the R point

of the ECG signal.
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4. After that, we find the ECG isoelectric line thresholds by taking the mean

of every left and right side of QRS points.

5. Then, take the average of these thresholds and attain one threshold value

for the isoelectric line.

6. QRS duration for a healthy person is defined as 0.06 seconds. So we select

QRS to thresh as 0.06 × ECG sample rate. This threshold will be used for

finding Q and S points.

Q T threshold is defined as Fs/2, and it will be used for finding T peak.

P R threshold is defined as Fs/4, and it will be used for finding the P peak

of the ECG signal.

7. Local maximum between starting from ECG R points to (ECG R points

-P R threshold) will give us P points.

8. Local maximum between starting from ECG R points to (ECG R points +

Q T threshold) will give us T points.

9. Local minimum between starting from ECG R points to (ECG R points –

QRS thresh ) will give us Q points.

10. Local minimum between starting from ECG R points to (ECG R points +

QRS thresh) will give us S points.

11. We define P wave as starting from P point to left side of the isoelectric line

to P point to right side of the isoelectric line.

12. We define T wave as starting from T point to left side of the isoelectric line

to T point to right side of the isoelectric line.

13. We define the QRS complex as from Q point to left side of the isoelectric

line to S point to the right side of the isoelectric line.

14. After finding the location of P waves, T waves, QRS complexes, P points,

T points, R points, Q points, and S points, they are saved in the ECG

structure.
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Figure 5.9: ECG segmentation

The fingertip ECG segmentation is shown in the figure 5.10 where P, Q, R, S, and

T points were located and illustrated in different colors. The colors indicate the

duration of P wave, QRS Complex, and T waves, whereas colorful lines on top

of the ECG signal indicate the interval and segments. The green line indicates

the PR interval, the red line indicates QT interval, the blue line indicates PR

segments, and the black line indicates ST segments. Both PR segments and ST

segments are hard to find in noisy ECG signals. Because of that algorithm, most

of the time, can’t find them. ECG waves are arranged in vectors by using related

points, which are P points, T points, and R points, and these are shown in the

following figures.
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(a) P wave (b) T wave

(c) QRS Complex (d) P-QRS-T interval

Figure 5.10: ECG Segments

Pseudo-code for ECG Segmentation Algorithm is given in the below
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Algorithm 2 ECG Segmentation Algorithm
Inputs:
Noise free ECG signals

Outputs:
Structure which contains ECG segments

Algorithm:
Apply bandpass, differentiator, squaring operation, and moving-window integrator to ECG signal, and
obtain a signal which contains QRS information [51].

2: Define window length W = 850 where Fs = 1000
Define QRS th = 0.06F s, QT th = Fs/2, PR th = Fs/4

4: Frame the filtered signal into WN vectors
for each vector i=1 to WN do
li ← Find index of maximum value,
R lcsi = li − filters group delay
R ptsi ← find value in the location of li

6: end for
for ECG signal between R lcsi to R lcsi+1 until i = N − 1 do
P ptsi ←max val between (R ptsi − PR th) to (R ptsi −QRS th)
P lcsi ← index of max value P ptsi
T ptsi ←max val between (R ptsi +QRS th) to (R ptsi +QT th)
T lcsi ← index of max value T ptsi
Q ptsi ←min val between (R ptsi −QRS th) to R ptsi
Q lcsi ← index of min value Q ptsi
S ptsi ←min val between R ptsi to (R ptsi +QRS th)
S lcsi ← index of min value S ptsi
isolinei ←mean value between R ptsi to R ptsi+1

8: for ECG signal between j=1 until j = (R lcsi+1 − R lcsi) do
Q isoi ←location of first value exceed of Q lcsi − j > isolinei
S isoi ←location of first value exceed of S lcsi + j > isolinei
P iso li ←location of first value exceed of P lcsi − j > isolinei
P iso hi ←location of first value exceed of P lcsi + j < isolinei
T iso li ←location of first value exceed of T lcsi − j < isolinei
T iso hi ←location of first value exceed of T lcsi + j > isolinei

end for
P wavei ←values between P iso li to P iso hi
QRS cmplxi ←values between Q isoi to S isoi
T wavei ←values between T iso li to T iso hi
QT intervali ←values between Q isoi to T iso hi
PR intervali ←values between P iso li to Q isoi
PR segmenti ←values between P iso hi to Q isoi
ST segmenti ←values between S isoi to T iso li
P-QRS-T fixedi ←values between (R ptsi − 165) to (R ptsi + 319)

10: end for

5.4 Vector Quantization

5.4.1 K-mean Clustering

In scientific research, clustering analysis plays an important role. K-means is a

widely used partition method in clustering [52]. It is a method of vector quan-

tization that aims to ”n” observation into ”k” clusters in which every one of

the observations belongs to a cluster with the nearest mean (cluster centroid,

or cluster center). K-mean clustering minimizes within-cluster variances by us-

ing squared Euclidean distances (see in figure 5.11). The objective of k-mean
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clustering is given as

arg minS

k∑
i=1

∑
x∈Si

∥x− µi∥ = arg minS

k∑
i=1

|Si|V arSi (5.3)

,given set of observations (x1, x2, x3, . . . , xn), where each observation is a “d”

dimension real vector, n is the number of observation ,k is the number of cluster,

i is the mean of points in Si

The standard k-means algorithm uses the iterative refinement technique. The

algorithm has two steps [53]:

First step: Assign each observation to the cluster

S
(t)
i =

{
xp :

∥∥∥xp −m
(t)
i

∥∥∥2 ≤ ∥∥∥xp −m
(t)
j

∥∥∥2 ∀j, 1 ≤ j ≤ k

}
(5.4)

,where given initial set of k means (m
(1)
1 , . . . ,m

(1)
k )

,each xp is assigned to S(t), even if it assigns into one or more clusters

Second (update) step: Recalculate means or centroids for observations that

were assigned to each cluster

m
(t+1)
i =

1∣∣∣S(t)
i

∣∣∣
∑

xj∈S
(t)
i

xj (5.5)

The algorithm has converged when there is no longer a change in the assignments.

The algorithm doesn’t guarantee to find the optimum. It only assigns the objects

to the nearest cluster by distances.
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Figure 5.11: K-mean clustering

5.4.2 K-means Vector Quantization Algorithm

Figure 5.12: Block diagram of K-means Vector Quantization (Esfandiar Zavare-
hei, 2006)

The algorithm was developed by Esfandiar Zavarehei at Brunel University in

2006, and it utilized the following steps.

The algorithm takes m x n column-based matrix and L, which is the maximum

number of centroids needed to find in the m x n matrix.

1. It finds the means of each column-based vector in matrices. For m x n

matrix, it will find 1 x N central mean
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2. Then it splits into two centroids by using the following formula.

(central mean − 0.1× central mean), (central mean + 0.1× central mean)

3. Then, it assigns each of the data in the column-based matrix to that two

centroids by using the squared Euclidean distance formula. The data assigns

to the nearest centroid.

4. It finds new centroid using the data assigned to that centroid by taking the

mean of the data

5. It calculates the total distances of each centroid by using the data assigned

on that centroid. Then it calculates the sum of total distances for each

centroid.

6. (Total distance – previous total distance)/previous total distance <threshold,

where the threshold is starting with the value of 0.005, and this threshold

value is decreased with (threshold ×0.75) when centroids split into two.

Because for each splitting, centroids will converge to specific locations, and

improvement will need to increase for each splitting.

If the new centroids were found and data were assigned to newly found

centroids; however, if there is still no change in total distance, the number

of centroids then split into four by using the following formula:

(first centroid mean − 0.1× first centroid mean), (first centroid mean + 0.1×

first centroid mean)

(second centroid mean − 0.1× second centroid mean), (second centroid

+ 0.1× second centroid mean)

If the total distance has an improvement when compared with the previous

total distance, then it will continue to change the centroid by using the

assigned data to that centroids. If it is not improving, split centroids into

two, again.

7. Whenever the maximum number of centroids (L) are achieved, and there is

no change in the total distance. Get to the next step.
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In the next step, look at the value of the maximum number of centroids

(L). It must be the power of 2. If the maximum number of centroids (L) is

not the power of 2 then discards the highest distortion centroids or lowest

population centroids. Until achieving the given L value.

8. After that, the algorithm finds the data close to each centroid and finishes

its job.

5.5 Voice Activity Detection

Voice Activity Detection is a technique that detects the presence or absence of

speech. It has often been applied in speech-controlled applications, which are

operated by using speech commands. Most voice-based home automation systems

are based on a VAD algorithm to detect speech and operate their task [54]. In the

proposed method, we used the VAD algorithm, which was developed by Jongseo

Sohn et al. [55]. The VAD algorithm assumes that the statistics of a background

noise are stationary over a long period of time than the presence of a speech signal.

They suggested a decision system which detects presence or absence of a speech by

observing estimated noise statistics in current frame. Their decision rule derives

from the likelihood ratio test (LRT) which estimates unknown parameters using

the maximum likelihood (ML) criterion. In addition to their decision system, they

proposed a hang-over scheme to minimize miss detections at weak speeches [55].

By the assumption that speech is degraded by uncorrelated additive noise, the

decision rules have two hypotheses for a VAD to consider for each frame.

Ho : speech absent : X = N (5.6)

H1 : speech present : X = N + S (5.7)
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,where S, N , and X are “L” dimensional DFT coefficient vectors of speech, noise,

and noisy speech

They adopted a Gaussian statistical model in which the DFT coefficient of each

process is asymptotically independent Gaussian random variables. The probabil-

ity density function conditioned on H0 and H1 are given as

p(X | H0) =
L−1∏
k=0

1

πλN (k)
e
− |Xk|2

λN (k) (5.8)

p(X | H1) =
L−1∏
k=0

1

π [λN (k) + λS (k)]
e
− |Xk|2

λN (k)+λS(k) (5.9)

,where k is the element of vector an λN (k) and λS (k) denote the variances of NK

and NS, respectively.

The likelihood ratio for kth frequency band is given as

Λk =∆
p (Xk | H1)

p (Xk | H0)
=

1

1 + ξk
e
− γkξk

1+ξk (5.10)

,where ξk and γk called a priori and a posteriori signal to noise ratios (SNRs),

respectively. They define as ξk =∆ λS(k)
λN (k)

and γ =∆ |Xk|2
λN (k)

Then the decision rule is established from the geometric mean of the likelihood

ratios for the individual frequency bands and given as

log Λ(ML) =
1

L

L−1∑
k=0

{γ − log γk − 1} > η ,H1 (5.11)

log Λ(ML) =
1

L

L−1∑
k=0

{γ − log γk − 1} < η ,H0 (5.12)
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Left-hand side of the 5.11 and 5.12 can’t be smaller than zero, for this reason

likelihood ratio is biased to H1. To reduce this biasing, a decision-directed a

priori SNR estimation method is applied, and ξk becomes

ξk (n)DD = α
Âk

2
(n− 1)

λN (k, n− 1)
+ (1 + α)P [γk (n) − 1] (5.13)

,where n is the frame index, and P [x] = x if x ≥ 0, and P [x] = 0 otherwise, and

Âk (n− 1)’s are the signal estimate amplitude of previous frame. This method

provides smooth estimation of a priori SNR which reduces the fluctuation of the

estimated likelihood ratio during noise periods.

(a) Person 1 (b) Person 2

(c) Person 3 (d) Person 4

Figure 5.13: Result of VAD algorithm

82



5.6 Mel Frequency Cepstral Coefficients (MFCC)

Mel-frequency Cepstral Coefficient (MFCC) is a method which is commonly used

in automatic speech and speaker recognition system. It was introduced in the

1980s by Davis and Mermelstein [56] and has been used as modeling the behavior

of the human auditory systems ever since. The Mel frequency cepstrum is a

representation of the short-term power spectrum of a sound, based on linear

cosine transform (DCT) of a log power spectrum on a non-linear Mel frequency

scale. MFCCs are the coefficients that collectively make up a Mel Frequency

Cepstrum [57]. Algorithm steps can be seen in Figure 5.14.

Figure 5.14: MFCC Block Diagram

Pre-Emphasis: It is a step that voice samples pass through a filter which em-

phasizes higher frequencies. It increases the energy of high frequency component

of the voice. It is achieved by applying following equation onto the sampled voice:

y [n] = x [n] − αx [n− 1] (5.14)

,where 0.9 < α < 1

In the proposed method, α is given as 0.97

Framing: Speech signals are non-stationary, and their temporal characteristics

(such as the energy, zero-crossing rate, etc.) change very fast. So, if speech signals

are taken as small frames, we can make an assumption that the speech signal will

be stationary, and its characteristics within each frame will not vary much. In

addition that, short-shifting between frames is essential for tracking continuity in

the speech and not missing out on any abrupt changes at the end of frames. The

process of shifting is called “overlap” or “step size”. The voice signals are usually

83



segmented into frames of 20 ms ~ 40 ms with an overlap of 1/3 ~ 1/2 of its frame

size.

In the proposed method, Speech signals are segmented into frames of 20 ms frames

with an overlap of 65% its frame size.

Windowing (Hamming): It is used to minimize the spectral distortion caused

by the transition of frames. It smooths the sharp frame transitions at both

beginning of the frame and the end of the frame. Each frame has to be multiplied

with a hamming window whose equation is given below.

w (n, α) = (1 − α) − α cos

(
2πn

N − 1

)
, 0 ≤ n ≤ N − 1] (5.15)

, where N represents the number of samples in the voice frame. The different α

value corresponds to having different curves. In the proposed method, α is chosen

as 0.46

Discrete Fourier Transform: It is used to convert voice frames from the time

domain to the frequency domain. It is applied to voice frames which multiplied

with hamming window previously. The equation is given as

X (k) =
N−1∑
n=0

x (n) e−
j2π
N

kn, 0 ≤ k < N (5.16)

, where n represents the current voice sample, k represents frequency points which

are divided into a length of N , N represents the maximum number of frequency

points.

In the proposed method, the length of frequency point (N) is 256 points, where

the frame length is 20 ms.

Mel Filter Bank Processing: It applies to find Mel-frequency scaling, which

is a perceptual scale that helps simulate the working of human ears. It corre-

sponds to better resolution at low frequency whereas less at high frequency. In
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other words, the critical band’s bandwidth that influences human ears to change

between the frequencies, where it is linear below 1 kHz, and logarithmic above.

By using a triangular filter bank, the distribution of these critical bands becomes

linear. The position of these triangular filters is equally spaced along with the

Mel frequency, which is related to the common frequency “f”, and the following

equation shows that relation.

mel (f) = 1125 ln

(
1 +

f

700

)
(5.17)

Mel-frequency filter bank that includes M numbers triangular structure is defined

as [58]

Hm (k) =



0 k < f (m− 1)

k−f(m−1)
f(m)−f(m−1) f (m− 1) ≤ k ≤ f (m)

,m = 1, 2, · · · ,M
f(m+1)−k

f(m+1)−f(m)
f (m) ≤ k ≤ f (m + 1)

0 k > f (m + 1)

(5.18)

, where M is the number of filters f is the uniformly spaced boundary points in

Mel scale, and it is calculated with the following equation

f (m) =

(
N

Fs

)
fmel

−1
(
fmel(low) + m

fmel(high) − fmel(low)

M + 1

)
, m = 0, 1, 2, · · · ,M

(5.19)

,where N is the size of DFT, Fs is the the sampling frequency and fmel(low),

fmel(high) and f−1mel are defined as
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fmel(low) = 1125 ln
(
1 + flow

700

)
fmel(high) = 1125 ln

(
1 +

fhigh
700

)
f−1mel (f) = 700

(
e

f
1125 − 1

)
(5.20)

,where flow represents lowest, fhigh represents highest frequency of the filter bank

in Hz

In the proposed method, the frequency range of the triangular filter bank is chosen

between 300 Hz to 3700 Hz, and the number of triangular filters is given as 20.

The triangular filter bank is shown in the figure 5.15.

Figure 5.15: Triangular Filter Bank

Log Energy of Output of Filter Bank: The Mel-scale is achieved by multi-

plying each triangular filter with voice frames in the frequency domain. Then log

energy is calculated by using the following equation.

S (m) = ln

[
N−1∑
k=0

|Xa (k)|2Hm (k)

]
, 0 < m ≤ M (5.21)
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,where |Xa (k)| is the magnitude of Discrete Fourier transform of voice frame and

Hm is the triangular filter bank. S (m) represents to Mel Spectrum coefficients.

Discrete Cosine Transform: MFCC features which represented with c(n) are

found by applying Discrete Cosine Transform (DCT) on the Mel-Spectrum coef-

ficients which were obtained from the previous process.

c (n) =
M−1∑
m=0

S (m) cos

(
πn (2m− 1)

2M

)
, 0 ≤ n < M (5.22)

, where M is the total number of MFCC coefficients.

After the DCT, the Cep Lifter operation is applied to reduce the undesirable

components. In the following equation, the sinusoidal cep lifter is described.

wi = 1 +
L

2
sin

πi

L
, 0 ≤ i < M (5.23)

, where M is the total number of MFCC coefficients.

In the end, Liftered Ceptsral Coefficients found by multiplying the wi with c (n)

(see in eq. 5.24)

M̂FCCl = wiMFCCi (5.24)

5.7 Min Max Normalization

It is a technique that adjusts the coefficient in the range of [a, b]. Before the

classification method, min-max normalization is applied to the features of both

speech and ECG signals. Features are scaled into the range of [0, 1], and the

following equation shows how to do it
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X ′ = a +
(X −Xmin) (b− a)

Xmax −Xmin

(5.25)

, wherein the proposed method b is equal to 1, and a is equal to 0.

5.8 Convolutional Neural Network

Before we begin with the CNN algorithm, the concept of a neural network, per-

ceptron, multi-layer perceptron must be known. First, we begin with the idea of

the neural network.

5.8.1 Neural Network

Neural network is a circuit of neurons or neuron simulations that form the

structure and architecture of a human nervous system. It is, in a modern sense,

called an artificial neural network composed of artificial neurons or nodes for

solving artificial intelligence (AI) problems [59]. The neurons are connected by

links, and they interact with each other. The nodes can take input data and

perform a simple operation on that data. The result of these operations is then

passed to other neurons. The output of each node is called activation or node

value. Each link is associated with weights. In a nutshell, a single layer of

the neural network is called perceptron and consists of 4 parts which are input

values or one input layer, weights and bias, net sum, and activation function.
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5.8.2 Introduction to Perceptron (Single Layer Network)

Figure 5.16: Procedures of single layer perceptron

Perceptron is a binary classification algorithm that was introduced by Cornell

scientist Frank Rosenblatt. It helps for dividing a set of input signals into two

parts which are “yes” or “no”. It is a simple learning algorithm (uses binary

step activation function) that weights the set of input how significant they are

and generates an output decision of “0” and “1”. Later, it has been developed

further by the changes of the activation function. By the usage of linear activation

function, the perceptron has developed for producing linear regression where it

models the scalar response of the given input data. By the usage of the sigmoid

activation function, the perceptron has developed for predicting the data with

previously modeled data. It produces an output in the range of 0 to 1. the

output will be close to 1 if the given data is close to previously modeled data.

These are examples to understand the importance of activation function. Now,

we will continue with the perceptron algorithm. A simple perceptron algorithm

is given as

Transfer function of perceptron:

y = f

(
m∑
i=1

wixi

)
= f

(
wTx

)
(5.26)
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, where [w0, w1, · · · , wm] and x = [1, x1, · · · , wm], and f (x) is the activation

function. In the equation, bias is represented with w0 and for this reason x0

always defined as 1 The activation function produces an output by combining the

input to the neuron with weights. There are multiple activation functions such as

binary step, linear function, etc.; however, the most used ones are sigmoid, and

hyperbolic tangent, RELUs. The activation functions are given as

(a) Binary step function
f (x) = 1, x > 0

0, x ≤ 0
(b) Linear function f (x) = ax

(c) Sigmoid function f (x) = 1
1+e−x (d) Hyperbolic tangent function f (x) = 2

1+e−2x − 1
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(e) RELU function
f (x) = x, x > 0

0, x ≤ 0
(f) Leaky RELU function

f (x) = x, x > 0
0.01x, x ≤ 0

(g) Parametrized RELU
f (x) = x, x > 0

ax, x ≤ 0

Figure 5.17: Activation Functions

Let’s define the sum S as

y = f (S (wi, xi)) (5.27)

Mean Squared Error (Cost function): Learning occurs when changing (up-

dating) the connection weights after each of data is processed, based on the

amount of error in the output compared with expected result. The error (cost

function) is given as

ε (w) =
1

2
(y − t)2 (5.28)
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, where ε is the error, t is the target (class) values (from the training dataset), y is

the algorithm’s prediction for the training example using the activation function.

Gradient Descent Algorithm: This algorithm is used to train (or update)

the weights of the perceptron to learn the given training dataset. This algorithm

starts at an arbitrary position and iteratively converges to a value when error

becomes minimum.

Using the gradient descent, the change in each weighs are defined as

wi
′ = wi − µ

∂ε

∂wi

(5.29)

,where wi
′ is the weight after update, wi is the weight before update, µ is learning

rate (which is small constant)

Let’s derive the error
∂ε

∂wi

=
1

2

∂

∂wi

(y − t)2 (5.30)

By using chain rule

(f ◦ g)′ = (f ′ ◦ g) .g′ (5.31)

The equation 5.30 can be written as

∂ε

∂wi

=
2

2
(y − t)

∂

∂wi

(y − t) = (y − t)
∂y

∂wi

(5.32)

,(where y is the only dependent variable of w)

Let’s now calculate the derivative of y

∂y

∂wi

=
∂f (S (wi, xi))

∂wi

(5.33)
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Once again, we use the chain rule to rewrite the equation 5.33

∂f (S)

∂wi

=
∂f (S)

∂S

∂S

∂wi

= xi
∂f (S)

∂S
(5.34)

The derivative of error becomes

∂ε

∂wi

= xi (y − t)
∂f (S)

∂S
(5.35)

Update Rule (General):

By merging 5.29 and 5.35, the weights can be updated with the following equation

wi
′ = wi − α

∂ε

∂wi

= wi − µxi (y − t)
∂f (S)

∂S
(5.36)

In conclusion

wi
′ = wi − µxi (y − t)

∂f (S)

∂S
(5.37)

Update Rule (Linear Activation Function): By using the formula 5.37,

update rule for linear activation function becomes

ε (w) =
1

2m

m∑
i=1

(
y(i) − ti

)2
(5.38)

wk
′ = wk + µ [(y − t)]xk, t ∈ [−∞, · · · ,∞] (5.39)

w0
′ = w0 + µ (y − t) , t ∈ [−∞, · · · ,∞] (5.40)

,where

y(i) = wixi (5.41)

and t is the target value (which can be any real value that represents the input

signals for linear function), k is the index of weight, m is the number of weight.
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In conclusion, update rule for linear function becomes

wk
′ = wk − µ

(
m∑
i=1

wixi − ti

)
xk, k ≥ 1, t ∈ [−∞, · · · ,∞] (5.42)

w0
′ = w0 − µ

(
m∑
i=1

wixi − ti

)
, t ∈ [−∞, · · · ,∞] (5.43)

5.38, 5.42 and 5.43 steps are repeated until ε converges.

Update Rule (Sigmoid Activation Function): The calculation of the sig-

moid function is different from the linear activation function.

I will introduce 2 different assumptions for the sigmoid activation function. The

first assumption is made by using maximum likelihood estimation.

Derivative of sigmoid function is

f ′ (z) =
∂

∂z

(
1

1 + e−z

)
=

1

(1 + e−z)2
e−z (5.44)

=
1

1 + e−z

(
1 − 1

1 + e−z

)
(5.45)

f ′ (z) = f (z) (1 − f (z)) (5.46)

p (t = 1 | x;w) = fw (x) (5.47)

p (t = 0 | x;w) = 1 − fw (x) (5.48)

The more compact form can be written as

p (t | x;w) = (fw (x))t (1 − fw (x))(1−t) , t ∈ {0, 1} (5.49)

Likelihood relation is given as

L (w) = p (t | X;w) =
m∏
i=1

p
(
t(i) | x(i), w

)
(5.50)

94



m∏
i=1

(
fw
(
x(i)
))t(i) (

1 − fw
(
x(i)
)(1−t(i)))

(5.51)

By using equation 5.51, Log likelihood relation can be given

l (w) = logL (w) =
m∏
i=1

t(i) log fw
(
x(i)
)

+
(
1 − t(i)

) [
1 − log fw

(
x(i)
)]

(5.52)

Maximum log-likelihood by using gradient ascent is given as

wi
′ = wi + µ▽wl (w) (5.53)

Minimize the −l (w), (or maximize l (w) is the same)

−l (w) =
m∑
i=1

[
−t(i) log fw

(
x(i)
)
−
(
1 − t(i)

) [
1 − log fw

(
x(i)
)]]

(5.54)

Write in different form (look eq. 5.26):

−l (w) = −t log fw
(
wTx

)
− (1 − t)

[
1 − log fw

(
wTx

)]
(5.55)

Derivative of sum of terms:

− ∂

∂wi

l (w) = − ∂

∂wi

t log fw
(
wTx

)
− ∂

∂wi

(1 − t)
[
1 − log fw

(
wTx

)]
(5.56)

Derivative of log fw (x):

=

[
−t

1

fw (wTx)
+ (1 − t)

1

1 − fw (wTx)

]
∂

∂wi

fw
(
wTx

)
(5.57)

Chain Rule + derivative of fw:

=

[
−t

1

fw (wTx)
+ (1 − t)

1

1 − fw (wTx)

]
fw
(
wTx

) [
1 − fw

(
wTx

)]
xi (5.58)
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Algebraic Manipulation:

=

[
fw
(
wTx

)
− t

fw (wTx) [1 − fw (wTx)]

]
fw
(
wTx

) [
1 − fw

(
wTx

)]
xi (5.59)

=
[
fw
(
wTx

)
− t
]
xi (5.60)

It is cosmetically identical to the Mean Squared Error Rule. However, fw (x) is

non-linear in here.

Update Rule becomes (cross entropy cost function):

C (w) = − 1

2m

m∑
i=1

[ti log fw (wixi) + (1 − ti) log (1 − fw (wixi))] , t ∈ {0, 1}

(5.61)

wi
′ = wi − µ

∂l (w)

∂wi

(5.62)

wk
′ = wk − µ

(
1

1 + e−(
∑m

i=1 wixi)
− ti

)
xk, k ≥ 1, t ∈ {0, 1} (5.63)

w0
′ = w0 − µ

(
1

1 + e−(
∑m

i=1 wixi)
− ti

)
, t ∈ {0, 1} (5.64)

,where

fw (wixi) =
1

1 + e−(wixi)
(5.65)

and t is the class number (which can be 0 or 1 for sigmoid function), k is the

index of weight, m is the number of weight. 5.61, 5.63, 5.64 and 5.65 steps are

repeated until ε converges.

Second assumption is (by using mean squared error):

ε (w) =
1

2m

m∑
i=1

(
y(i) − ti

)2
, t ∈ {0, 1} (5.66)

∂ε (w)

∂wk

=
m∑
i=1

(
y(i) − ti

)
f ′ (wixi)xk (5.67)
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By using the 5.46, it becomes

∂ε (w)

∂wk

=
m∑
i=1

(
y(i) − ti

)
f (wixi) (1 − f (wixi))xk (5.68)

Update rule:

wk
′ = wkµ

∂ε (w)

∂wk

(5.69)

wk
′ = wk − µ

m∑
i=1

(
y(i) − ti

)
f (wixi) (1 − f (wixi))xk, k ≥ 1, t ∈ {0, 1} (5.70)

w0
′ = w0 − µ

m∑
i=1

(
y(i) − ti

)
f (wixi) (1 − f (wixi)) , t ∈ {0, 1} (5.71)

Update Rule (RELU function):

RELU updating rule is the same as linear function when x > 0; however, whenever

the value of x has become 0 or smaller than zero, weights updating stops because

of derivative of RELU is undefined for x ≤ 0. Because the gradient becomes

zero whenever x becomes lower than zero, the weight stop updates. RELU can

be fragile during the large number of training data set and can irreversibly “die”

(which can’t update weights). If the learning rate is set too high, we may cross

the large number of “dead” neurons that can never be activated again. However,

the speed of RELU is much higher than other activation functions, and it reduces

the likelihood of the gradient vanishing. Vanishing gradients lead to very small

changes in the weights proportional to the partial derivative of the error function.

As more layers using certain activation functions (e.g., sigmoid, tanh) are added

to the neural network, the gradient of the loss function approaches zero, making

the network hard to train. To solve the problem, RELU activation functions are

used.

Update Rule (Leaky RELU): To solve dead neurons, leaky RELU is proposed.

wk
′ = wk − µ

m∑
i=1

(wixi − ti)xk, k ≥ 1 and xk > 0 (5.72)
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wk
′ = wk − 0.01

[
µ

m∑
i=1

(wixi − ti)xk

]
, k ≥ 1 and xk ≤ 0 (5.73)

w0
′ = w0 − µ

m∑
i=1

(wixi − ti) (5.74)

If the value of 0.01 changes to α, it will become parametrized RELU.

5.38, 5.41, 5.42, 5.43 and 5.44 steps are repeated until ε converges.

By using the sigmoid activation function, perceptron becomes logistic regression.

The logistic regression is used because of tackling multi-classification problems,

e.g., the using One-vs-All or One-vs-One approaches via the related Softmax re-

gression or multinomial logistic regression. Although there are kernelized variants

of logistic regression exist, the standard “model” is a linear classifier. Thus, logis-

tic regression is useful when the classes in the dataset are more or less “linearly”

separable. However, the classic perceptron is not enough for handling the su-

pervised classification problem. We know that perceptron is a linear classifier

algorithm that classifies the input by separating two categories with a line. The

problem of classic perceptron algorithm is that input of classes can’t exhibit two

different traits such as XOR function (XOR operator trigger when input exhibits

either one trait or another, but not both; it stands for “exclusive OR”). Clas-

sic perceptron can’t perform classification on non-linear inputs. The problem is

shown in the following figures (see figure 5.18(a), figure 5.18(b))
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(a) The space of the OR function (b) The space of the XOR function

Figure 5.18: Response of perceptron to non-linear inputs

a b y=a + b

0 0 0

0 1 1

1 0 1

1 1 1

The space of the OR function can be

drawn where X and Y axis are

respectively “a” and “b” inputs. The

green line is the separation line where

y = 0. Perceptron can find an optimal

solution when transfer function of

perceptron is given as (linear

activation)

y = w0 + w1a + w2b

a b y=a
⊕

b

0 0 0

0 1 1

1 0 1

1 1 0

The space of the XOR function is

illustrated. Unfortunately, the

perceptron is not able to discriminate

zeros from ones.

To solve the single perceptron problem, a multi-layer perceptron is introduced,

which capable of approximating an XOR operator as well as many other non-

linear functions.
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5.8.3 Multilayer Perceptron (Neural Network)

Figure 5.19: Multilayer Perceptron

The multi-layer perceptron (MLP) is composed of more than one perceptron

where each one of perceptron has an input layer to receive signal, an output

layer to make the decision or prediction about input layer, and the arbitrary

number of hidden layers between inputs and output layers which are the true

computational engine of the MLP. Architecture of multilayer perceptron is given

in figure 5.19. It can be seen that each output of the perceptron is weighed of

the other perceptron. This continues until the final output layer is constructed.

The calculation now differs with a single perceptron. There will be two concepts

which are feed-forward and backpropagation. However, before we start with the

concept, we need to understand the notation of multi-layer perceptron. (Notation

will be different with respect to single perceptron; however, it does the same job.)

z =
N∑
i=1

Wixi = W Tx (5.75)

α = f (z) (5.76)

,where z will called pre-activation and α will called post-activation. This

equation is similar to single perceptron. The difference is now:

zk =
∑
j

Wkjxk (5.77)
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ak = f (zk) (5.78)

The input layer is indexed as j and the output layer by k. The formula is de-

scribed of getting the pre-activation of an arbitrary neuron k in the output layer.

Each input multiply by weights that connect that input to kth neuron. (see in

figure 5.20). That means the first output neuron is k = 1. Component form of

the figure 5.20 will be useful when we discuss backpropagation (weight updates).

α is vector which represents output of each activation (post-activations), W is

weight matrix, x is the input vector

Figure 5.20: Architecture of One-layer Multilayer Perceptron

Now, we need a notation for representing each hidden layer (see in figure 5.19).

z(l) = W (l)α(l−1) (5.79)

α(l) = f
(
z(l)
)

(5.80)

,where α(l) = x and l ∈ [2, L], L is the maximum number of hidden layer. Now,

you should notice that in the pre-activation, we no longer just referring to x, rather

we take the activation of previous layer l − 1 when computing the pre-activation

of layer l
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Now cost function will be

C (W ) =
1

2

∑
x∈X

∥∥y (x) + α(L) (x)
∥∥2 (5.81)

W
(l)′

jk = W
(l)
jk − µ

∂C

∂W
(l)
jk

(5.82)

,where W represents all the weights of network, the sum is over all training

example, α(L)is the output layer vector when given f (x) vector.

Feedforward Process for multi-layer perceptron:

α
(l)
j = f

(∑
k

W
(l)
jk α

(l−1)
k

)
(5.83)

Now think that we have 100.000 vectors in a dataset which represent input sig-

nals. For speeding the algorithm, the randomly 1000 training data are selected.

However, we need to make sure that all the data in the dataset are given for

training. For this reason, data are divided into mini-batches (which are 100 vec-

tor sets). At each mini-batch, the average gradient and parameters are updated

by the move on the next mini-batch. After all the mini-batch is finished, all the

data is shuffled and again divided into mini-batch. This process is called one

epoch. Now, the algorithm is needed to stop at some point. For this reason,

one of the mini-batches is used to calculate the performance of the system. If the

performance is enough for describing the dataset, then parameter updating will

be stopped.

Let’s continue with the feed-forward process:

In the feed-forward process, initial weights are chosen as small randomly constant

and find the outputs of all neurons in the first layer by using initial weights.

Then output produced by the first layer is given to the second layer as input, and

output of the second layer is calculated. Then continue until the final output is

found, which represents the output of multi-layer perceptron. The equation is
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represented in (5.83). From now on, the weight parameters of each neuron are

calculated by taking the partial derivative of the cost function produced by each

neuron.

Backpropagation Process for multi-layer perceptron:

Now, we need to introduce new notation which is error δ
(l)
j of neuron j in layer l

by

δ
(l)
j =

∂C

∂z
(l)
j

(5.84)

, where δ
(l)
j is the error vector associated with layer l

An equation for the error in the output layer is given as:

δ
(L)
j =

∂C

∂α
(L)
j

f ′
(
z
(L)
j

)
(5.85)

Figure 5.21: Backpropagation (input-output relation of final neuron)

Eq. 5.85 is the first equation of backpropagation. It represents the local error

gradient at the last layer. Now, we have the last layer’s error gradient, we need

an equation that tells us how to propagate that error gradient backward.
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Figure 5.22: Backpropagation (input-output relation of hidden neuron)

Figure 5.22 is the extension of backpropagation which adding layers. The equation

becomes considering all the hidden layer.

δ
(L)
j =

∑
k

W
(l+1)
jk δ

(l+1)
k f ′

(
z
(l)
j

)
(5.86)

Now, we can use the local error gradients to calculate partial derivatives of the

weights at a given layer. The equation is given as

W
(l)
jk

′
= W

(l)
jk − µ

1

m

∑
x(1),··· ,x(m)

∂Cx

∂W
(l)
jk

(5.87)

∂C

∂W
(l)
jk

= δ
(l)
i α

(l−1)
k , k ≥ 1 (5.88)

∂C

∂W
(l)
j0

= δ
(l)
i (5.89)

In summary, the following algorithm is shows the gradient descent learning step

based on mini batch:

1. Input a set of training example
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2. For each training example x, set the corresponding input activation α(x,1)

and perform the following steps:

� Feedforward: for each layer l = 2, 3, · · · , L compute the vector z(x,l) =

w(l)α(x,l−1) and α(x,l) = f
(
z(x,l)

)
� Output error : compute the following equation

δ
(x,L)
j = ∂C

∂α
(x,L)
j

f ′
(
z
(x,L)
j

)
� Back propagate the error: for each l = L,L − 1, · · · , 2 update the

weights according the following rule

w(l)′ = w(l) − µ 1
m

∑
x(1),··· ,x(m)

δ
(x,l)
j

(
αx(l−1))T

w
(l)
0

′
= w

(l)
0 − µ 1

m

∑
x(1),··· ,x(m)

δ
(x,l)
j

To further your understanding of multi-layer perceptron and neural network,

please look at the Neural Networks and Deep Learning book of Michael Nielsen [60].

5.8.4 Softmax Activation Function for Classification

This function is used to solve multi class problem where we have multiple class

names. Softmax activation function is applied in the end of hidden layer so that

it can separate the classes. The function can be given as

a
(L)
j =

ex
(L)
j∑

k e
z
(L)
k

(5.90)

, where a
(L)
j is the activation of jth output neuron

Lets’ look at the Softmax algorithm:
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Softmax function is used when the target value t can take the values from the

discrete set {1, 2, · · · , k}. In that case, we assume

p (t = 1;x;w) = ϕ1

p (t = 2;x;w) = ϕ2

...

p (t = k − 1;x;w) = ϕk−1

p (t = k;x;w) = 1 −
∑k−1

i=1 ϕi = ϕk

(5.91)

In order to estimate the parameters of classifier of k classes, k−1 parameter must

be estimated (the last one determined by the other ones like binary classifier).

Now it can be written as

p (t;x;w) = p (t = 1;x;w)I{t=1} p (t = 2;x;w)I{t=2} · · · p (t = k;x;w)I{t=k}

(5.92)

, where I {} indicates a function if it is true ,then return 1, otherwise return 0

Now, we will estimate ϕ’s with the following equation

ϕ̂1 = fw(1) (x) =
exp(w(1))

T
x∑k

i=1 exp(w(i))
T
x

ϕ̂2 = fw(2) (x) =
exp(w(2))

T
x∑k

i=1 exp(w(i))
T
x

...

ϕ̂k−1 = fw(k−1) (x) =
exp(w(k−1))

T
x∑k

i=1 exp(w(i))
T
x

ϕ̂k = fw(k) (x) =
exp(w(k))

T
x∑k

i=1 exp(w(i))
T
x

(5.93)

,where w(i) for all i = 1, · · · , k−1, and w(k) =
−→
0 are the parameter that are used

to generate the hypothesis. Let θ be the parameter matrix that contains w(i) for
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all i = 1, · · · , k − 1

θ =


...

...
...

...

w(1) w(2) · · · w(k−1) w(k)

...
...

...
...

 (5.94)

Note that
∑k

i=1 ϕ̂i = 1, 0 ≤ ϕ̂i ≤ 1 so the w(1)’s form a probability distribution.

Now, let’s see maximum likelihood criteria on log likelihood function. It is given

as

l (θ) = log p
(−→
t | X; θ

)
(5.95)

= log p
(
t(1), · · · t(n) | x(1), · · · , x(n); θ

)
(5.96)

= log
n∏

i=1

p
(
t(i) | x(i); θ

)
(5.97)

= log
n∏

i=1

fw(1)

(
x(i)
)I{t(i)=1}

fw(2)

(
x(i)
)I{t(i)=2} · · · fw(k)

(
x(i)
)I{t(i)=k}

(5.98)

= log
n∑

i=1

I
{
t(i) = 1

}
log fw(1)

(
x(i)
)

+ · · · + I
{
t(i) = k

}
log fw(k)

(
x(i)
)

(5.99)

= log
n∑

i=1

k∑
q=1

I
{
t(i) = q

}
log fw(q)

(
x(i)
)

(5.100)

,where in 5.97, we used the assumption which the training set was generated

independently, in equation 5.98, 5.99, we used the logarithm properties, and in

equation 5.100, we simplified the expression. Let’s substitute the hypothesis with

its explicit function to get

= log
n∑

i=1

k∑
q=1

I
{
t(i) = q

}
log fw(q)

(
x(i)
)

(5.101)

=
n∑

i=1

k∑
q=1

I
{
t(i) = q

}
log

exp(w(q))Tx(i)∑k
p=1 exp (w(p))

T
x(i)

(5.102)
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=
n∑

i=1

k∑
q=1

I
{
t(i) = q

}[
log exp(w(q))Tx(i) − log

k∑
p=1

exp(w(p))Tx(i)

]
(5.103)

=
n∑

i=1

[
k∑

q=1

I
{
t(i) = q

} (
w(q)

)T
x(i) −

k∑
q=1

I
{
t(i) = q

}
log

k∑
p=1

exp
(
w(p)

)T
x(i)

]
(5.104)

=
n∑

i=1

[
k∑

q=1

I
{
t(i) = q

} (
w(q)

)T
x(i) − log

k∑
p=1

exp(w(p))Tx(i)

]
(5.105)

,where in equation 5.102, 5.103, logarithm properties were used and in equa-

tion 5.104, we used the fact that the indicator function return 1 only once for

every training example. Now, lets’ continue to find derivatives of l (θ) with re-

spect to w(j) to form the gradient ascent update rule which will maximize the log

likelihood function

∂l (θ)

∂w
(r)
j

=
∂

∂w
(r)
j

n∑
i=1

[
k∑

q=1

I
{
t(i) = q

} (
w(q)

)T
x(i) − log

k∑
p=1

exp
(
w(p)

)T
x(i)

]
(5.106)

=
n∑

i=1

[
k∑

q=1

∂

∂w
(r)
j

I
{
t(i) = q

} (
w(q)

)T
x(i) − ∂

∂w
(r)
j

log
k∑

p=1

exp
(
w(p)

)T
x(i)

]
(5.107)

=
n∑

i=1

[
I
{
t(i) = r

}
x
(i)
j −

exp
(
w(r)

)T
x(i)∑k

p=1 exp (w(p))
T
x(i)

x
(i)
j

]
(5.108)

=
n∑

i=1

[
I
{
t(i) = r

}
−

exp
(
w(r)

)T
x(i)∑k

p=1 exp (w(p))
T
x(i)

]
x
(i)
j (5.109)

=
n∑

i=1

[
I
{
t(i) = r

}
− p

(
t(i) = r | x(i); θ

)]
x
(i)
j (5.110)

, where in equation 5.107, we use linearity of the derivative, in equation 5.108, we

took derivatives, in equation 5.109, 5.110 we simplified the expression. Finally,

the batch gradient ascent update rule becomes

w
(r)
j

′
= w

(r)
j + µ

n∑
i=1

[
I
{
t(i) = r

}
− p

(
t(i) = r | x(i); θ

)]
x
(i)
j (5.111)
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Note that the gradient’s value goes to 0 when

t(i) = r, p
(
t(i) = r | x(i); θ

)
→ 1 (5.112)

t(i) ̸= r, p
(
t(i) = r | x(i); θ

)
→ 0, ∀i, r (5.113)

So the gradient stops adjusting θ when is close to 1 for the correct class and

t(i) = r, p
(
t(i) = r | x(i); θ

)
close to 0 for the incorrect classes, that approves the

that the results make sense.

For more information, please look at the machine learning lecture of Andrew NG

[61].

5.8.5 Understanding of Convolutional Neural Network

Parameter updating of multi-layer perceptron consumes much time in the process.

The cost of fitting the parameters is increasing when the training dataset is getting

bigger. For this reason, a new type of system is needed to minimize the features

in the training data. The system architecture is given in figure 5.23.

Figure 5.23: Convolutional Neural Network [62]

CNN has two parts which are feature learning and classification. In feature learn-

ing, there is no parameter updating; it finds the feature for the input by applying

multiple convolutional layers and RELU operation after each convolutional layer

to delete the negative part of the input. Pooling operations are used to minimize
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the size of the input. These operations continue until the flatten layer. In the

flatten layer, all 2-D images are mapped into 1-D vectors. Now, we are in the

classification part. In this part, values in the flatten layers are given to multi-layer

perceptron in batches. Now, there are two sections. In the first section, learning

parameters are found by using the training dataset. In the second section, classi-

fication occurs in the given test dataset. The softmax activation function is used

on the output neuron of the multi-layer perceptron to do the classification. This

activation is applied because it finds the given input’s probabilities for each class,

and it puts the given input to a class where the probability is close to 1.

The classification algorithm is explained previously. In this section, we will dive

into feature learning algorithms (layers) step by step.

5.8.5.1 Convolutional Layer

Figure 5.24: 2-D Convolution

It is a process where the input signal is passed through a filter (in other words,

kernel). In most cases, images are used as input signals, and 2-D filters are used

for the operations. 2-D convolutional output is calculated with the following
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equation:

G [m,n] = (g ∗ h) =
∑
j

∑
k

h [j, k] g [m− j, n− k] (5.114)

, where input image denoted by g and kernel by h

In this section, there are multiple options. If the output size of the convolution

wants to be the same as the input size, then zero pads will need to add to the

borders of the image. Padding width should meet the following equation, where

p represents padding, h is the filter dimension (usually odd number)

p =
h− 1

2
(5.115)

For some cases, to reduce the resolution of the input image pixel, a stride opera-

tion is applied to the convolution.

G [m,n] =
∑
j

∑
k

h [j, k] g [ms1 − j, ns2 − k] , m ≤ M

s1
, n ≤ N

s2
(5.116)

,where M is the number of image pixel in the row, N is the number of image pixel

in the column, s1 is the stride for rows, s2 is the stride for column. Assuming

that M
s1

is and N
s2

gives us integer.

Now if we take into account of stride and padding operations, the dimension of

the output matrix is calculated by the following equation.

nout =
nin + 2p− h

s
+ 1 (5.117)

,where s1 = s2 = s, m = n

The dimension calculation is important because the next step calculation is done

by considering the input dimension. After every convolutional layer, RELU op-

eration is applied pixel by pixel. This operation eliminates the negative values of

the output image.
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Note: 2-D convolutional layer are used when the data points in the matrix are

important. If it is not, the signal can be mapped into 1-D vectors, and a 1-D

filter operation can be done.

5.8.5.2 Pooling Operation

The pooling operation involves sliding a 2-D filter over each channel of the fea-

ture map and summarizing the features lying within the region covered by the

filter. Pooling operation is used to reduce the dimensions of feature maps. We

will discuss two types of pooling operation, which are max pooling and average

pooling.

Max pooling: It is a pooling operation that selects the maximum element from

the region of the feature map covered by the filter (see in figure 5.25).

Figure 5.25: Max pooling Operation

Average pooling: It computes the average of the elements in the region of the

feature map covered by the filter (see in figure 5.26).

Figure 5.26: Average pooling Operation
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Feature dimension (nh x nw x nc) after the pooling operation can be given as

nout =
nh − h + 1

s
, nout(w) =

nw − h + 1

s
nout(c) = nc (5.118)

, where nh the height of the feature map , nw is the width of the feature map, nc

is the number of channel in the feature map, h is filter size, s is the stride length

5.8.5.3 Flatten Layer

Figure 5.27: Average pooling Operation

This layer is the input layer for the classification part. It sorts the matrix into a

1-D vector which represents the input feature of the multi-layer perceptron.

5.8.5.4 Fully Connected Layer

It represents the hidden layer in the multi-layer perceptron. In the CNN, there

can be multiple fully connected layers, and linear, RELU, leaky RELU, or sig-

moid activation functions can be given for each layer. In most cases, the RELU

activation function is used because of processing speed. The most important part

is, number of output neurons for the final fully connected layer must be the same

as the number of classes. In the final fully connected layer, the Softmax activation

function needs to be used, which predicts the given inputs class numbers.
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5.8.5.5 Understanding of Output Size of Each Layer

Figure 5.28: 3 layers CNN

In the figure 5.28, 3 layers CNN is illustrated. Input image size is given as (39 x

39 x 3) three-dimensional matrix in which the first two dimensions indicate rows

and columns image pixels, whereas the final dimension indicates its RGB colors.

In the first 2-D convolutional layer, 10 filters in the filter bank, which corresponds

to different shapes, are applied to the image. Filter dimensions “f” are defined

as (3 x 3), and stride “s” is defined as 1, and padding “p” is defined as 0 in the

first layer. Zero padding means there is no padding applies to the image. By

using the equation 5.117, the dimension of the feature map for the first layer can

be found. “Note that each output feature map is the sum of convolutions of all

the input feature map” [63]. That means all the channel “nc” of the input image

or feature map are summed together, then filters in the filter bank are applied

onto them so that output channel size becomes the number of filter size. That

is the reason why the output channel size of the feature map is the same as the

number of filters. The dimension calculation is also the same with the second and

third convolution layers. It differs in the flatten layer, which sorts the (7 x 7 x

40) matrix into a 1-D element. From that forward, classification occurs, which is

explained previously.
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Figure 5.29: 2 layer CNN with max pooling operation

In figure 5.29, dimension calculation of feature map for each convolution layer are

the same. It differs in pooling operation. This time, equation 5.118 is applied to

find the filter size. The output size of the first pooling operation can be given as

nout(h) =
28 − 2 + 1

2
= 13.5, nout(w) =

28 − 2 + 1

2
= 13.5, nout(c) = 6 filters

(5.119)

Output size of the second pooling operation can be given as

nout(h) =
14 − 5 + 1

1
= 10, nout(w) =

14 − 5 + 1

1
= 10, nout(c) = 16 filters (5.120)

Output feature map is optimized if the dimension of pooling operation does not

give us integer. It converges the dimension of the output feature map to the

nearest value, which is 14.

5.8.5.6 CNN Architecture of Proposed Algorithm

CNN’s are the feed-forward ANN with additional convolutional and subsampling

layers [64]. By selecting the appropriate convolutional layer, hidden layers, we

can either train a massive 2-D visual database or 1-D speech or ECG database

with a proper training process. In our research, we focused on the 1-D CNN

approach, where has four convolutional layers with the same padding attitude
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and 2 fully connected layers. The architecture has shown in the following table,

where N represents the number of classes.

Table 5.1: 1-D CNN architecture
1-D CNN architecture for
ECG Based identification

1-D CNN architecture for
Speech Based identification

Layer Size Layer Size
Input Layer (1x485) Input Layer (1x20)

Convolutional Layer (1x3, 2) Convolutional Layer (1x9, 8)
batchNormalization Layer - batchNormalization Layer -

Relu Layer Relu Layer
Convolutional Layer (1x5, 4) Convolutional Layer (1x12, 16)

batchNormalization Layer - batchNormalization Layer -
Relu Layer Relu Layer

Convolutional Layer (1x7, 8) Convolutional Layer (1x15, 32)
batchNormalization Layer - batchNormalization Layer -

Relu Layer Relu Layer
Convolutional Layer (1x9, 16) Maxpooling Layer (1x2)

batchNormalization Layer - Convolutional Layer (1x18, 64)
Relu Layer batchNormalization Layer -

Maxpooling Layer (1x2) Relu Layer
Fully Connected Layer 1x(485*N) Maxpooling Layer (1x2)
Fully Connected Layer 1 x N Fully Connected Layer 1x(20*N)

Softmax Layer 1 x N Fully Connected Layer 1 x N
Softmax Layer 1 x N
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Chapter 6

Approach

6.1 Decision Rule of Proposed Method

In the proposed method shown in figure 6.1, both the ECG and the speech signals

will be assumed to be recorded by the acquisition system that has both micro-

phone and instrumentation amplifier. While in the acquisition process, filters

will be applied to both signals to eliminate baseline wander, muscle noise, power-

line noise, or unwanted frequency components. It is thought that the minimum

recording time for both the training and testing stage will be 10 seconds. Orig-

inally, the system designated to require 10 seconds speech signal from each user

by requesting of reading given text which differs from each other contains all the

words in the alphabet. However, making it easy for other researchers to compare

the results, we changed it to the publicly available database. In our experiments,

time constrain is not set for the training process. Half of ECG and speech signals

were separated into a test folder, whereas the other half were train folders. Then

both ECG and speech signals were passed through a pre-processing process where

inconsistent beats and spikes removed from the ECG database, whereas the si-

lence part removed from the speech database. After the pre-processing stage,

MFCC features were extracted from speech signals, whereas P-QRS-T features

from ECG signals. Then vector quantization algorithm was applied onto P-QRS-

T features in the train folder, and 16 significant P-QRS-T features were found.

For the speech signal in the train and test folders, every MFCC features which
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found in 10 seconds pass through vector quantization, and 32 significant MFCC

features were extracted. By using the features in the train folder, two 1-D CNN

classifiers were trained.

From now on, features from the test folder were used and given to the CNN al-

gorithm for probabilistic scoring, where the higher the value of score indicates a

higher chance of class ID, was it. The number of scores related to the number

of classes in which we trained. If there is not a class which we can use to reject

unauthorized user, the proposed system appoints all the feature to classes within

known (genuine) dataset. For this reason, in the proposed system, class ID 0

was defined as an imposter class ID where unauthorized users were assigned to

this class. If the value of the “ECG Threshold” is higher than zero, it means

that we add a class where the unauthorized users were rejected for ECG based

identification algorithm. It is the same with speech-based identification algorithm

whenever the value of “Speech Threshold” is higher than zero. This newly ap-

pointed class is called the universal background model (UBM), and we can also

call it Imposter Rejection Class (Class ID 0). In the training stage, ECG UBM

and Speech UBM were also passed through the same process with genuine classes

until the vector quantization. For the ECG UBM model, we found 1 significant

P-QRS-T feature for each person’s ECG signal in the UBM database, which con-

sists of 152 people. For the Speech UBM model, we found 32 significant MFCC

features for every person’s speech signal, and a total of 4320 significant MFCC

features were found for 135 people. Then, both 1-D CNN was trained by using

features of both genuine classes and additional UBM class (Class ID 0).
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Figure 6.1: Decision Rule of the proposed algorithm

In the evaluation of the proposed system, two main experiments have been done

where the threshold value is zero (which means no imposter rejection) or a thresh-

old value where the intersection between False Acceptance Rate (FAR, imposter)

and False Rejection Rate (FRR, genuine). If the maximum value in the scores

is not higher than the threshold value, class ID was given as ’0’, which means

reject the feature. If it is in another way, the class ID is given, which has a higher
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score. In a given 10 seconds time, we accepted that every person has 11 P-QRS-

T features whereas 1428 MFCC features. Every 1428 MFCC feature has passed

through vector quantization, 32 significant MFCC features were extracted and

given to the system with 11 P-QRS-T features. The class ID found from these

features is then pass through the voting algorithm, where the most repetitive ID

was set of the classifier’s outcome. If the outcome is ’0’, then reject it from the

system, which indicates that given features come from an imposter. If it is in

another way, accept and give the ID of the most repetitive ones obtained from

CNN classifiers.

The proposed system works like a traditional identification system if the value

of “ECG threshold” and “Speech threshold” was given as zero, and there are

multiple numbers of classes that contain only authorized users. In another way

around, the proposed system works like a traditional verification system if the

value of “ECG threshold” and “Speech threshold” are bigger than zero, and there

are one genuine and multiple imposter classes giving to the system for testing it.

Unlike the traditional verification and identification systems, our system exhibits

both of their properties and rejects unauthorized users from the system where

has multiple (genuine) classes in the system.

The important point is, speech signals in the train and test folders are passed

through vector quantization whereas only ECG signals in the train folders were

passed through vector quantization because of not varies over time. The equation

below shows how to obtain the number of significant MFCC feature over the pre-

defined working time of the system:

N =
wt

ft− (ft . ovl)
(6.1)

,where “N” represents number of MFCC features found in a specific work time,

wt represents work time of the algorithm (10 s in our application), ft repre-

sents MFCC framing time (0.02 s in our application), ovl represents the frame
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overlapping percentage (0.65 in our application).

k = 2⌊log2
N
cal⌋ (6.2)

,where cal is the calibration value (30 in our application), k is the number of

significant MFCC features which we want to find by using vector quantization

method.

6.2 Experimental Works

6.2.1 ECG Dataset

In our project, the combination of two fingertip datasets was used; the first one

was the CYHBi database recorded by Hugo da Silva et al. [65] whereas the other

one was a newly constructed database recorded by a self-made device [4]. In

both databases, ECG signals were extracted from thumbs of people with a 1

kHz sampling rate. In the self-constructed database, records were taken from

the 58 patients by two different weeks, having 1-5 minutes recording time. The

dataset was created mostly taken from the students of Işık University which

age differs between 19 to 26. CYHBi database, however, the 63 people’s ECG

signals were taken from two different months in 2 minutes recording time. The

age of the CYHBi database differentiates between 20 to 24. The total number

of fingertip databases became 121 by the combination of two datasets, but it

decreased to 116 whenever the ECG spike and inconsistent beats algorithm was

applied. 5 people’s ECG signals were rejected to not having enough time or

unsuitable for the recognition system where the movement of the patient was

unstable. Fingertip ECG database was the main dataset for the evaluation of the

system; however, for one of the following experiments, we will increase the dataset

with ECG-ID database and remaining signals in the CYHBi database to test the

performance of the proposed system when the number of the classes increases. For

constructing the ECG-based Universal Background Model, we used 152 people
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from the combination of PTB QT and MIT BIH Arrhythmia databases. Universal

Background Model is crucial to reject unauthorized users when there is a small

number of genuine classes.

6.2.2 Speech Dataset

In our project, two different datasets were used to test the performance. The first

database was taken from LibriSpeech Corpus [66] where has a clean speech signal

of 251 people and has 25 minutes recording time of each person. All the data in

the database quantized with 16 bits, and the sampling rate was chosen as 16 kHz.

We randomly selected the speech signals of 116 people and downsampled them

into 8 kHz. The remaining speech signals of 135 people selected for constructing

a universal background model.

The second database was taken from RedDots project [67] which was constructed

to create challenges for the speech verification and identification system. In the

RedDots database, there are speech signals of 62 people where some of the signals

contain multiple noise sources such as the musical instrument sound in the back-

ground, mouse-clicking sounds of the user, the voice of crowds at the background,

or has speakers whose pronouncing of the spoken language were bad.

6.2.3 Assessment Criteria

Four assessment criteria such as Accuracy, Sensitivity, Specificity, Fscore were used

to evaluate the system performance when the system has no imposter rejection

feature. For the imposter rejection algorithm, four different criteria will be used,

which are Imposter Accuracy, Genuine Accuracy, False Rejection Rate (Genuine),

False Acceptance Rate (Imposter).

Sensitivity is defined as the proportion of positive classes that are correctly iden-

tified whereas, the specificity is defined as the proportion of the negative classes
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that correctly identified. Equation for sensitivity and specificity are given as [68]

Sensitivity =
TP

TP + FN
(6.3)

Specificity =
TN

TN + FP
(6.4)

In the equation 6.3, 6.4 , TP , TN , FP , and FN are defined as True Positive,

True Negative, False Positive, and False Negative, respectively. The definition for

each can be given as

True Positive (TP) is defined as the outcome which the system correctly predicts

the positive class.

True Negative (TN) is defined as the outcome which the system correctly predicts

the negative class.

False Positive (FP) is defined as the outcome which the system incorrectly pre-

dicts the positive class.

False Negative (FN) is defined as the outcome which the system incorrectly

predicts the negative class.

We take the average of TP, TN, FP, and FN for each class to evaluate Sensitivity,

Specificity, and F-score because of having multiple classes.

Fscore shows the accuracy of the experiment and defined as the harmonic mean

of the precious and recall. The equation for Fscore is given as [68]

Fscore = 2 x
Precision x Recall

Precision + Recall
(6.5)

where Precision and Recall are calculated as the following equations

Recall = Sensitivity (6.6)

Precision =
TP

TP + FP
(6.7)
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The other criteria is Accuracy and is defined as the ratio of number of classes cor-

rectly identified to the total number of attempts. It is calculated as the following

equation [68]

Accuracy =
NTP

NF

(6.8)

, where NTP represents the number of correctly identified classes, and NF repre-

sents the total number of attempts.

For the rejection algorithm, equation for finding the Imposter Accuracy, Genuine

Accuracy, False Rejection Ratio (Genuine), False Acceptance Rate (Imposter) are

given as

Genuine Accuracy =
Number of Genuine classes correctly identified

Number of genuine attempts
(6.9)

Imposter Accuracy =
Number of Imposter classes correctly rejected

Number of imposters attempts
(6.10)

FAR =
Number of incorrectly accept access attempts by unauthorized users

Number of unauthorized users attempts
(6.11)

FRR =
Number of false rejection over genuine users

Number of genuine users attempts
(6.12)
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Chapter 7

Results and Discussion

7.1 Experiment 1

In first experiment, we started the algorithm with speech and ECG signals of 30,

45, 60, 75, 90 people, respectively. The subjects are divided into 3 folds, wherein

each fold, speech, and ECG data are arranged according to the following rule: In

the first fold, ECG records in the first week or month of the subjects were used

for the training stage, whereas records in the second week or month were used

for testing stage. For speech signal, the first half was used training whereas the

second half for the test. In the second fold, the testing dataset was switched to

training data. In the third and final fold, ECG and speech records which are in

the tested and trained folders, are combined and selected in random order for test

and train purposes. In Table 7.1, the number of P-QRS-T and MFCC features in

each fold was given related with the number of subjects. By selecting ECG and

Speech (rejection) threshold as zero, the performance evaluation was conducted

for each independent 1-D CNNs and their fusion, and the results are given in

Table 7.2 and Table 7.3. In the performance evaluation, four statistical measures

were used, which are accuracy, specificity, sensitivity, and Fscore.
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Table 7.1: Properties of test and train sets
Test Set Train Set

Number
of

Folds

Number
of

Subjects

Number
of

P-QRS-T

Number
of

significant
MFCC

Number
of

P-QRS-T

Number
of

significant
MFCC

Fold-1 30 1841 27827 480 25984
Fold-1 45 2715 35424 720 39168
Fold-1 60 3868 48032 960 53120
Fold-1 75 5265 61280 1200 67008

Fold-1 90 6292 74144 1440 81024
Fold-2 90 5783 81024 1440 74144
Fold-3 90 6037 75302 1440 82278

Table 7.2: Average accuracy of 3-fold cross validation
30 people 45 people 60 people 75 people 90 people

ECG 95.85 94.38 89.96 90.43 90.22
Speech 99.66 98.43 98.00 98.67 97.94
Fusion 100.0 100.0 100.0 99.83 99.92

Table 7.3: Classification performance of the proposed method for each fold
ECG based Identification System

Number
of

Folds

Number
of

Subjects

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Fscore
(%)

Fold-1 90 88.5 99.8 86.7 91.7
Fold-2 90 85.3 99.7 84.2 89.5
Fold-3 90 96.7 99.9 95.5 97.6

Speech based Identification System
Number

of
Folds

Number
of

Subjects

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Fscore
(%)

Fold-1 90 97.5 99.9 97.6 98.7
Fold-2 90 96.6 99.9 96.4 98.1
Fold-3 90 99.5 99.9 99.3 99.6

The Proposed Fusion based Identification System
Number

of
Folds

Number
of

Subjects

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Fscore
(%)

Fold-1 90 100 100 100 100
Fold-2 90 100 100 100 100
Fold-3 90 99.9 99.9 99.7 99.8
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Figure 7.1: Detection Error Tradeoff

In the figure 7.1, the DET curve of the classifier for 90 people in the fold-1 can be

seen. It was found by calculating the average score of each class. The equal error

rate was found 9.2% for ECG-based system, 6.6% for the speech-based system,

whereas 1.6% for the fusion of both systems.

7.2 Experiment 2

In second experiment, ECG and speech signal of 26 people set as imposter class,

and 90 people were set as a genuine class. We know which class number was gen-

uine, which class number was an imposter, so we trained the system with genuine

90 person’s data. In the performance evaluation, speech and ECG (rejection)

thresholds were calculated by finding the intersection of FRR (genuine) and FAR

(imposter), where both of them were minimized (see in Fig 7.2, Fig 7.3). The

ECG (rejection) threshold was found as 0.815, whereas 0.53 for the speech (re-

jection) threshold. Then, the performance of the system was evaluated by using

the obtained rejection thresholds.
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Figure 7.2: FRR vs FAR for ECG based Identification System

Figure 7.3: FRR vs FAR for Speech based Identification System

The increase of the rejection threshold provides better security, whereas decreas-

ing the convenience, which makes users to do multiple attempts to be accepted
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into the system and was correctly identified. It must be chosen wisely with respect

to the application to be used.

Table 7.4: Genuine and Imposter Accuracy rates for 90 people

Proposed
System

Number
of
Subjects

Genuine
Accuracy
(%)

Imposter
Accuracy
(%)

Equal Error
Rate (%)

ECG 90 71.08 71.05 28.92
Speech 90 86.48 87.82 12.95
Fusion 90 91.68 96.05 6.82

In Figure 7.2, it is seen that system accepted all the imposter users when the

value of “ECG threshold” are low. Increasing the value of the “ECG threshold”

improves the imposter rejection accuracy whereas decreases the accuracy of cor-

rectly identifying genuine users. It is same for speech signal (see in figure 7.3);

however, it differs of some point which is that; the increases of speech UBM

dataset improves the imposter rejection accuracy significantly while the value of

“Speech threshold” is still low. In our research, we increased the speech UBM

dataset with 250 people and we saw that it decreases FAR (imposter) to 42%

while “Speech threshold” is at “1” whereas it does not affect genuine accuracy. It

indicates; increasing of speech UBM dataset significantly improves the imposter

rejection performance. However, it can’t be said for the ECG system because

when we increased the ECG UBM dataset with 550 people, it only decreases the

FAR (imposter) to 90% while “ECG threshold” is at “1”. It also affected the

accuracy of genuine users to decrease for the ECG system. For this reason, we

suggest that rather than increasing the ECG UBM dataset, ECG UBM should be

split into multiple (rejection) classes for not to affect the genuine accuracy rate.

Tables 7.5 and 7.6 show the accuracy rates of the system with respect to changes

in batch size and learning rates of the CNN architecture, respectively. The CNN

parameters were optimized according to our classification problem. The hyper-

parameters used in the training of the CNN were tuned by comparing their result

with each other. We concluded that the stochastic gradient descent with mo-

mentum (SGDM) was chosen as a better optimizer due to its learning speed and
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Table 7.5: The performance of the proposed system tested with 90 genuine and
26 imposter people by changing the learning rates of the CNN (the batch size is
128)

Genuine Accuracy (%) Imposter Accuracy (%)
Learning

rate
0.01 0.005 0.001 0.0005 0.01 0.005 0.001 0.0005

ECG 71.09 66.07 70.50 72.87 71.05 76.32 73.03 73.03
Speech 86.48 87.57 85.66 86.18 87.82 88.71 87.82 87.07
Fusion 91.68 93.47 89.90 91.49 96.05 93.42 93.42 93.42

Table 7.6: The performance of the proposed system tested with 90 genuine and
26 imposter people by changing the batch size of the CNN (the learning rate is
0.01)

Genuine Accuracy (%) Imposter Accuracy (%)
Batch size 64 128 256 512 64 128 256 512

ECG 70.10 71.09 76.04 73.66 71.05 71.05 75.66 73.68
Speech 84.14 86.48 87.70 88.17 85.14 87.82 88.11 87.37
Fusion 91.09 91.68 91.29 95.25 96.05 96.05 90.13 94.74

significant performance compared to the RMSProp or ADAM optimizers. ADAM

and RMSProp learned our model in approximately 72 minutes, whereas SGDM

learned it in 57 minutes. The optimum CNN learning rate and batch size for

increasing the imposter rejection performance of the fusion system were found to

be 0.01 and 128, respectively.

7.3 Experiment 3

In third experiment, we increased our ECG database by adding the remaining

ECG signals measured at palm in the CYBHI database [65] and ECG signals

measured at the arm in ECG-ID database [69] into our system. As a result, the

ECG database was increased to 226 people where we randomly selected 176 peo-

ple’s data to be used as genuine classes, whereas 50 people for imposter classes.

As for the speech database, we randomly selected 361 people in the “train-clean-

360” dataset from LibriSpeech, which consists of 921 people. Then we randomly

selected 176 people for genuine, 50 people for imposter classes, whereas the re-

maining 135 people for constructing a universal background model. We conducted
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an experiment by using the previous (rejection) thresholds and compare the re-

sults with new threshold values found from the intersection of FRR and FAR. The

result shows (see in table 7.7) that (rejection) threshold values changes whenever

the dataset is increased, so suitable decision rule must be determined for balancing

both imposter rejection and genuine acceptance accuracies.

Table 7.7: Genuine and Imposter Accuracy rates for 176 people
Previous Rejection

Thresholds
New Rejection
Thresholds

Proposed
System

Genuine
Accuracy

(%)

Imposter
Accuracy

(%)

Genuine
Accuracy

(%)

Imposter
Accuracy

(%)

Equal Error
Rate (%)

ECG 78.74 60.31 73.24 72.76 27.03
Speech 59.85 99.09 85.83 88.56 13.09
Fusion 74.61 100 89.54 96.10 10.3

7.4 Experiment 4

In our fourth experiment, the effect of the time constrain had been examined on

90 people’s fingertip ECG and speech data in fold-1. We changed the working

time of the system to 1, 3, 5, 10, 20, and 50 seconds, respectively, while using the

databases in our previous experiments. If ECG or speech signals of the people

in the database do not meet the required time constant, we evaluated the system

by the maximum length of signal each person has. We conducted an experiment

where each class has trained with sufficient features without time constraints. In

performance evaluation, we tested the system by giving features to the system in

a specific time range. In the end of experiment, accuracy of imposter rejection,

and accuracy of genuine classes were given to be compared with each other (see

in Tables 7.8 and 7.9).

Table 7.8: Identification performance for genuine people in a given response time

1 sec 3 sec 5 sec 10 sec 20 sec 60 sec
ECG 62.07 64.62 66.75 71.08 71.98 72.00

Speech 55.09 71.38 79.28 86.48 89.95 90.34
Fusion 63.15 72.82 82.14 91.68 90.69 93.89
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Table 7.9: Rejection performance for imposter people in a given response time

1 sec 3 sec 5 sec 10 sec 20 sec 60 sec
ECG 64.22 66.78 68.56 71.05 72.72 75.00

Speech 55.44 70.71 79.98 87.81 89.29 90.09
Fusion 69.07 85.66 92.63 96.05 90.69 93.89

In Tables 7.8 and 7.9, the system’s performance increases when we increase the

response time of the system. In the Tables, it can also be seen that genuine

and imposter accuracy rates differ from each other for each response time. This

indicates that the exact intersection of FRR and FAR is not found when the sig-

nals are very hard to differentiate. Therefore, we used the thresholds where the

accuracy of imposter rejection is higher than the accuracy of genuine identifica-

tion. The genuine and imposter accuracy rates in the first 4th columns are to be

expected the same such as the accuracy rate of their fusion in the 5th and 6th

columns.

7.5 Experiment 5

In our fifth experiment, we exchanged LibriSpeech database with RedDots database [67]

which has 62 speakers, contains 49 male and 13 female speakers from 21 coun-

tries. The records were taken through mobile crowd-sourcing, with the benefit of

a potentially wider population and greater diversity. The language used in the

database is English; however, the dataset was constructed to increase the diffi-

culty of the identification system where has noises sources at the background or

pronouncing of the spoken language were bad. The database was used to simulate

the performance of the proposed algorithm in a bad conditional recorded speech

signal. The results are given in Table 7.10.

132



Table 7.10: Genuine and Imposter Accuracy rates for RedDots speech database

Proposed
System

Number
of

Genuine
Classes

Number
of

Imposter
Classes

Genuine
Accuracy

(%)

Imposter
Accuracy

(%)

Equal Error
Rate
(%)

ECG 48 14 75.51 77.64 23.93
Speech 48 14 67.10 67.34 32.87
Fusion 48 14 73.52 85.36 26.05

7.6 Experiment 6

In our final experiment, we randomly selected the number of 1, 3, 5 genuine classes

and the remaining classes in the 116 people left for imposter classes. Then we

trained the proposed system with genuine classes. In addition to the genuine class

number, we exchanged person/people in the genuine class/classes three times from

the database. Then we conducted a test to evaluate the identification accuracy

(genuine) and rejection accuracy (imposter) of the proposed system, and the

results are given in Table 7.11

Table 7.11: Accuracy Rates of the proposed system when few people were regis-
tered in the system

Average of Randomly Selected 3 Group of People (Genuine Class)

Proposed
System

Number
of

Genuine
Classes

Number
of

Imposter
Classes

Genuine
Accuracy

(%)

Imposter
Accuracy

(%)

ECG 1 115 100.00 90.67
ECG 3 113 81.37 87.07
ECG 5 111 70.93 70.93

Speech 1 115 100.00 99.60
Speech 3 113 99.40 98.47
Speech 5 111 98.53 98.37
Fusion 1 115 100.00 99.93
Fusion 3 113 100.00 98.93
Fusion 5 111 100.00 98.63

7.7 Discussion and Comparison of Relevant Researches

It must be known that there is no significant development over Speech and ECG

fusion-based identification system. For this reason, we can not compare the pro-

posed fusion-based system performance. However, we can compare the system
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performance by taking into consideration of modalities that we used in our sys-

tem.

In Tables 7.12 and 7.13, Recent research has been shown by comparing them with

respect to the database, electrode replacement, or methodology, the number of

subjects, identification rate, and working time. It can be seen that most of the

research has not exceeded the number of 100 subjects for both ECG and speech

identification systems. For speech identification systems, our proposed system has

superior to most of the research in comparison of identification rate and working

time. For the ECG-based identification system, our proposed system achieved a

moderate identification rate by comparing the overall system. However, it should

be considered that the proposed ECG-based system works with fingertip ECG

signals, and it gives the result of the identification in 10 seconds. Most of the

research ignores the system response time. So we think it is superior to other

systems with respect to response time. The other superiority of our system is

that it can work with both verification, identification, and authentication. If the

number of user in the system is limited to 1 person, it works like verification

system where reject the unauthorized people. If there are multiple users in the

database, it will identify the person with no unauthorized rejection option or with

an unauthorized rejection option that can be selectable by the users’ will.
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Table 7.12: Comparison of the Speech based System with Recent Researches

Author Year Database Method NS Results(%) WT

S. Chakroborty et al. [29] 2007
Polycost
YOHO

Text-Indep.
131
138

IDR
IDR

81.6
97.7

754 UT
96 UT

Shung-Yung Lung [30] 2009
TALUNG
KING

Text-Indep.
100
51

IDR
IDR

96
98

∼5 s
NA

Zhanyu Ma et al. [33] 2011 TIMIT Text-Indep. 25 IDR 99.5 3 STC
Khaled Daqrouq [34] 2011 SC Text-Indep. 29 IDR 91.1 4 STC (120s)
Hesham Tolda [35] 2011 SC Text-Indep. 10 IDR 80 1 STC
A.D. Jafeer et al. [36] 2012 Switchboard Text-Indep. 40 IDR 100 6 UT (∼20s)
S.S. Nidhyananthan et al. [37] 2013 SC Text-Indep. 120 IDR 80.4 ∼40
Jalil Taghia et al. [47] 2013 TIMIT Text-Indep. 100 IDR 93.57 ∼9 s
Hong Yu et al. [39] 2014 TIMIT Text-Indep. 20 IDR 97.6 ∼9 s
N. Almaadeed et al. [40] 2014 Grid Text-Indep. 34 IDR 97.5 NA
N. M. AboElenein et al. [41] 2016 CHAINS Text-Indep. 36 IDR 91 2 s

N. Almaadeed et al. [42] 2016

YOHO
NIST

TI digits1
TI digits2

Text-Indep. NA

IDR
IDR
IDR
IDR

94.23
92.15
96.87
97.34

3 s

Zhanyu Ma et al. [52] 2017 TIMIT Text-Indep. 100 IDR 99.52 3 UT

A. S. Imran [44] 2019 MOOC Text-Indep. 119
IDR
IDR
IDR

93.37
94.44
94.64

3 s
5 s
7 s

Chao Zhang et al. [70] 2019 LibriSpeech Text-Indep. 251 IDR 99.08 4 s

Qian-Bei Hong et al. [71] 2019 LibriSpeech Text-Indep.

50
50

1172
1172

IDR
EER
IDR
EER

82.99
5.35
73.26
6.89

17 s

The proposed Speech
Identification System(No
Imposter Rejection)

2020 LibriSpeech Text-Indep. 90 IDR 97.93 10s

where UT refers to Utterance, STC refers to sentence
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Table 7.13: Comparison of the ECG based System with Recent Researches

Author Year DB ER NS Results(%) WT
Biel at al. [72] 2001 SC Chest 20 IDR 98 NA
Shen et al. [73] 2002 MIT-BIH Chest 20 IDR 100 ∼1 s
A. Lourenco et al. [74] 2011 SC Fingertip ECG 16 IDR 94.3 ∼25 s(30 HB)
Z. Zhao and L. Yang [5] 2011 QT Chest 20 IDR 95.3 NA
Shen et al. [6] 2011 SC Palm 168 IDR 95.3 NA
Sara Zokaee et al. [7] 2012 SC NA 50 IDR 94.7 NA
Fufu Zeng et al. [8] 2012 MIT-BIH Arr. Chest 37 IDR 95.8 NA
Emna Rabhi et al. [9] 2013 MIT-BIH Chest 18 IDR 99 10 min
A.C. Matos et al. [10] 2013 SC L/R Index Finger 10 IDR 100 30 s
J. Wu and Y. Zhang [11] 2014 MIT-BIH Arr. Chest 33 IDR 97.1 10 s
Kuo-Kun Tseng et al. [12] 2014 MIT-BIH NSR Chest 18 IDR 95.3 NA
Huan Zhang et al. [14] 2015 MIT-BIH Chest 36 IDR 94.4 NA

Juan Sebastian et al. [15] 2015 SC Fingertip ECG 10
IDR
FAR

81.82
1.41

4 s

M. Dai et al. [17] 2015 SC Hand 14 IDR 77.15 NA
G. Altan et al. [18] 2015 ECG-ID Wrists 90 IDR 91.5 20 s
M. N. Dar et al. [19] 2015 ECG-ID Wrists 47 IDR 95.9 20 s
Xiafei Lei et al. [20] 2016 PTB Chest + Limbs 100 IDR 99.3 NA

Kuo-Kun Tseng et al. [21] 2016 MIT-BIH NSR Chest 18
IDR
FAR

91.7
0

NA

M. Bassiouni et al. [22] 2016 MIT-BIH Arr. Chest 30 IDR 97 NA
L. Wieclaw et al. [23] 2017 SC Fingertip ECG 18 IDR 96 NA
Gang Zheng et al. [24] 2017 SC NA 28 IDR 98.1 NA
Ronald Salloum et al. [25] 2017 ECG-ID Wrists 18 IDR 100 ∼8 s

M. Bassiouni et al. [26] 2018
MIT-BIH Arr.

ECG-ID
Chest
Wrists

30
90

IDR 100
99

20000 s
∼127 sIDR

Hakan Gürkan et al. [75] 2019 MIT-BIH Arr. Chest 46 IDR 99.3 NA
N. Samarin [76] 2019 SC Fingertip ECG 48 EER 9.7 ∼96 s
Jae-Neung Lee et al. [27] 2019 SC Arm 95 IDR 98.25 NA
The proposed ECG
Identification System (No
Imposter Rejection)

2020 SC + CYBHi Fingertip ECG 90 IDR 90.22 10s

where DB refers to Database, ER refers to Electrode Replacement, NS refers to number of
subjects, IDR refers to identification rate, EER refers to equal error rate, FAR refers to
false acceptance rate, WT refers to work time which indicates the ECG frame in time while
evaluating the system, SC refers to self-constructed, NA indicates that information is not
available or computable, HB refers to Heart beat.
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Chapter 8

Conclusion

We presented a fusion-based system which has both identification and verification

feature that can reject the imposter classes. The proposed fusion algorithm was

developed working on real-time security applications where there are multiple

users. In the algorithm, we provided a solution for the degradation of fingertip

ECG signals caused by the subject’s movement. The proposed fusion method

works with the principle of the voting method by looking at the outcome of each

independent CNN system. The first experimental result shows that the proposed

fusion-based system achieved a 100% accuracy rate for 90 people when there is

no imposter rejection feature. The second experimental result shows that our

algorithm rejected the imposter classes with a 91.68% accuracy rate whereas ac-

cepted with a 96.05% accuracy rate for 90 people. In the third experiment, we

increased both the speech and ECG database and evaluated the performance of

the system with 176 genuine, 50 imposter classes, and we achieved 89.54% accu-

racy rate in the genuine classes whereas 96.1% imposter rejection accuracy. In the

fourth experiment, we compared both genuine and imposter class accuracy rates

by changing the working time of the system. In the fifth experiment, the speech

dataset exchanged with the RedDots dataset, given 48 genuine classes and 14 im-

poster classes, the proposed method has achieved 73.52% genuine identification

accuracy whereas 85.36% imposter rejection accuracy. In the final experiment,

the proposed system has been shown that it can also work when a few people are

registered.
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