RULE BASED
ENTITY-RELATIONSHIP DIAGRAM
MODELLING

OGUZHAN ULUSOY
M.S., Computer Engineering, ISIK UNIVERSITY, 2022
B.S., Computer Science and Engineering, ISIK UNIVERSITY, 2018

Submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of
Master of Science
in

Computer Engineering

ISIK UNIVERSITY
2022

ISIK UNIVERSITY
SCHOOL OF GRADUATE STUDIES

RULE BASED
ENTITY-RELATIONSHIP DIAGRAM
MODELLING

OGUZHAN ULUSOY

APPROVED BY:

Dr. Emine Ekin
Isik University

(Thesis Supervisor)

Prof. Dr. Olcay Taner Yildiz
(")zyegin University

Dr. Faik Boray Tek
Isik University

APPROVAL DATE: OT/0Y2022

* 76689 Sayil Kigisel Verilerin Korunmasi Kanunu Hiikiimlerine Gére Cevrimigi Yayin Dosyasinda Bulunan Kisisel Veriler Ve Islak imzalar Silinmistir.”

RULE BASED ENTITY-RELATIONSHIP DIAGRAM
MODELLING

Abstract

Modern society needs to use database system since they involve many activities

that are related to database interaction directly.

In this study, entity-relationship modeling using Natural Language Processing
techniques is presented for the English language. Natural Language Processing
refers to the capability of understanding human languages naturally, like Turkish
and English, using computational power. To make this possible, combination
of linguistics and current Machine Learning systems are used together. Entity-

Relationship diagrams ensure to plan or trace relational databases in different
fields.

In the beginning, all details of a standard database management and its com-
ponents have been studied. Heuristic rules which indicate the relation between
human language and database components have been defined. According to the
defined heuristic rules previously, an event-based pipeline has been constructed.
A full text has been analyzed and processed every word at this pipeline using

Natural Language Processing techniques.

Keywords: Entity-relationship diagram/modelling, part of speech tagging (pos),
database management system (dbms), relational database management system

(rdbms), natural language processing (nlp), machine learning

i

KURALA DAYALI VARLIK-ILISKI DIYAGRAMI
MODELLEME

Ozet

Modern topluluklar, direkt olarak veritabani etkilesimi ile alakali bircok aktivite
giinliik hayatlarinda dahil olduklarindan dolay1 veritabani sistemleri kullanmaya

ihtiyac duyarlar.

Bu calismada, Ingilizce dili icin Dogal Dil Isleme (NLP) tekniklerini kullanarak
varlik-iligki (ER) modellemesini temsil etmeye yonelik ¢aligmay1 sunuyoruz. Dogal
Dil Isleme, bilgisayarlarin hesaplama giictinii kullanarak Tiirkce ve ingilizce gibi
insan dillerini dogal olarak anlama yetenegi saglar. Bunu miimkiin kilmak igin,
dilbilim ve meveut Makine Ogrenimi sistemlerinin birlesimi birlikte kullanihr.
Varlik-Iliski diyagramlari, yazihm mithendisligi, isletme bilgi sistemleri, egitim ve

aragtirmada iligkisel veritabanlarini planlamak veya izlemek icin siklikla kullanilir.

Baslangicta, standart bir veritabani yonetim sistemi ve bilegenlerinin tiim ayrintilarina
calisildi. Dogal insan dili ve veritabani semantigi arasindaki iligkiler varsayimsal
kurallar olarak tanimlandi. Daha onceden tanimlanan bu kurallara gore, etkinlik
bazli bir boru hatti inga edildi. Komple bir metin analiz edilip, her bir kelime

Dogal Dil Isleme yontemleri ile iglendi.

Anahtar kelimeler: Varlik-iligki diyagrami/modellemesi, konugmanin bilegenleri,
veritaban1 yonetim sistemi, iligkisel veritabani yonetim sistemi, dogal dil igleme,

makine 6grenmesi

il

To...I'm glad to finally sharing this study with my
supervisor and family.

Table of Contents

Approval Page

Abstract

szet

List of Tables

List of Figures

List of Abbreviations

1 Introduction
1.1 Application of entity relationship diagrams

2 Literature Survey

3 Overview of DBMS & ERDs
3.1 Database Management Systems
3.2 Database Modeling
3.3 High-Level Conceptual Design
3.4 Database Components

3.4.1
3.4.2
3.4.3

Entity
Attributeo
Relationship oL

3.5 Proper Naming of Schema Constructs

4 Approach

4.1 Rule 1: Identify Entities

4.1.1
4.1.2
4.1.3

4.14
4.1.5

A common noun may indicate an entity type.
A proper noun may indicate an entity.
In case of consecutive nouns existence, check the last noun.
It may be an entity type, otherwise it may indicate an at-
tribute.
A gerund may indicate an entity.
Ignore every proper noun.

ii

iii

vii

viii

ix

12
12
14
14
15
17
18

4.2 Rule 2: Identify Attributes
4.2.1 Noun phrase with genitive case may indicate an attribute.
4.2.2 The possessive case usually shows ownership it may indicate

attribute type.o
4.2.3 A noun phrase such as has/have may indicate attribute.

4.3 Rule 3: Identify Relationships
4.3.1 A transitive verb can indicate relationship type.
4.3.2 If a verb is in the current list: include, involve, comprises

of, encompass, contain, split to, embrace, this suggests an
aggregation or compositional relationship.
4.3.3 Passive voice can be translated into active voice.

4.4 Rule 4: Identify Primary Key

4.4.1 Adverb indicates primary key of an entity.

5 Design & Implementation Details
5.1 Proposed Design L
5.1.1 Segmentation
5.1.2 Tokenization.
5.1.3 POS Tagger
5.1.4 Chunking
5.1.5 Parser
5.1.6 ER Analysis oo
5.2 Implementation Details
5.2.1 System Architecture
5.2.2 Logging & Exception Handling
5.2.3 User-interface L.
524 Trade-offs

6 Discussion & Results
6.1 Discussion e
6.2 Results.
6.2.1 CaseStudies.
6.2.2 Differences Between Actual And Experimental Results
6.2.3 More Experimental Results

7 Conclusion

Reference

21

22

22
23

23
24
24
24

25
26
27
27
28
31
33
34
34
34
35
35
35

37
37
39
39
43
48

53

54

5.1
5.2
5.3
0.4
2.5
5.6

6.1

6.2

6.3

6.4
6.5
6.6
6.7
6.8

List of Tables

An example sentence for part-of-speech tagging.
An example for spacy tagging.
Dependency labels with descriptions between 1-23rd items

Dependency labels with descriptions between 24-45th items
An example sentence for chunking.
An example sentence for parser.

Entities are caught by rule-based entity-relationship diagram mod-
elling algorithm
Attributes are caught by rule-based entity-relationship diagram
modelling algorithm 0oL
Relationships are caught by rule-based entity-relationship diagram
modelling algorithm
Actual entities from reference booko
Actual attributes from reference book
Actual relationships from reference book
Numeric comparisons
Numeric analysis L oo

vil

29
29
30

List of Figures

3.1 Enmtity shapeo 15
3.2 Weak Entity shape, 15
3.3 Attribute shape 15
3.4 Key Attribute shape L. 16
3.5 Multi-valued Attribute shape 16
3.6 Composite Attribute shape 16
3.7 Derived Attribute shape 17
3.8 Relationship shape 17
3.9 Identifying Relationship shape 18
5.1 Design of proposed system 26
6.1 Airplane database which is generated by algorithm 43
6.2 Airplane database which is referenced by book 45
6.3 1st entity-relationship diagram example 48
6.4 2nd entity-relationship diagram example 49
6.5 3rd entity-relationship diagram example 50
6.6 4th entity-relationship diagram example 50
6.7 5th entity-relationship diagram example 51
6.8 6th entity-relationship diagram example 51
6.9 Tth entity-relationship diagram example 52
6.10 8th entity-relationship diagram example 52

viil

DB
DBMS
ER
ERD
POS

ML
NLP
RDBMS

List of Abbreviations

Database

Database Management System
Entity-Relationship
Entity-Relationship Diagram
Part of speech

Machine Learning

Natural Language Processing

Relational Database Management System

1X

Chapter 1

Introduction

Modern society needs to use database system since they involve many activities

that are related to database interaction directly [1].

A database is a set of connected data which has been arranged. The term ”data”
is used to refer to valid truths that can be documented. A database includes the

following characteristics:

1. A database is a representation of anything in the actual world. Database

components are used to represent real-world items and relationships.

2. A database is a rational and logical gathering of meaningful data. A
database will be unable to appropriately manage a randomly selected batch

of data.

3. For a given aim, a database is occurred, developed, and growth of data.

An entity is something which can function alone and may be identified separately.

For instance, certain aspects of the real world can be distinguished from the others

[2].

In the area of software engineering, commercial information data systems, edu-
cation, and inquest, entity-relationship charts are commonly applied to design or

analyze database systems.

Entity forms (which classify the objects of interest) and connections (that may

occur among entities) create a simple Entity-Relationship type (examples of those

entity types). ERDs, also known as ER Models, illustrate the inter-connectedness

of entities, connections, and their qualities by the usage of a predetermined system

of symbols including like rectangles, diamonds, ovals, and connecting lines. They

are formed likely to grammar and syntax, with beings acting like nouns and

connections acting like verbs [2].

1.1

Application of entity relationship diagrams

Database design: Creating an entity-relationship diagram is a common first

step in defining the needs for an information systems project [3].

Database diagnosing: ERDs are utilized to investigate current databases
for the purpose of find and fix logic and deployment problems; creating the

chart must disclose where the problem is occurring.

Enterprise resource planning (ERP) systems: ERDs are utilized to create
or analyze the use of relational databases in commercial processes. It can
boost results by streamlining procedures, enabling it much easier to get

data, and streamlining processes [2].

Business procedure re-engineering (BPR): ERDs help in the examination of

databases employed in BPR and the modeling of a fresh database structure

[2].

Education: ERDs can be useful in creating databases that store and retrieve

relevant information for educational reasons [2].

Research: ERD diagrams may be quite beneficial in creating useful databases

for data analysis [2].

No-code development platforms (NCDPs) become more popular nowadays. Rather

than programming, a no-code development platform allows anybody, engineer or

not, to create an application that comprises of graphical interfaces and settings.
NCDPs aim to construct or design a project without implementing any code is

this kind platform requires every little details.

Designing a database model, or rolling back already constructed database man-
agement system, or database troubleshooting may be very costly. Therefore, every
little detail has to be processed accurately. At this point, a software manages and

handles this precisely.

No-code development platforms may be used to design entity-relationship model-
ing to reduce higher costly operations that are defined above. Designing no-code

development platform for entity-relationship modeling reduces missing or errors.

This study aims to construct no-code development platform for entity-relationship
modeling and generate components of any entity-relationship diagram. These
components have been defined as entity, attribute and relationship. They are

going to be explained with own details at next sections.
The parts of this thesis are located as follows:

In Chapter 2, understanding the domain and state-of-art for ER modeling, more
than fifty articles have been read and findings are similar works have been shared.

Especially, the most important articles are preferred.

In Chapter 3, scope of database management systems has been studied within
general concepts. This part is required to figure out how a database management

system works. This chapter contains details of a DBM system.

In Chapter 4, heuristic rules which indicate relationship between human language
and database management system have been defined with examples. In other
say, this chapter includes detailed information how planned approach has been
provided. The rules have been constructed for English language since this study’s

aim covers English text.

In Chapter 5, design and implementation details have been introduced. Design
includes details of proposed system. Implementation also contains details of de-

sign.
In Chapter 6, results of experiment have been explained with discussions.

In Chapter 7, objectives of this thesis have been shared.

Chapter 2

Literature Survey

In today’s world, mechanized software design and development technologies [4]
are becoming increasingly widespread and popular. Computerized software design
and development technologies [4] are research and development tools that aid in
the construction of a project’s foundation based on client needs and specifications.
There are many types of this approach. This approach assists us when we are
designing a schema or code base. However, they are commonly based on human
text. The first goal of this approach is to design project base more accurately.
Designing a schema or code base is required domain knowledge since every item

in a human text has been parsed.

In this study, a study about representing entity-relationship modelling for English
language has being presented. Automated software design and development tools
are major study field of Natural Language Processing (NLP). Many resources for
both mutual studies and NLP techniques for this approach have been researched,
therefore our findings are presented in this section. There is now a rising interest
in automating the eradication of data from innate language text, which forms a
substantial portion of domain knowledge [5]. Domain knowledge and special rules

have been studied on previous sections.

Geetha S. and Anandha Mala G. S. [5] who are from St. Joseph’s College of
Engineering in India, have aimed to information extraction from natural language

text, and hereby they achieved to construct a database schema. Their work

focuses on rule-based approach. They make phrase chunking with using POS

tags.

They finally make SVO structure. Therefore, they can understand attributes,

objects and relations. They can also understand what attribute primary key is.

There is a similar study for generating UML models. Deva Kumar Deeptimahanti
and Ratna Sanyal [6] achieved making semi-automatic generation of UML models
from innate language requirements [6]. They specifically mentioned that one of
the key causes of such possible issues is the declaration of software needs in Natu-
ral Language format [6]. This is the most common problem to extract information
from human text. The architecture that has been developed by Deeptimanhanti
and Sanyal is bigger than previous one. They use more than one framework at

same time.

Sven Hartmann and Sebastian Link [7] explains basic rules that state correspon-
dences between English sentence structures and [8] EER modeling features. They
studied the impact of new ER features, such as specialization, generalization,
higher-order [9] relationship types and collection types, on the heuristic guide-

lines.

Circe [10] is a system which is web-based for enabling innate language necessity

gathering, elicitation, picking and confirmation.

For constructing an ER diagram from natural language specifications, Meziane
[11] utilizes a semi-automatic technique. It takes normal English input and turns
it to Logical Form Language (LFL). These logic forms serve as a foundation for
recognising entities, properties, and their relationships. Appropriate degrees are
assigned to recognized associations using heuristics. This method is largely reliant
on quantifiers for determining the degree of relationships. The’ and an are two

existential quantifiers that are both definitive and indefinite.

N. Omar [12] did also research to collect semantic information from natural lan-

guage issue statements in order to generate ER types. They demonstrate that

combining semantic lexical information with syntactic heuristics produces much
more precise and accurate outcomes. Semantic research aids in the resolution of
a broader variety of difficulties, including such anaphoric references and nominal-

ization. Interpreting the outcomes of parsing allows you to add more expressions.

Ronak Dedhia, Atish Jain and Prof. Khushali Deulkar [13] try to find the several
ways used by the current tools, for extracting the necessity specification from the

explanation of the problem in the language of English.

Claes Wohlin and Aybuke Aurum made a study that to analyse checklist-based
look-over for ER-charts [14]. Checklist based inspections are defined heuristically.

Someone created the checklist for the research manually [14] before.

Chapter 3

Overview of DBMS & ERDs

The Entity Relationship Diagram (ERD) depicts the real world as a collection of
entities, their interrelationships, and the qualities that define them. The entity
where we wish to store data is referred to as an entity. The allowable interconnec-
tions among occurrences of entities are defined by a relation- ship. A trait shared
by all or most occurrences of a certain entity is called an attribute. Because the
ER method is simple to grasp, a designer can concentrate on conceptualizing an
organization and deciding what entity sets, connection sets, and constraints to

utilize.

An Entity-Relationship Model is an important player who has a main role in
creating the data modeling structure of business systems. Entity Relation- ship
(ER) diagrams have had a main role in systems specification, examination and
development [15]. Due to abstraction and high level of conceptual data, ER mod-
eling is an overwhelming task for database designers and system analysts. ER
types are for controlling and monitoring system’s databases [15]. In every organi-
zation for running a business at a large scale, databases are an integral element.
Although database systems play critical role in design and development progress,
obtaining and briefly explaining entity relationship diagram from requirements

may be a lengthy and time consuming.

Newer studies have been targeted on automated extraction of data from human

language using Natural Language Processing [15]. NLP is one of the purposes

of Artificial Intelligence. Generally, NLP is used to automatically change data
stored in human language to a format which is machine understandable [15]. The
core purpose of NLP is to get info from unstructured data [15] to be processed.

Therefore, NLP is able to be used to create automation in order to generating

ER chart.

In this section we introduce the fundamentals of database with advantages and

basic components, overview of entity-relationship diagrams briefly.

3.1 Database Management Systems

Databases are a required elements of life in modern cultures: many of us involve

many activities each day, some of them are relevant with database interaction.

A database is commonly an organized set of relevant info. By info, we mean

common truths facts which can be recorded. A database has given properties:

1. A database is a representation of anything in the actual world. Database

components are used to represent real-world objects and relationships [16].

2. A database is a rationally consistent set of info that has some meaning. A

database cannot handle a randomized [17] type of batch of data correctly.

3. For a particular [17] function, a database is created, developed, and popu-

lated with data.

Traditional database systems store textual and numeric data. New media tech-
nology, on the other hand, has made it feasible to digitally save photographs,
audio samples, and video streams. These kinds of files are critical element for
only multi- media databases. Geographic information systems, in other say GIS,
can store maps, data of weather and images of satellite [18]. It is a kind of

multimedia database. There are many types of databases.

Database systems, kind is not important, are basically to store the data for sup-
porting systems. Active database is a real-time data synchronization process, tech
is utilized to manage processes of industrial and manufacturing. And database
search ways, in other say information retrieval methodologies, are being used to

the World Wide Web to enhance the search for data.

The expanding usage of computers has a significant influence on database tech-
nology. Databases are essential in practically every field where computers are
employed [19]. Commerce, e - commerce, engineering, medical, genetics, law, ed-
ucation, library, and other fields are examples. Even in locations wherein laptops

are not utilized, people must keep track of their data on paper.

A database might be of any volume and intricacy [18]. An instance of an im-
portant business database is Amazon.com. It includes information for over 20
million books, CDs, videos, DVDs, games, electronics, apparel, and other things.
The database inhabits over 2 terabytes and is stored on 200 separately servers.
Almost 15 million guests entry Amazon.com each day and use the database to
make sells. The database is frequently informed as fresh books and other things

are put to the stock and stock conditions are updated as sells are transacted.

A database might be created and sustained manually, or it may be handled elec-
tronically. A computerized database might be formed and continued either by a
group of application programs written particularly. This study aims to develop a

solution for this issue.

A database management system (DBMS) is a collection of data that enables users
to create and maintain databases. The database management system (DBMS)
is a general-purpose system software that simplifies the operations of creating,

building, modifying, and sharing databases across multiple users and applications.

The database description or detailed description is also saved by the DBMS in

the form of a database index or vocabulary and is referred to as meta-data.

10

A design requires requirements formulation and analysis (whether it is a fresh
mechanism for a current database or the development of a brand-new database).
These criteria are meticulously recorded and turned into a conceptual design
known as an entity-relationship diagram. Some technologies may be used to rep-
resent and run a conceptual design, allowing it to be easily maintained, amended,
and transformed into a database design. The conceptual design is subsequently
transformed into a logical design that may be described in a database schema

deployed in a commercialized database management system.

Database designers are responsible for deciding what data will be stored in the
database and creating acceptable formats to represent and retain it. These ac-
tivities are often completed prior to the database being deployed and filled with
data. Database designers must interact with all potential database users in order
to identify the needs and produce a design that satisfies them. Designers are fre-
quently on the DBA’s staff and may be allocated additional responsibilities when
the database design is accomplished. Database designers often communicate with
each conceivable set of users and create database views that match their data and
processing needs. Every point of view is then examined and combined with the
points of view of other user groups. The final database architecture should be

able to meet the needs of all user of the groups.

The DBMS modules and interfaces are designed and implemented as a software
package by DBMS system designers and implementers. A DBMS is an extremely
complex software system that comprises of numerous components, or modules,
such as modules for catalog implementation, query language processing, interface
processing, data access and buffering, concurrency control, and data recovery
and security. The database management system (DBMS) must communicate
with other system software like the operating system and translators for different

languages of programming.

11

3.2 Database Modeling

Database modeling is to construct conceptual design. Conceptual design is re-
quired for designing a successful database system. Conceptual design has different
ways like entity-relationship diagram or object modeling. Accordingly, conceptual

design is to design entity-relationship chart.

This study aims to focus on database modeling, in other say conceptual design,

such as entity-relationship diagram.

Entity-relationship (ER) chart may be called entity-relationship modeling. An
ER diagram consists of entity, attribute and relationship. They are described
as figures on a diagram. Since there are various shapes, they have their own
meaning. Entity, attribute and relationship might be represented in various ways

such as object modeling.

Object modeling might be represented in various ways such class diagram. It is
mostly known that is used in data object classes in software. Object modeling is

applied through Unified Modeling Language, in other say UML.

There are many ventures to describe conceptual design. But, this study aims to

mostly focus on entity-relationship diagram.

3.3 High-Level Conceptual Design

Conceptual design may consist of data flow, diagram and scenario. Requirements

are commonly described in these various schema. ER modeling is a diagram.

The conceptual design path is introduced as follows:

1. Designer or analyst gathers the requirements over written text. Under-
standing the basics of requirement text is the initial step. All needs are
described such as property or object. In ER modeling, a property is called
attribute and object is called entity.

12

2. Designer or analyst starts to understand the limitation of requirement text

such as relationship among objects.

3. Designer or analyst makes comparisons between requirement and analysis.

Unless it meets, sustaining effort should be. This is a milestone to be sure.

4. Once the requirements have been collected and analyzed, the next step is to
create a conceptual design, in other say picking up a appropriate schema.

Accordingly, this study focus on entity-relationship diagram.

Collecting requirements is required in initial step. During this step, the person
who is going to design the database, gathers overview of requirement text. Re-
quirement text should be as possible as including details. All basics or needs
should be understood by any person who reads. Therefore, requirement text
should be well defined. All needs are described such as property and object. In
ER modeling, an object is described as entity. An entity represents a real world
thing [19]. A property is described as attribute. An attribute explains a real
world thing, in other say object.

After requirements have been collected and analyzed, the limitations should be
determined. A limitation may be a primary key, or multiplicity, or nullable, or
data object type. In ER modeling, some limitations such as data object type may
be skipped. But, some limitations such as a primary key or multiplicity cannot
be bounced. These kinds of constraints have critical role in ER modeling since
they include descriptive purpose. A conceptual design in high-level should cover

this feature.

A high-level conceptual design is able to be used as a reference to ensure whether
requirements are met, or not. Accordingly, database designer can change her
focus. Because a high-level conceptual design enables database designers to con-
centrate on specifying the all pieces. Unless conceptual design meets the require-
ments, all steps may be repeated so far. This is a milestone to confirmation.

Hereby, the conceptual design provides to make accurate database specifications.

13

When all analysis and confirmations have been completed, a proper conceptual
design or schema should be pick up. It varies through preferences, like this study
has aimed to focus on the entity-relationship diagram. After high-level conceptual
design is transformed from requirement to schema, this phase may ended up.
Eventually the constructed schema is called logical design or data model mapping.
Therefore, when an entity-relationship diagram is constructed, it refers logical

design or data model mapping.

After the database designer gets logical design or data model mapping [20], im-
plementation begins within structured query language. This step is actually the
last step that completes physical design and development. It includes internal

storage structures, organizations of files, indexes, and access ways and so on.

3.4 Database Components

In this section, basic components of a database are described. A database is made

of entities, attributes, and relationships fundamentally.

An entity is a thing that has the ability to exist independently and can be indi-
vidually recognized. For instance, there are certain characteristics of the actual
world that may be identified from others. An attribute is a term used to describe
anything. A relationship arises when two or more things interact and defines their

relationship.

3.4.1 Entity

The core item that ER modeling portrays is an entity, that is a real-world thing
with its own existence. An entity can be a tangible item, such as an individual,
vehicle, property, or worker, or it can be an abstract object, such as an instance,
a corporation, a job, or a university class. An entity is presented as rectangle in

a ER diagram as following:

14

Figure 3.1: Entity shape

Unless an entity includes unique identifier, in other say primary key, it is called
weak entity [21]. A weak entity is presented as nested rectangle in a ER diagram

as following:

[

Figure 3.2: Weak Entity shape

3.4.2 Attribute

A real world object, it is called an entity, may be described with properties. A

property is called an attribute among database components.

An entity is made up of at least one attribute. An entity has aspects that define it
particularly. For instance, a course entity includes several attributes that define

the entity such as title, abstract, prefix, code, department and so on.

An entity is represented through means of its attributes. All aspects should have
own attitudes. For instance, when ”pupil” abstract object is an entity, it should

contain name, class, age and so on.

An entity is presented as oval shape in a ER diagram as following;:

Figure 3.3: Attribute shape

An attribute may various named through its role in the context. Here the list:

1. Key attribute

15

2. Multi-valued attribute
3. Composite attribute

4. Derived attribute

Key attribute is an attribute, but its role indicates to identify the entity uniquely.
It is also called primary key. A key attribute is presented as the underlined oval

shape in an ER diagram as follows:

—

N,

Figure 3.4: Key Attribute shape

Multi-valued attribute is an attribute that addresses a feature of real world object.
A multi-valued attribute can have many values. A individual, for instance, can
have many phone numbers, email addresses, and so on. A list is used to represent a
multi-valued attribute. In an ER diagram, a multi-valued attribute is represented

by a nested oval shape like follows:

_/’,'/.f

7\

Figure 3.5: Multi-valued Attribute shape

Composite attribute is an attribute that is divided into sub-attributes in concep-
tual design. It is needed to determine requirements clearly at conceptual design.
Composite attributes are formed of many basic traits. For instance, a student’s
full name may include both his or her first and last names. A composite attribute

is presented as interconnected oval shapes in an ER diagram as follows:

Figure 3.6: Composite Attribute shape

A derived attribute is one that does not appear in the actual database but derives

its value from other characteristics in the database. As an instance; The average

16

pay in a sector must not be stored straight in the database, but rather calculated.
Another example is that age may be calculated from birth data. In an ER chart,

a derived attribute is represented by a dotted oval shape, as seen below:

Figure 3.7: Derived Attribute shape

3.4.3 Relationship

A collection of associations —or a relationship set— among entities from these en-
tity types is defined by a relationship type R among n entity types F1, E2,..., En.
A relationship type and its matching relationship set are commonly referred to by
the same term, as is the case with entity types and entity sets R. The relationship
set R is mathematically defined as a collection of relationship instances ri, each
of which associates n unique entities (E1, E2, ..., En), and each entity Ej in 7 is
a member of entity set Ej, 1jn. As a result, a relationship set is a mathemat-
ical relationship on E1, E2, ..., En; it may also be described as a subset of the
Cartesian product of the entity sets F'1, E2, ..., En. Every one of the entity types
E1,E2, ..., En is said to be a member of the relationship type R; likewise, each of
the individual entities E'1, E2, ..., En is said to be a member of the relationship

instance ri = (E'1, E2, ..., En).

A relationship is presented as diamond shape in an ER diagram as follows:

A\
VAN
N\ /

Figure 3.8: Relationship shape

17

A relationship may include own attribute. It is called identifying relationship. A
identifying relationship is presented as nested diamond shape in an ER diagram

as follows:
/ﬂ\
&)
\\% 7
Figure 3.9: Identifying Relationship shape

3.5 Proper Naming of Schema Constructs

The selection of labels for entity types, characteristics, relation types, and (espe-
cially) roles while building a database structure is not necessarily clear. Names
should be chosen in such a way that they express as much as feasible the mean-
ings associated with the various components in the database. We prefer solitary
names for entity types over plural names since the entity name pertains to each
unique entity that belongs to that entity type. In our ER charts, entity type and
type of relationship identities will be capital letters, attribute names will have

their initial letter uppercase, and position names will be lowercase letters.

In principle, provided a narrative description of the database needs, nouns in
the narrative usually give birth to entity type names, while verbs tend to imply
type of relationship names. Attribute names are often derived from nouns which

characterize the nouns that belong to entity kinds.

18

Chapter 4

Approach

In this study, a traditional natural language application approach that generates
entity-relationship diagram from human languages is presented. Database funda-
mentals have been studied and entity-relationship diagram has been investigated

detailed so far.

There is a connection between human natural languages and conceptual database
design [22] [23]. Before starting design, heuristic rules that explain the connection
have been determined clearly. A heuristic is a rule that allows you to solve
complex issues faster. When you just have a limited amount of time and/or data
to make a choice, heuristics come in handy. The majority of the time, heuristics

will guide you to a decent conclusion.

Some heuristic rules have been defined. Heuristic rules are not certain cases, they

are just well-defined assumptions. Our heuristic rules are giving in below.

4.1 Rule 1: Identify Entities

4.1.1 A common noun may indicate an entity type.

” " %N NN

A noun like "record,” ”database,” ”company,” ”system,” ”information,” or ”or-

ganization” may not be a good choice for an entity set. As an instance,

19

The term ”company” may refer to the business setting and must not be listed

among the entity categories [24].
For example:
e "An insurance company wishes to create a database to keep track of its
operations.”

e 7 An organization purchases items from a number of suppliers.”

4.1.2 A proper noun may indicate an entity.

A proper noun such as ”"course”, ”"student”, "employee” and ”customer” may
indicate an entity. They are applicable for both real world objects and object-

oriented programming [15].

For example:

e "Student takes course.”

e "Employees work for a company.”

4.1.3 1In case of consecutive nouns existence, check the last noun. It

may be an entity type, otherwise it may indicate an attribute.

It may be an entity type, if in case of consecutive nouns exists. Otherwise it may

indicate an attribute.

For example:

e Incoming salary should be recorded for each employee.

20

4.1.4 A gerund may indicate an entity.

A gerund may indicate an entity.

For example:

e Exchanging students should be registered by their passports.

4.1.5 Ignore every proper noun.

Every proper noun must be ignored since they are data.

For example:

e Computer science department has a curriculum, number of students.

4.2 Rule 2: Identify Attributes

Attributes are nouns which are stated with their entity; it may be followed by
verbs including such "have, contains, or includes” to imply that an entity is

ascribed with a feature. This study will make use of a corpus.

For instance, in “course has prefix, code, title and description”, course is detected

as an entity and prefix, code, title and description are detected as attributes.

Here there are some rules that detect attributes in specifications.

4.2.1 Noun phrase with genitive case may indicate an attribute.

A word or phrase in the genitive form may refer to an attribute. A noun phrase is
made up of a noun or pronoun as the subject and any dependaet terms preceding

or following the subject. Dependent words provide data about the head.

For example:

21

e Each student should register into departmental elective courses.

e Each student should register into complementary elective courses.

4.2.2 The possessive case usually shows ownership it may indicate

attribute type.

The possessive form normally indicates possession, although it can also signify
attribute type. To express that something pertains to something or someone, we

employ apostrophe s (’s), commonly known as possessive’s

4.2.3 A noun phrase such as has/have may indicate attribute.

A noun phrase such as has/have may indicate attribute. ”Has/have” show own-

ership.

For example:

e A student has first name, last name and e-mail address.

If a noun is preceded by some other noun, and the latter comes to a set, it is
possible that the both nouns are attributes; otherwise, it is possible that the
both nouns are entities. A noun such as “course code”, “department name”

“belonging faculty” and “semester type” refer to an attribute.

4.3 Rule 3: Identify Relationships

A connection is more probable to be the major verb that happens among two
things. Two entities can be differentiated by the main verb alone, by the main
verb and an auxiliary verb, or by the main verb and a modal verb. For instance,

if a bank has several branches, the branching is identified as a connection.

22

4.3.1 A transitive verb can indicate relationship type.

A transitive verb can indicate relationship. A transitive verb is a verb that accepts

one or more objects.
For example.
e Student enrolls at least one course per a semester.

e Department announces at least three courses per a semester.

4.3.2 1If a verb is in the current list: include, involve, comprises of,
encompass, contain, split to, embrace, this suggests an aggrega-

tion or compositional relationship.

If a verb appears in the preceding list, it indicates an aggregate or composition
connection. We are creating a corpus using this feature. Include, involve, consist
of, include, contain, split to, embrace are all words that can be used to describe
a corpus. This heuristic rule is akin to the ”a noun phrase so that has/have may

indicate attribute.

For example:

e A student object consists of first name, last name and e-mail address.

There are also two assumptions as following:

e An adverb can denote a connection trait.

7 2 7

e A verb preceded by a preposition including such "by”, "to”, "on”, "or”,

”in” might indicate the sort of relationship.

23

4.3.3 Passive voice can be translated into active voice.

If a sentence includes am/is/are and third form verb, it is a passive voice sentence.
If a sentence contains just verb, it is an active voice sentence. A passive voice

sentence can be translated into active voice.

For example:

e A course is taken by a student (passive voice).

e A student takes a course (active voice).

4.4 Rule 4: Identify Primary Key

4.4.1 Adverb indicates primary key of an entity.

An entity includes at least one attribute. Attributes are to used to determine
the entity. Primary key is an attribute. Primary key explains the entity. A
uniqueness attribute is a primary key. Uniquely adverb indicates primary key of

an entity.

24

Chapter 5

Design & Implementation Details

In this section, design and implementation have been introduced in detail. Design
is proposed system and implementation is a pipeline. Heuristic rules have been

defined before in Chapter 4.

It is known that natural language processing, in shortly NLP, includes all func-

tionality about human language. There are various functions in NLP field.

Software is based on defined rules. These rules may be very small pieces for a
little process. Within scope of this study, rules have been defined. Since they do
not cover all cases, they are called heuristic rules. But, these heuristic rules are
just text. They require computational statements. Therefore, a text should be
investigated at a deep level. To make possible this investigation for each word,

NLP functions should be used.

The proposed system, in other say design, represents what function is going to

be in use. Following figure represents it.

Accordingly, it is shown there are seven features in the design. These seven
features are applicable own self. But, to achieve to objectives of this thesis,
they should be used at same pipeline. Since this idea, implementation should be

end-to-end system.

The seven features are described with own detail at next section.

25

English

Sentence

.

Tokenization

Segmentation
POS Tagger

Chunking

'

Parser

.

Semantic and
Heuristic based
ER analysis

Figure 5.1: Design of proposed system

5.1 Proposed Design

Heuristic rules have been introduced in Chapter 4. They lead development to how
the implementation is going to do. Since they have critical roles, heuristic rules
should be well defined. The design should be constructed as end-to-end system,

and provide to process any item.

The design includes seven features. But, one is an input layer and the others are

NLP functions. Here the list:

1. Segmentation
2. Tokenization
3. POS tagging
4. Chunking

5. Parser

6. ER analysis

26

They are mostly implemented in NLP tools such as NLTK and Spacy. They are

used directly and indirectly for common tasks.
A sample text is going to be used describing any phases.
Sample text is following:
e Musicians take many courses. Each musician has unique number, a name,

multiple addresses. Musician may have phone numbers. Each song recorded

at Music Company has a unique title and an author.

5.1.1 Segmentation

A function that splits an entire text into single sentences is known as segmenta-
tion. A sentence is a full set of words which has a subject and predicate, conveys
a declaration, inquiry, exclamation, or order, and consists of a major clause and

possibly one or more subordinate clauses.
Third party tool is used, Spacy, since it enables a capability introduced above.

Sample text is divided into smaller items as following:

Musicians take many courses.

Each musician has unique number, a name, multiple addresses.

Musician may have phone numbers.

Each song recorded at Music Company has a unique title and an author.

5.1.2 Tokenization

Tokenization is a manner of differentiating a piece, or a sentence, of text into
fewer units that are called tokens [25]. Tokens can be all words, characters, sub

words even whitespaces and punctuations. Hence, tokenization can be classified

27

into 3 types — word, character, and sub word tokenization [25]. Third party tool

has been used since it enables tokenization feature by itself.

While Spacy is performing this capability, it uses BERT language model. BERT,
in other say Bidirectional Encoder Representations from Transformers, is a transformer-

relied machine learning technique for NLP pre-training developed by Google [26].

Smaller pieces of sample text are tokenized as following:

e "Musicians”, "take”, "many”, ”courses”, ”.”

” N M el N

e "Each”, "musician”, "has”, "unique”, "number”, 7.7, 7a”, "name”, 7",

” oM 7 N

"multiple”, ”addresses”, 7.

”» N 7N » NN

e "Musician”, "may”, "have”, "phone”, "numbers”, 7.

YRR NN N

e "Each”, ”song”, "recorded”, "at”, ” Music”, " Company”, "has”, ”a”, "unique”,

7 tltle” , 7 and?’ , 7 an?? , 2 author77 , b ‘77

5.1.3 POS Tagger

Definition of Part of Speech Tagging

Part-of-speech tagging (POS tagging or PoS tagging or POST), also known as
grammatical tagging in corpus linguistics, is the technique of labeling a word in a
text (corpus) as relating to a certain part of speech based on both its definition and
its context. A simplified version of this is typically given to school-age children,

in which words are identified as nouns, verbs, adjectives, adverbs, and so on.

Tagging is a kind of classification that may be defined as the automatic assignment

of description to the tokens.

Following figure is a example of POS tagging.

28

Word Part-of Speech Tag | Dept
Musicians | noun nsubj
take verb root
many adj amod
course noun dobj
punct punct

Table 5.1: An example sentence for part-of-speech tagging.

In this phase, third party tool Spacy has been preferred since it provides more
attributes than NLTK. Eight attributes are provided by Spacy and given in fol-
lowing table [27].

Text Lemma | Pos Tag | Dep Shape | Alpha | Stop
Apple | apple PROPN | NNP | nsubj Xxxxx | True False
is be AUX VBZ | aux XX True True

looking | look VERB | VBG | ROOT XXXX True False
at at ADP IN prep XX True True

buying | buy VERB | VBG | pcomp XXXX True False
U.K. u.k. PROPN | NNP | compound | X.X. False False
startup | startup | NOUN | NN | dobj XXXX True False
for for ADP IN prep XXX True True

$ $ SYM $ quantmod | $ False | False
1 1 NUM CD compound | d False False
billion | billion NUM CD pobj XXXX True False

Table 5.2: An example for spacy tagging.

These eight attributes are described in spacy web site as following:

1. Text: The original word text [27].

2. Lemma: The base form of the word [27].

3. POS: The simple UPOS part-of-speech tag [27].

4. Tag: The detailed part-of-speech tag [27].

5. Dep: Syntactic dependency, i.e. the relation between tokens [27].
6. Shape: The word shape — capitalization, punctuation, digits [27].

7. is alpha: Is the token an alpha character [27]7

29

8. is stop: Is the token part of a stop list, i.e. the most common words of the

language [27]7

Dependency labels explain relation between token and following table includes

dependency labels with descriptions. We mostly use dep in chunking feature.

Number | DEP Description

1. ACL Clausal modifier of noun [28]
2. ACOMP Adjectival complement [28]
3. ADVCL Adverbial clause modifier [29]
4. ADVMOD Adverbial modifier [29]

5. AGENT Agent [29]

6. AMOD Adjectival modifier [29]

7. APPOS Appositional modifier [29]
8. ATTR Attribute

9. AUX Auxiliary

10. AUXPASS Auxiliary (passive)

11. CASE Case marker

12. CC Coordinating conjunction
13. CCOMP Clausal complement

14. COMPOUND | Compound modifier

15. CONJ Conjunct

16. CSUBJ Clausal subject

17. CSUBJPASS | Clausal subject (passive)
18. DATIVE Dative

19. DEP Unclassified dependent

20. DET Determiner

21. DOBJ Direct Object

22. EXPL Expletive

23. INTJ Interjection

Table 5.3: Dependency labels with descriptions between 1-23rd items

30

Number | DEP Description

24. MARK Marker

25. META Meta modifier

26. NEG Negation modifier

27. NOUNMOD Modifier of nominal

28. NPMOD Noun phrase as adverbial modifier
29. NSUBJ Nominal subject

30. NSUBJPASS | Nominal subject (passive)
31. NUMMOD Number modifier

32. OPRD Object predicate

33. PARATAXIS | Parataxis

34. PCOMP Complement of preposition
35. POBJ Object of preposition

36. POSS Possession modifier

37. PRECONJ Pre-correlative conjunction
38. PREDET Pre-determiner

39. PREP Prepositional modifier

40. PRT Particle

41. PUNCT Punctuation

42. QUANTMOD | Modifier of quantifier

43. RELCL Relative clause modifier
44. ROOT Root

45. XCOMP Open clausal complement

Table 5.4: Dependency labels with descriptions between 24-45th items

5.1.4 Chunking

A full-text has been taken as an input, it has been divided into separate sentences
in segmentation feature, then each individual sentence is tokenized in tokeniza-
tion feature, then POS tagging feature run for each separate sentence. So far,
three features of six has been launched. Chunking is the forth feature in queue.

Chunking is a method that makes decisions.

In this feature, a sentence object has been created. Sentence object includes sub-
ject, verb, object, (possible) primary keys and (possible) multiplicities. Subject,
verb and object (SVO) attributes are required for each sentence, but primary

keys and multiplicities are not essential.

Subject

31

Dependency labels for subject is pre-defined as a list. This list includes "nsubj ”
and "nsubjpass” labels. They were introduced previous table. This list is used
to compare to each token in a sentence. If this comparison is applicable, subject

item is obtained.
Verb

While verb item in a sentence is obtained, each token in a sentence is controlled.
If part of speech is verb and dependency label is root in currently, this token is

obtained as verb item.
Object

While object item in a sentence is obtained, part of speech tag is looked for. POS
tag has to be noun. Some nouns are consists of two or three words. We use
dependency label, while we are making these words is a group. If dependency

label is compound, these can become a group.
Primary Key

If part of speech tag is adjective and text is unique currently, it is defined as

primary key item.
Multiplicity

If part of speech tag is adjective and text is many currently, it is defined as

multiplicity item.

Following table presents an example for chunking.

Subject Verb | Object | Primary Key | Multiplicity
Musicians | take | courses | n/a musicians, courses

Table 5.5: An example sentence for chunking.

32

5.1.5 Parser

Before entity-relationship diagram is created, parser runs. Parser is a actually
final-state machine which makes rule-based decisions. Parser feature uses our
heuristics we defined before in Chapter 3. NLP has multiple possible analysis
due to its ambiguous grammar. Parsing determines parse tree of a given sentence
where in a group of words is transformed into structures. This may be inapplicable

for our heuristics.
Understanding verb

Parser is focused on verb first. It behaves differently according to verb is special,
or not. Some verbs are predefined as a list before. This list includes ”have/has,

contain, include, consists of” and so on.

Incoming verb is a special verb, in other say if it is in the predefined list, object

is going to be attribute case. Otherwise, object is going to be relation case.
Verb indicates object is attribute

If verb is in the predefined list, object is attribute. In this behaviour, we have to

focus on: Subject might be created before as an entity, or not.

If subject is created before as an entity, new attribute(s) must be created and
added to existing entity. Unless subject is created before as an entity, entity

must be created first, then attributes are added to this entity.

While new attributes are creating, multi-valued case are controlled. Subject is

important in this case since it might be singular or plural.
Verb indicates a relationship

Unless verb is in the predefined list, verb indicates a relationship between subject

and object. Subject and object are called entity in this behaviour.

Form of each item in SVO structure should be investigated. In this behaviour,

third party tool nltk are utilized. nltk has two operations to convert a word

33

into singular form: SnowballStemmer and WordNetLemmatizer networks. These

methods are called helper methods.

After helper methods return singular form, before-after states are controlled for
both subject and object items. Hereby, multiplicity can be determined. For ex-
ample, if subject changes and object does not change at method calls, multiplicity

is captured N-to-1.

Following table presents an example for chunking.

Subject | Object | Verb | Singularity | Primary Key | Multiplicity
Musician | take course | false not exists n-n

Table 5.6: An example sentence for parser.

5.1.6 ER Analysis

ER analysis the last feature in the queue, and it is a method which creates entity-
relationship diagram. It uses captured lists for entities, attributes and relations.
System also exports these lists as xml output. An entity-relationship diagram
is drawn as traditional ways with different shapes. But, it can be also drawn in

modern ways with a rectangle that includes entity name and attributes.

5.2 Implementation Details

5.2.1 System Architecture

We implement the proposed design according to the object-oriented programming
approach. Four packages are involved to the project. Object package is consists
of four classes. These classes are customized as our data structure. Others are

settings, app and ERD respectively.

Settings stores all configurations and base information. App presents a console

application to use. ERD is the most important part, since system architecture is

34

implemented here. run method manages all run time. setup, analyzer and fsm
methods are called respectively. analyzer method is to used for chunking and fsm

method is to used for parser.

5.2.2 Logging & Exception Handling

Logging

Logging is a important piece of any system. We use logging mechanism with
on/off attribute. When logging is required, this attribute can be enabled. Oth-
erwise, it can be disabled. We use logging tool in Python. This module offers
methods and classes for a configurable incident logging system [30] for programs
and libraries. This module also includes different log levels such as debug, info,
error and so on. We logs both trace and failure cases. app file with log extension
is created at first run, logs are saved to this file. This capability provides easy

debug.
Exception Handling

Exception Handling is an important piece of any system. We use try-except-finally
blocks in implementation. So that, we try to prevent crashes. While except case

occurs, it is logged.

5.2.3 User-interface

Our implementation contains a console application. It is used by entering a choice,
then it switches. Finally entities, attributes and relations are captured, they are

exported as xml. Another user interface can be designed.

5.2.4 Trade-offs

In this section, we are going to explain trade-offs in the project.

35

At the beginning, we used nltk for part-of-speech tagging. Some nouns are
consists of two or three words. nltk does not provide to understand these
nouns. Because of this, we preferred to use spacy instead of nltk. Spacy

enables to understand these nouns.

Since this approach is based on heuristic rules, it does not always process

complex sentences. Hereby, we prefer more easier sentences.
Since SVO structure is required, every sentence has to have this structure.

Passive sentence is not processed straight-forward, so that while sentences

are typing, these must be active sentence.

36

Chapter 6

Discussion & Results

In this chapter, the basic reasons of unexpected results of this study which does
not cover our expectations have been discussed. Why unexpected results has
occurred has been explained. Also, we give example that cause bad results for

entity-relationship analysis from human text.

6.1 Discussion

After research has been completed, two popular Natural Language Processing
tools that are NLTK and Spacy when we are developing have been compared. As
a result, NLTK is more popular than Spacy. However, Spacy provides more fea-
ture in machine learning field and using Spacy instead of NLTK was obligation.
Because some nouns are not one word. (For example, ”phone number” or ”com-
puter science department”.) To understand this kind nouns, a connection between
two or three words is required. NLTK provides one attribute while part-of-speech
tag feature is performing. Whereas, Spacy provides eight attributes while part-
of-speech tag feature is performing. One attribute, is named dependency label,

provides connection between two or three words.

Relationships may have own attributes. For example, a student takes three
courses per a year. In this example, it is seen that "student is able to take

course” as relationship. Also, ”taking three course per a year” describes relation-

37

ship attribute. It is not possible to store "per a year” information in this heuris-
tic approach since human language is more complex than a computer is able to
understand. Defining new heuristics may not be a solution for this problem. For
example, NLTK has approximately 40 thousands structure in itself. Therefore,

implementing a rule for all sentences is impossible.

Since same reasons are introduced above, taking more accurate results is impossi-
ble in every time. Because sentences change through itself. Fixed patterns really
does not exist. So, understanding human language is not accurate clearly. It is
actually very common to extract information from sentences partly. But, we try
to extract all information from entire sentence. This becomes to make our job
hard. So, we should prefer more basic sentences, not complex ones. For example,
”a department has unique identification number, short name, long name, prefix,
department head and phone number.” In this example, we see a basic sentence,
and heuristic can process every information. These are captured as attributes.
For example, ”a student takes many courses”. In this example, subject and object
are captured as entities and this is example for relation representation. Another
example is, ”Library Service is like I sik University Library Service. This service
has two libraries, Maslak Library, and Sile Library, where Sile Library is indicated

as main.” This is very difficult sentence for a computer is able to understand.

Understanding passive voice sentences is harder than active voice sentences. Be-
cause words are located in different places. In this way, passive sentence is not
processed straight-forward. Before the software is run, sentences are converted
from passive voice to active voice. Dependency label attribute of Spacy has
passive elements for subject. But, objects may not described in passive. Similar
studies do not have any information converting sentences from passive to active
voice. Just using active sentences may be a strict rule. There are some methods
to understand which sentences are passive, or not. It is also studied to understand

active and passive sentences.

When it divides sentences into active and passive voices, dependency labels are

38

needed. If there are root and aux dependency labels, sentence is passive voice.
Otherwise, sentence is active. For example, ”a course is taken by a student”. In
this example, ”is” word has "aux” dependency label and ”taken” word has "root”
dependency label. Therefore, this is a passive voice sentence. For example, ”a
student takes courses”. In this example, "takes” has just "root” dependency
label. Therefore, this is an active voice sentence. It is possible to understand
whether sentence is active or not, since the correlation we explained above. After

which sentence is passive has been understood, it is converted previous and next

parts of verb. However, this is not appropriate to planned.

6.2 Results

6.2.1 Case Studies

As a result, actual and expected results have been shared in this section. Actual
results are made by this heuristic approach for two data sets and expected results
are made by a human. Hereby, differences between actual and expected results
have been examined. Cases include human text, heuristic approach (actual re-
sult), human investigation (expected result) and comparison (differences between

actual result and expected result).

Case 1
Musicians take many courses. Musician has phone numbers. Each song recorded

at Music Company has a unique title and an author.

Heuristic approach:

e “Musician” and “song” are captured as entity.
Y

e “Musician” entity has one attribute which is called “phone number”.

e “Phone number” attribute is captured as multi-valued.

39

e “Song” entity has three attributes which are called “music company”, “title”

and “author” respectively.
e “Title” attribute is captured as primary key.
e There is only one relation which is between “musician” and “course”.
e Multiplicity is captured as “N” for both “musician” and “course”.

e Action of this relation is to “take”.

Human investigation:

e There three entities: “musician”, “song” and “course”.
e There is an action-based relation which is to “take”.

e “Musician” entity has only one attribute which is “phone number” and it

is defined as multi-valued.
e “Song” entity has two attributes unique “title” and “author”.
e “Title” is defined as primary key.

e Some database designer may define “music company” is an attribute. It is

open to comment.

e “Course” should be defined as an entity that do not include any attribute.

Comparison:

e “Course” is not defined as an entity in heuristic approach.

e “Music company” is defined as an attribute in heuristic approach. It might

be an attribute, or not.

40

Case 2

A university contains many faculties. Faculty has unique identification number
and name. Each department belongs to a faculty. A department has identification
number, name, head, phone numbers. Many students register into program. A
course includes prefix, unique identification number, title and description. Each

department opens courses in a semester. And students take courses.

Heuristic approach:

e “University”, “faculty”, “department” and “course” are captured as entity.
e “University” entity includes multi-valued attribute “faculty”.

e “Faculty” entity includes primary key attribute “identification number” and

“name”.

e “Department” entity includes “identification number”, “name”, “head” and

multi-valued attribute “phone number”.

e “Course” entity includes “prefix”, primary key attribute “identification

number”, “title” and “description”.
e There are four captured relations.

e There is 1-1 relation between “department” and “faculty” based on “belong”

action.

e There is N-N relation between “student” and “program” based on “regist”
action. It should have defined as “register”, but stemming method captures

it as “regist”.

e There is 1-N relation between “department” and “course” based on “open”

action.

e There is N-N relation between “student” and “course” based on “take”

action.

41

Human investigation:
e There are certain four entities: “university”, “faculty”, “department” and
“course”.

e “Program” and “student” should be defined as entity that do not include

any attribute.
e “University” entity includes multi-valued attribute “faculty”.
e “Faculty” entity includes primary key as “identification number” and “name”.

e “Department” entity includes primary key as “identification number”, “name”,

“head” and multi-valued attribute “phone number”.

e “Course” entity includes primary key as “identification number”, “prefix”,

“title” and “description”.

e “Student” and “program” should be defined as entity. According to the

text, they are empty.

e There are four relations. These are 1-1 between “department” and “fac-
ulty”; and 1-N “department” and “course; and N-N between “student” and

“program”; and N-N between “student” and “course”.
e Actions to be performed are “belong”, “open”, “register” and “take” re-
spectively.

Comparison:

e “Student” and “program” are not defined as entity.

e “Department” has “identification number”. It should be captured as pri-
mary key. However, heuristic approach could not figure out since there is

no unique adjective.

e “Regist” is not correct word, it should have defined as “register”. Stemming

method could not catch at right form.

42

6.2.2 Differences Between Actual And Experimental Results

In this section, actual results which are referenced from book (Fundamentals of
Database Systems: 8th edition by Elmasri) at university level and experimental
results (rule-based entity-relationship diagram modelling algorithm) have been

shared.

Figure 6.1: Airplane database which is generated by algorithm

Rule-based entity-relationship diagram modelling algorithm catches given entities

as below:

Entity
Employee
Type
Airplane
Hangar
Service
Owner
Corporation

Person
Pilot

Table 6.1: Entities are caught by rule-based entity-relationship diagram modelling
algorithm

43

Rule-based entity-relationship diagram modelling algorithm catches given at-

tributes as below:

Table 6.2: Attributes are caught by rule-based entity-relationship diagram mod-

elling algorithm

Entity Attribute
Employee Salary
Employee Shift

Type Model number
Type Capacity

Type Weight

Service Hour

Person Identification number
Person Security number
Person Name

Person Phone number
Person Address
Airplane Registration number
Hangar Location
Hangar Number

Hangar Capacity
Corporation | Phone number
Corporation | Name
Corporation | Address

Owner No attribute
Pilot No attribute

44

Rule-based entity-relationship diagram modelling algorithm catches given rela-

tionships as below:

Entity-1 Relation | Entity-2
Employee work Type
Employee maintain | Service
Owner own Airplane
Pilot fly Type
Corporation | instance | Person
Pilot instance | Person
Owner instance | Person
Employee instance | Person
Hangar store Airplane

Table 6.3: Relationships are caught by rule-based entity-relationship diagram

modelling algorithm

o) Go> o>

Coday> Cshift

N
MAINTAIN
(Restr) Clic_num >
1 M T
— YLl
OF TYPE> —— _— —
- @te Q‘Vorkcod}
N ;2__ 7 -
Date/workcode > Hours)
@D :
o
AIRPLANE | @
N (Pdate)
STORED_IN < OWNS > OWNER
1 MM
PO
— t\‘\
HANGAR (ssn){_PERSON
(| o> G | > G | o>
(Capacity) CAddress) (Address)

Figure 6.2: Airplane database which is referenced by book

45

Table 6.4: Actual entities from reference book

Actual entities from reference book are given as below:

Entity

Employee

Planet type

Airplane

Hangar

Service

Owner

Corporation

Person

Pilot

Actual attributes from reference book are given as below:

Entity Attribute
Employee Salary
Employee Shift
Planet type | Model
Planet type | Capacity
Planet type | Weight
Pilot Restr
Pilot Lic num
Service Hours
Service Date (Date + Workcode)
Airplane Reg
Hangar Number
Hangar Capacity
Hangar Location
Corporation | Name
Corporation | Address
Corporation | Phone
Person Ssn
Person Name
Person Address
Person Phone

Table 6.5: Actual attributes from reference book

Actual relationships from reference book are given as below:

46

Entity-1 | Relation Entity-2
Employee | work on Plane Type
Employee | maintain Service
Owner own Airplane
Pilot fly Type
Hangar store in Airplane
Airplane | plane service | Service
Plane type of Airplane

Table 6.6: Actual relationships from reference book

Rule-based entity-relationship diagram modelling algorithm does not cover union

cases. In actual diagram, there exists several union of structure. These are given

below:

e Owner union of Corporation and Person

e Person union of Employee and Pilot

Numeric comparisons are given as following:

Actual

Experimental

9 entities

9 entities

20 attributes

18 attributes

7 relations

9 relations

Table 6.7: Numeric comparisons

Numeric analysis is given as following (i.e entity (attribute count) format):

Actual Experimental
Employee (2) Employee (2)
Plane Type (3) | Type (3)

Service (2)

Service (1)

Airplane (1)

Airplane (1)

Hangar (3) Hangar (3)
Corporation (3) | Corporation (3)
Person (4) Person (5)

Table 6.8: Numeric analysis

47

e Planet type is caught as type by rule-based entity-relationship diagram

modelling algorithm.

e Date attribute is missed in rule-based entity-relationship diagram modelling

algorithm.

e Reg from actual result is caught as registration number by rule-based entity-

relationship diagram modelling algorithm.

e One additional field is used at experiment.

6.2.3 More Experimental Results

In this section, more experimental results have been shared. After subject-verb-
object parser algorithm has been executed and database components have been

caught up, entity-relationship diagram is created.

Instructor

Course Semester

\

Name

Instructor has name, surname.
An instructor teaches course.
A course has a course number.
Instructor offers a semester.
A semester consists of name, year.

Figure 6.3: 1st entity-relationship diagram example

48

Musician Instructor

Phone number sing take @ @ teach

Instructor has name, surname.
An instructor teaches course.
A course has a course number.
Instructor offers a semester.
A semester consists of name, year.

Figure 6.4: 2nd entity-relationship diagram

49

Semester

consist

Name

example

Bank

Sy

Branch

give make

Identification number pk

Loan Account

@ Identification number pk @ @

A bank includes code, name and address.
A bank opens branches.
A branch has address and unique identification number.
A loan includes number, amount, type.
A branch gives many loans.
An account has unique identification number, balance, type.
A branch makes many accounts.

N N

Figure 6.5: 3rd entity-relationship diagram example

Employee
Gy manent > i) Comsnonir v

Department

contain

1

Identification number

An employee has unique social security number, name, phone number, many addresses.
An employee works in a department.
Department contains unique identification number, code, name, phone number, head and e-mail address.

Figure 6.6: 4th entity-relationship diagram example

20

Supplier

@ none suppli

Person Project

Supplier has full name.
Supplier is a person.
Supplier supplies a project.
A project must have a name.

Figure 6.7: 5th entity-relationship diagram example

Musician

sing take

Song Course

A musician sings many songs.
Musicians take many course.
Each red musician has unique number, a name, an addresses.
Musician has phone numbers.
Each song recorded at Music Company has a unique title and an author.

Figure 6.8: 6th entity-relationship diagram example

o1

Employee

w&. 3

An employee has unique social security number, name, phone number, many addresses.
An employee works in a department.
A department has unique identification number, code, name, phone number, head and e-mail address.

Figure 6.9: 7th entity-relationship diagram example

Student

University

Department

N \N

contain regist

Programme

A university contains many faculty.
Faculty has unique identification number and name.
Each department belongs to a faculty.
A department has identification number, name, head, phone numbers.
Many students register into programme.
A course includes prefix, unique identification number, title and description.
Each department opens courses in a semester.
And, students take courses.

Figure 6.10: 8th entity-relationship diagram example

52

Chapter 7

Conclusion

This work eventually aims to make an entity-relationship diagram from human
text. Development path is divided into three parts: understanding relationship
between human language and database management systems (chapter 3), defining

heuristic rules (chapter 4) and implementing final state machine (chapter 5).

The purpose of these heuristics is to extract SVO structure from a sentence.
Parsing sentences for both active and passive voices is a big part of defining

heuristic rules.

This heuristic approach may not be applicable for database conceptual design
since human language is a huge domain. However, limited heuristic rules have
been learned. Deep learning techniques or neural networks may be used in con-

ceptual database design as future works.

93

1]
2]

[7]

8]

[9]

References

“Fish species,” http://http://fish-species.org.uk/, accessed: 2014.

“What is an entity diagram (erd)?” https://medium.com/@soni.dumitru/
what-is-an-entity-relationship-diagram-erd-13daeebb2a/, accessed: 2020.

a. Btoush, EmanS., “Generating er diagrams from requirement specifications
based on natural language processing,” International Journal of Database

Theory Application, 2015.

S. Teasley, L. Covi, M. Krishnan, and J. Olson, “Rapid software development
through team collocation,” 2002.

G. S. and A. M. G.S., “Automatic database construction from natural lan-
guage requirements specification text,” ARPN Journal of Engineering and

Applied Sciences, vol. 9, no. 8, pp. 1260-1266, 2014.

D. K. Deeptimahanti and R. Sanyal, “Semi-automatic generation of uml

models from natural language requirements,” pp. 165174, 2011.

S. Hartmann and S. Link, “English sentence structures and eer modeling,”

pp. 27-35, 2007.

M. Elbendak, “Parsed use case descriptions as a basis for object-oriented

class model generation,” 2017.

P. R. Krishna, A. Khandekar, and K. Karlapalem, “Modeling dynamic rela-
tionship types for subsets of entity type instances and across entity types,”

2016.

o4

http://http://fish-species.org.uk/
https://medium.com/@soni.dumitru/ what-is-an-entity-relationship-diagram-erd-13daee5b2a/
https://medium.com/@soni.dumitru/ what-is-an-entity-relationship-diagram-erd-13daee5b2a/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Vincenzo and V. Gervasi, “Processing natural language requirements,”

1997.

F. Meziane and S. Vadera, “Obtaining er dia- grams semi-automatically from

natural language specifications,” pp. 638-642, 2004.

N. Omar, J. Hanna, and P. McKevitt, “Heuristic-based entity-relationship
modelling through natural language processing,” pp. 302-313, 2004.

R. Dedhia, A. Jain, and P. K. Deulkar, “Techniques to automatically gener-
ate entity relationship diagram,” International Journal of Innovations Ad-

vancement in Computer Science, vol. 4, no. 10, pp. 68-73, 2015.

C. Wohlin and A. Aurum, “An evaluation of checklist-based reading for
entity-relationship diagrams,” 2004.

F. Meziane and S. Vadera, “Obtaining e-r diagrams semi-automatically from

natural language specifications,” 2004.

“Database design for business applications,” https://www.taxmann.com/
bookstore/bookshop /bookfiles/SKSharmacontentchapter7.pdf, accessed:
2021-10-10.

“Database properties,” https://www.educative.io/courses/

database-design-fundamentals/B6VQBZ6NnnW, accessed: 2021-10-10.

29

“An introduction to gis, https://www.slideshare.net/
sumantagargibhattacharyadas/geographic-information-system-29590419,
accessed: 2013-12-31.

“Database management system course (canara engineering col-
lege),” https://santoshhiremath.weebly.com/uploads/6/7/0/5/67052617/
module_1_dbms-18cs53_.pdf7cv=1, accessed: 2026.

“Database system concepts and architecture,” https://studyres.com/doc/

4088995/, accessed: 2021.

95

https://www.taxmann.com/bookstore/bookshop/bookfiles/SKSharmacontentchapter7.pdf
https://www.taxmann.com/bookstore/bookshop/bookfiles/SKSharmacontentchapter7.pdf
https://www.educative.io/courses/database-design-fundamentals/B6VQBZ6NnnW
https://www.educative.io/courses/database-design-fundamentals/B6VQBZ6NnnW
https://www.slideshare.net/sumantagargibhattacharyadas/geographic-information-system-29590419
https://www.slideshare.net/sumantagargibhattacharyadas/geographic-information-system-29590419
https://santoshhiremath.weebly.com/uploads/6/7/0/5/67052617/module_1_dbms-18cs53_.pdf?cv=1
https://santoshhiremath.weebly.com/uploads/6/7/0/5/67052617/module_1_dbms-18cs53_.pdf?cv=1
https://studyres.com/doc/4088995/
https://studyres.com/doc/4088995/

[21]

22]

23]

[24]

[25]

[27]

28]

[30]

“Dbms notes,” https://www.learnpick.in/prime/documents/notes/details/

3918 /dbms-notes, accessed: 2014.

A. M. Tjoa and L. Berger., “Transformation of requirement specifications

expressed in natural language into an eer model.” pp. 206-217, 1994.

R. J. Abbott, “Program design by informal english descriptions.” pp. 882—
894, 1983.

P. H. Omar, N. and P. M. Kevitt, “Semantic analysis in the automation of

er modelling through natural language processing,” 2006.

S. S. Chettiar, B. P, H. P, and B. N. M, “Talkie text: The image reader,”
2021.

A. Bennetot, I. Donadellod, A. E. Qadic, M. Dragoni, T. Frossard, B. Wag-
ner, A. Saranti, S. Tulli, M. Trocan, R. Chatila, A. Holzinger, A. d’Avila
Garcez, and N. D. Rodriguez, “A practical tutorial on explainable ai tech-

niques,” 2021.

“Linguistic features,” https://spacy.io/usage/linguistic-features, note = Ac-

cessed: 2021.

S. K. Kang, L. Patil, A. Rangarajan, A. Moitra, T. Jia, D. Robinson,
F. Ameri, and D. Dutta, “Extraction of formal manufacturing rules from

unstructured english text,” 2021.

N. B. Hemmati, O. Tabibzadeh, and M. Mansoorizadeh, “Adaptation of
universal dependencies to specific grammars: The case of persian dependency

grammar,” 2016.

“Python documentation (logging facility for python),” https://cgi.cse.unsw.
edu.au/~cs2041/doc/python-2.7.2-docs-html/library /logging. html?cv=1,
accessed: 2011.

o6

https://www.learnpick.in/prime/documents/notes/details/3918/dbms-notes
https://www.learnpick.in/prime/documents/notes/details/3918/dbms-notes
https://spacy.io/usage/linguistic-features
https://cgi.cse.unsw.edu.au/~cs2041/doc/python-2.7.2-docs-html/library/logging.html?cv=1
https://cgi.cse.unsw.edu.au/~cs2041/doc/python-2.7.2-docs-html/library/logging.html?cv=1

	Abstract
	Özet
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Application of entity relationship diagrams

	2 Literature Survey
	3 Overview of DBMS & ERDs
	3.1 Database Management Systems
	3.2 Database Modeling
	3.3 High-Level Conceptual Design
	3.4 Database Components
	3.4.1 Entity
	3.4.2 Attribute
	3.4.3 Relationship

	3.5 Proper Naming of Schema Constructs

	4 Approach
	4.1 Rule 1: Identify Entities
	4.1.1 A common noun may indicate an entity type.
	4.1.2 A proper noun may indicate an entity.
	4.1.3 In case of consecutive nouns existence, check the last noun. It may be an entity type, otherwise it may indicate an attribute.
	4.1.4 A gerund may indicate an entity.
	4.1.5 Ignore every proper noun.

	4.2 Rule 2: Identify Attributes
	4.2.1 Noun phrase with genitive case may indicate an attribute.
	4.2.2 The possessive case usually shows ownership it may indicate attribute type.
	4.2.3 A noun phrase such as has/have may indicate attribute.

	4.3 Rule 3: Identify Relationships
	4.3.1 A transitive verb can indicate relationship type.
	4.3.2 If a verb is in the current list: include, involve, comprises of, encompass, contain, split to, embrace, this suggests an aggregation or compositional relationship.
	4.3.3 Passive voice can be translated into active voice.

	4.4 Rule 4: Identify Primary Key
	4.4.1 Adverb indicates primary key of an entity.

	5 Design & Implementation Details
	5.1 Proposed Design
	5.1.1 Segmentation
	5.1.2 Tokenization
	5.1.3 POS Tagger
	5.1.4 Chunking
	5.1.5 Parser
	5.1.6 ER Analysis

	5.2 Implementation Details
	5.2.1 System Architecture
	5.2.2 Logging & Exception Handling
	5.2.3 User-interface
	5.2.4 Trade-offs

	6 Discussion & Results
	6.1 Discussion
	6.2 Results
	6.2.1 Case Studies
	6.2.2 Differences Between Actual And Experimental Results
	6.2.3 More Experimental Results

	7 Conclusion
	Reference

