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Abstract We study the amplitude modulation of a symmetric regularized
long-wave equation with quartic nonlinearity through the use of the reduc-
tive perturbation method by introducing a new set of slow variables. The
nonlinear Schrodinger (NLS) equation with seventh order of nonlinearity is
obtained as the evolution equation for the lowest order term in the pertur-
bation expansion. It is also shown that the NLS equation with seventh order
of nonlinearity assumes an envelope type of solitary wave solution.

1 Introduction

As is well known, when the nonlinear effects are small, the system of linear
equations that describe the physical phenomenon admit harmonic wave so-
lution with constant amplitude. If the amplitude of the wave is small- but
- finite, e.g., weakly nonlinear, the nonlinear terms cannot be neglected and
the nonlinearity gives rise to the variation of amplitude both in space and
time variables. When the amplitude varies slowly over a period of oscillation,
a stretching transformation allows us to decompose the system into a rapidly
varying part associated with the oscillation and a slowly varying part for
the amplitude. A formal solution can be given in the form of an asymptotic
expansion, and an equation determining the modulation of the first order am-
plitude can be derived. For instance, the nonlinear Schrédinger(NLS) equa-
tion is the simplest representative equation describing the self-modulation of
one dimensional monochromatic plane waves in dispersive media. It exhibits
a balance between the nonlinearity and dispersion.

Due to its central importance to the theory of quantum mechanics, the
nonlinear equation of Schrodinger type has a great interest. They arise in
many nonlinear physical problems such as water waves [1-6], waves in plasma
[7-11], nonlinear waves in a fluid-filled elastic or viscoelastic tubes [12-16] and
other nonlinear waves of similar nature. In all these works only the effects of
quadratic or cubic nonlinearities have been taken into account.



In studying the amplitude modulation of nonlinear partial differential
equation, if the order of nonlinearity is two (quadratic) or three (cubic) it is
a standard technique to introduce the stretched coordinates £ = e(z — At),
T = €%t, where € is the smallness parameter for the band width of the wave
packet and A is a parameter which is shown to be group velocity of the
linearized harmonic wave. In obtaining the corresponding evolution equation
for the nonlinear partial differential equation the field variables are assumed
to be functions of the slow variables (£, 7) as well as the fast variables (x, t).
By use of the conventional reductive perturbation method it can be shown
that the evolution equation for the lowest order term in the perturbation
expansion will be the nonlinear Schrédinger equation [14, 16]. However, when
the order of nonlinearity is four or higher, the use of the classical perturbation
method does not lead to the nonlinear Schrédinger (NLS) equation, it rather
leads to the degenerate (linearized) form of the NLS equation. In order to
obtain the nonlinear Schrodinger equation, a new set of slow variables must
be introduced.

In the present work, we study the amplitude modulation of a symmetric
regularized long-wave equation with quartic nonlinearity through the use of
the reductive perturbation method by introducing a new set of slow variables.
The nonlinear Schrodinger (NLS) equation with seventh order of nonlinear-
ity is obtained as the evolution equation for the lowest order perturbation
expansion. Considering the sign of the product of some coefficients a pro-
gressive wave type of solution to the evolution equation is presented. It is
shown that the NLS equation with seventh order of nonlinearity also assumes
an envelope type of solitary wave solution.

2  Formulation of the problem

The regularized long-wave (RLW) equation has been the focus of appreciable
attention primarily because of the intriguing numerical properties associated
with the inelastic scattering of solitary waves [17]. The RLW equation is

Up + Uy — Uly — Uggt = 07 (1>

where u(x, t) is the fluid velocity in x direction, x and ¢ are the space and time
variables, respectively. This equation possesses the solitary wave solution of
the form u = a sech?[p(x — vt)], a = 3(1 —v), p = [(v —1)/4v]"/? . Starting
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with the equations of cold-electron plasma, for a weakly nonlinear case and
in the long-wave approximation, Seyler and Fenstermacher [18] obtained the
following evolution equation

1

Ut — Ugy + <§u2)xt — Uggpr = 0, (2)

Due to its similarity to the RLW equation and the explicit symmetry in the
derivatives of x and ¢, the authors named it as the symmetric regularized
long-wave (SRLW) equation.

Chen [19], and Yong and Biao [20] extended this equation for a function
f(u) of class C! as

U — Uge + (f(0)) 2t — Ugarr = 0, (3)

and named it as the generalized symmetric regularized long-wave (gSRLW )equation.
In this work we will be concerned with a function of the form f(u) = u'/4.
Then, the gSRLW equation becomes
1
Ut — Ugy + Z(Ufl)mt — Ugztt = 0. (4>
Seeking a harmonic wave solution, u = wug exp[i(wt — kx)], to the linearized
part of equation (4), i.e.,

Ut — Uge — Ugatt = 07 (5)
the dispersion relation is obtained as
W1+ k) — k> =0, (6)

where w is the frequency and k is the wave number of the harmonic wave.
Motivated with the dispersion relation (6) we shall introduce the following
slow variables

E=(r— M), 7=, (7)

where € ( € = Ak ) is the smallness parameter measuring the band width
( Ak ) of the wave packet and A is a scale parameter which will be shown to
be the group velocity.

We shall assume that the field variable u is a function of the slow variables
(&,7) as well as the fast variables (z,t). Thus, the following operators are
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We shall further assume that the field variable u can be expanded into a
perturbation series in € as

u=euy + *ug+ e us +eOuy + ... . (9)

Introducing the expansions (8) and (9) into equations (4) and setting the
coefficients of like powers of € equal to zero the following sets of differential
equations is obtainrd:

O(e) equation:
82U1 8271,1 84U1

o2 0z 0x20t2

~0. (10)

O(e*) equation:

82’&2 _ 82U2 _ 84’&2 _9 82u1 4 )\82'&1
ot? oxr?  0x20t? 0x0¢ otog
84’&1 84u1 1 (92 4
B <8x8t28§ B 8x28t28§> Zaxat(“1> =0. (11)

O(€7) equation:

otz 0z 0x20t2

+ A
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— — ) - D—=>——(u}) =0. 12
oo~ aszoe T 1oi0e ™) T 1 gwae ) (12)
Here and throughout this work we shall be concerned with the evolution
equation of the lowest order term in the perturbation expansion. The use of
the conventional reductive perturbation method to study the effects of higher
order perturbation expansion leads to secularities in the solution. In order

to remove such secularities the modified form of the reductive perturbation
method [10] or multiple scale expansion method [21] must be utilized.
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2.1  Solution of the field equations

Nothing that the equation (10) is linear in u,, we shall seek a harmonic wave
solution to this equation of the following form

uy = U(&,7)e’ + c.c. (13)

where U(&, 7) is an unknown function whose governing equation will be ob-
tained later, ¢ = kx — wt is the phase of harmonic wave and c.c. stands
for the complex conjugate of the corresponding quantity. For this order of
solution the variables ¢ and 7 remain as some parameters.

Introducing (13) into (10) and keeping in mind that the dispersion relation
(6) holds true, the equation (10) will be satisfied identically. To obtain the
solution for O(e*) equation we introduce (13) into (11), which results in

82162 82uQ 84U2 . 2 2 ou i
2 o D208 +2i [wk(l%—k )—k(l —w )} a—geﬂf’
+4wk|UPU?e™? + 4wkU*e* + c.c. = 0. (14)

where |U|?> = UU*, U* being the complex conjugate of U. Here it is to
be noted that the differential equation (14) is linear in wus but the non-
homogeneous part is nonlinear in U(§, 7) .

The form of equation (14) suggests us that for this order of equation the
total solution should have the following form

Up = Uél)ei“’ + U2(2)62w + U2§4)ei4@ +c.c. . (15)

Here UQ(I) is an arbitrary function of its argument and it corresponds to the
solution of homogeneous equation. The remaining parts of (15) are related
to the particular integral of (14). Introducing (15) into (14) one obtains

2i[wA(1+ k?) — k(1 — w?)] %gew + (= 120%K2U + dwk|U2U?) e

+( = 2400°K2U5" + 4whkU )™ + c.c. = 0. (16)

In order to have a non-zero solution for U the coefficient of OU/J¢ must
vanish

WA1+E) — k(1 -—w?) =0, or, A= m (17)



where A = dw/dk is the group velocity of the harmonic wave derived from the
dispersion relation (6). From the solution of the remaining part of equation
(16) we obtain
‘U|2 U2 @ U4
3wk 7 ? T 60wk’
For the solution of O(e”) equation, introducing the solutions given in (13)
and (15) into (12) the following equation is obtained

82U3 82U3 8 us

oU
—_ —_ y 2 —_
gz~ gxz  guzgm T ARG+

Uy =

(18)

[w? + X2(1+ #?)

2

92U . |
+4dwk — 1] st k(U0 43U PU U + U0 ) e

aU(l) ) 7 ]
2+ 3 e +ce. =0,  (19)
¢ =

where the functions f;(I = 2,...,7) can be expressed in terms of U and UQ(I).
But in order to save the space we shall not list them here. Here we note that
due to the equation (16) the coefficient of 8U2(1)/ 0 vanishes.

The form of equation (19) suggests us that the solution of uz should have
the following form

+2i [ Mw(1 + k?) — k(1 — w?)]

7
=Y Uél)e”‘” + c.c. (20)
=1
Inserting (20) into (19) and considering the dispersion relation (6) the fol-
lowing equation is obtained

2

+ [w? + N1+ B?) + Dk — 1] ov . kw (U205

{—2iw(1+k:2)8—U 30

or

+H3|UPU U + U U ) e W+Z[ ~PR (2= 1)U [ e e = 0. (21)

Setting the coefficients of various powers of exp(ip) equal to zero yields the
following equations

oU 82U
. 2 2 2 2
—2iw(1+ k) 5— + [w? + N2(1+ £?) + Dk — 1] N
+ho (U052 4+ 3|UPUUSY + U0V ) =0, (22)
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f-ClR@ Ul =0, (1=2,3,..7). (23)

Introducing the expressions of U2(2) and U2(4) into (22) the following evolution
equation is obtained

o0U 0?U 6
ZE_MT@*?_MQ‘W U =0, (24)
where the coefficients p; and py are defined by
W N1+ E) + 4wk - 1 B 27
- 2w(l + k2) C T w( R

(25)

M1

The evolution equation (24) is known as the non-linear Schrédinger equation
with seventh order of nonlinearity. Here we note that the order of nonlinearity
of the original symmetric regularized long-wave equation is 4 whereas the
order of the corresponding nonlinear Schrodinger equation is 7. The equation
(23) makes it possible to express Uél) in terms of U and U2(1) which might be
used in higher order perturbation expansion.

2.2 Progressive wave solution

The form of the progressive wave solution of the nonlinear Schrodinger equa-
tion depends on the sign of the product of coefficients pps. As is seen
from equation (25) this product is positive for all positive wave numbers. In
this sub-section we shall seek a progressive wave solution to the evolution
equation (24) of the form

U= f(Qexpli(K§ = Qr)], ¢ =&+ 2mKT, (26)

where f(() is a real function, K and € are some constants. Introducing (26)
into (24) one has

i f" = (Q+ K2 f + paf T = 0. (27)

Here a prime denotes the differentiation of the corresponding quantity with
respect to (. Since the coefficients py and ps satisfy the inequality pype > 0,
the solution for f(¢) may be given by

f(¢) = a sech'/35¢ (28)



where a is the amplitude of the solitary wave, 2 and  are defined by

9 6
[? = Z;a , Q= %a6 — i K2 (29)
1

This shows that the NLS equation with seventh order of nonlinearity also
assumes the envelope solitary wave solution as given in (28). One should
also note that the frequency of the harmonic wave is proportional to the
sixth power of the solitary wave amplitude.

3 Conclusion

As pointed out before, the conventional reductive perturbation method can-
not be used to study amplitude modulation of nonlinear waves when the
order of nonlinearity is greater than three. In this work, by utilizing the clas-
sical reductive perturbation method and a new set of slow variables, we have
studied the amplitude modulation of the symmetric regularized long- wave
equation with quartic nonlinearity and obtained the nonlinear Schrodinger
equation with seventh order of nonlinearity, as the evolution equation. It
is observed that although the order of nonlinearity of original equation is
four the order of the resulting evolution equation is seven. By seeking a
progressive wave solution to the evolution equation we have determined the
speeds of the harmonic and envelope waves. It is further observed that the
envelope wave is still a solitary wave and the frequency of harmonic wave is
proportional to the six power of the wave amplitude.
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