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Abstract

In this article, an improved and more efficient algorithm for the compression of the electrocardiogram (ECG)
signals is presented, which combines the processes of modeling ECG signal by variable-length classified signature
and envelope vector sets (VL-CSEVS), and residual error coding via wavelet transform. In particular, we form the VL-
CSEVS derived from the ECG signals, which exploits the relationship between energy variation and clinical
information. The VL-CSEVS are unique patterns generated from many of thousands of ECG segments of two
different lengths obtained by the energy based segmentation method, then they are presented to both the
transmitter and the receiver used in our proposed compression system. The proposed algorithm is tested on the
MIT-BIH Arrhythmia Database and MIT-BIH Compression Test Database and its performance is evaluated by using
some evaluation metrics such as the percentage root-mean-square difference (PRD), modified PRD (MPRD),
maximum error, and clinical evaluation. Our experimental results imply that our proposed algorithm achieves high
compression ratios with low level reconstruction error while preserving the diagnostic information in the
reconstructed ECG signal, which has been supported by the clinical tests that we have carried out.

Keywords: electrocardiogram, data compression, variable-length classified vector sets, energy based ECG
segmentation

1 Introduction
An electrocardiogram (ECG) signal, which is a graphical
display of the electrical activity of the heart, is one of
the essential biological signals for the monitoring and
diagnosis of heart diseases. ECG signals recorded by the
digital equipments are most widely used in the applica-
tions such as monitoring, cardiac diagnosis, real-time
transmission over telephone networks, patient databases
and long-term recording. Some key parameters such as
the sampling rate, sampling precision, number of leads
and recording time play an important role in the
increase of the amount of data collected from an ECG
signal. Evidently, when continuously generating the huge
amount of ECG data, in order to be able to process
these data, we need the proper equipments that have
the high storage capacity. On the other hand, when the
equipments are used in the remote monitoring activities,
they must have the wide transmission band. Therefore,
in order to achieve removing the redundant information

from the ECG signal with retaining all clinically signifi-
cant features including P-wave, QRS complex and T
-wave [1,2], we need to employ an effective ECG com-
pression algorithm.
In the recent years, the studies dealing with the mod-

eling and compression of the ECG signals essentially
utilize one of the following methods: (i) The direct
time-domain methods, (ii) the transform-based methods,
(iii) the parameter extraction methods [2,3].
The direct time-domain methods [4-10] such as

AZTEC [4], CORTES [5], SAPA [6], FAN [7], SAIES
[8], mean-shape vector quantization method [9], gain-
shape vector quantization [10] use the actual samples of
the original signal. In the transform-based methods
[11-22], the domain of the original signal is transformed
into another domain by using the orthogonal transfor-
mations such as principal component analysis (PCA)
[11,12], discrete cosine transformation (DCT) [13], sin-
gular value decomposition (SVD) [14] and wavelet trans-
formation (WT) [15-22]. Then, the appropriate inverse
transformation is applied to the transformed signal to
reconstruct the original signal in its original domain
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with an acceptable reconstruction error. The parameter
extraction methods [23,24] such as linear prediction and
neural network based methods generally use the idea of
generating a set of parameters which is extracted from
the original signal.
Among the proposed methods in the literature, one of

the most known and powerful algorithm is the set parti-
tioning in hierarchical trees (SPIHT) compression algo-
rithm [21]. Another efficient ECG compression method
uses the cosine modulated filter banks to reconstruct
the original ECG signals [25]. In [22], another ECG
compression method is proposed, which is based on the
adaptive wavelet coefficients quantization by using a
modified two-role encoder. Most recently, the wavelet-
based ECG data compression system having a linear
quality control scheme was proposed [20].
In some previously published articles [26,27], it has

been shown that the predefined signature and envelope
vector sets best describe the speech and ECG signals. It
has also been demonstrated in [26,27] that, by introdu-
cing and employing a new systematic procedure called
SYMPES, the predefined signature and envelope vector
sets have been used to model the speech and ECG sig-
nals frame by frame. In this procedure, each frame of
the reconstructed speech or ECG signal is represented
by a combination of multiplication of three major quan-
tities, which are the gain factor, the signature vector,
and the envelope vector.
In [28], a novel EEG compression method was pro-

posed, which is based on the construction of the classi-
fied signature and envelope vector sets (CSEVS). The
signature and envelope vector sets obtained for the
speech and ECG signals in [26,27] were then extended
to the EEG signals in [28] to obtain the signature and
envelope vector sets for the EEG signals. Then, these
vector sets were classified by using k-means clustering
algorithm to determine the centroid vectors of each
classified vector sets, which were to be used in con-
structing of the CSEVS. The main advantage of the
method proposed in [28] is that it reduces the size of
vector sets and computational complexity of the search-
ing and matching processes. The method introduced in
[28] also proved to have advantages over the wavelet
transform coding technique as far as the average RMSE,
average PRD, average PRD1, and CR(%) are concerned.
In [29], a new block-based image compression scheme

was presented based on generation of classified energy
and pattern blocks (CEPBs). In the method, first the cla-
sified enesrgy blocks (CEB) and clasified pattern blocks
(CPB) sets were constructed and any image data can be
reconstructed block by block using a block scaling coef-
ficient and the index numbers of the CEPBs placed in
the CEB and CPB. The CEB and CPB sets were con-
structed for different sizes of image blocks such as 8 × 8

or 16 × 16 with respect to different compression ratios
(CRs) desired. At the end of a series of the experimental
works, the evaluation results show that the proposed
method provides high CRs such as 21.33:1, 85.33:1 while
preserving the image quality at 27-30.5 dB level on the
average. When the CR versus image quality (PSNR)
results in the proposed method compared to the other
works, it seems that the method is superior to the DCT
and DWT particularly at low bit rates or high CRs.
In the current article, we propose a new and more

efficient ECG compression algorithm which relies on
the variable-length CSEVS (VL-CSEVS) and wavelet
transform. In this proposed algorithm, we first use the
energy based segmentation method to represent an ECG
frame with high energy by short segments and an ECG
frame with low energy by long segments. Then, the
unique patterns VL-CSEVS are generated from these
ECG segments of two different lengths. Thus, when
compared with the previous results obtained in [26-28],
our new method significantly improves the CR, and
then the use of wavelet transform based residual error
coding both enhances the quality of the reconstructed
signal. In order to check the performance of our new
method for a different classes of ECG signals, given that
the original unique patterns VL-CSEVS remain
unchanged, we have used the MIT-BIH compression
test database called the worst-case database by the its
developers [15].
The parameters PRD, MPRD, and maximum error

(MAXERR) for compression the ECG of the unique pat-
tern VL-CSEVS derived from the original ECG are mea-
sured by changing both the training set and the test set
at each round of the 4-fold cross-validation method,
whose average values are used to determine the perfor-
mance of our new proposed method. We should point
out here that the sampling frequency, resolution, mean
value, and amplitude value of the ECG signals in the
test database are different from those of the ECG signals
used to construct the unique patterns VL-CSEVS.
The article is organized as follows. Section 2 describes

the details of the newly proposed compression algo-
rithm. In Section 3, we present the experimental results
obtained by using the proposed compression algorithm,
which are then compared with some known successful
ECG compression methods reported in [21,22,25]. In
Section 4, we give the conclusion.

2 Proposed compression algorithm
In this article, an efficient ECG compression algorithm
which is based on the modeling ECG signals via VL-
CSEVS and employs the residual error coding by using
the wavelet transform is proposed. One of the main
advantages of our method is to ensure the quality in the
reconstruction of an ECG signal.

Gurkan EURASIP Journal on Advances in Signal Processing 2012, 2012:119
http://asp.eurasipjournals.com/content/2012/1/119

Page 2 of 17



We use the variable-length approach to generate the
CSEVS. In this context, an ECG frame with high energy
carrying useful information such as QRS complex is
represented by the short segments. At the same time, an
ECG frame with low energy with or without possessing
clinical information is represented by the long segments.
The length of the short segments is determined to be 16
and that of long segments is determined to be 64.
In determination of the length of the segments, we

first check the relationship between the segment length
and blocking effect for various segment lengths, and
then choose the segment length which minimizes the
blocking effect on the reconstructed ECG signal.
After the variable-length segmentation process, the

signature and envelope vectors are extracted from many
of thousands of ECG segments. Then, the signature and
envelope vectors are classified by employing effective k-
means algorithm which helps us to eliminate the similar
signature and envelope vectors. Thus, the VL-CSEVS
are constructed by using non-similar signature and
envelope patterns, implying that the VL-CSEVS will
have unique patterns.
In conclusion, the ECG segments with low energy can be

more compressed than the ECG segments that have high
energy. Thus, our new method allows us to significantly
increase the total CR of ECG signals. On the other hand,
some ECG frames containing p-wave or t-wave carries
valuable clinical information may have low energy. In the
reconstruction of these types of ECG frames, the recon-
struction error is substantially decreased by employing the
wavelet based residual error coding technique. The pro-
posed algorithm is superior to the powerful wavelet based
ECG compression methods, especially at low bit rates.
The newly proposed algorithm basically consists of

three processing stages: the pre-processing stage, the
stage of construction of the VL-CSEVS, and reconstruc-
tion process of an ECG signal. In the following subsec-
tions, each stage is explained in details.

2.1 Preprocessing stage
The preprocessing is one of the most important stages
of an ECG compression method because it plays a cru-
cial role in enhancing the compression performance of
the algorithm. The preprocessing stage is carried out in
three steps.
The first step of this stage normalizes the frequency of

each signal to 500 Hz using cubic spline interpolation
technique. The amplitude normalization is the second
step of this stage, which normalize amplitude of each
ECG signal is between 0 and 1 using the following
formula

xNOR =
x − xmin

xmax − xmin
(1)

The final step of this stage is the segmentation process.
There are two traditional ECG segmentation methods in
the literature. The first method is based on the QRS detec-
tion algorithm. In this method, each QRS peak of heart-
beat or each R-R interval is identified as a segment. Due to
the heart rate variability, this segmentation method
increases the computational cost of the compression pro-
cess. The other method is the fixed-length segmentation
which is one of the mostly used method in the past litera-
ture. In our previous work [27], we employed the fixed-
length segmentation method to split ECG signals into
short and quasi-periodic segments. In this research work,
energy based segmentation method that splits ECG signal
into two different lengths according to the energy varia-
tion of the signal is utilized to improve the compression
performance of the proposed algorithm. This segmenta-
tion method divides the ECG frames with high energy into
the short segments whose length is 16 samples while the
ECG frames with low energy are divided into the long seg-
ments whose each contains 64 samples.
When the preprocessing stage is completed, the nor-

malized ECG segments of two different lengths are
obtained to construct the VL-CSVES which are
explained in detailed in the next subsection.

2.2 Construction of the VL-CSEVS
A normalized ECG segment Xi obtained in the prepro-
cessing stage can be spanned to a vector space in the
following form.

Xi = VT
i Ci (2)

Ci = ViXi (3)

where the Vi represents orthonormal vectors in the
matrix notation and Ci are uncorrelated coefficients
such that

VT
i =

[
vi1 vi2 vi3 . . . viLF

]
(4)

CT
i =

[
ci1 ci2 ci3 . . . ciLF

]
(5)

in which LF is the number of the samples in any ECG
segment which is equal to either 16 or 64.
Now, any normalized ECG segment Xi can be repre-

sented as a weighted sum of the orthonormal vectors vik
as follows:

Xi =
LF∑

k=1

cikvik, cik = XT
i vik (6)

This equation may be truncated by taking the first p
term. In this case, the approximation Xip and approxi-
mation error εi are given in the following form.
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Xi ∼= Xip =
p∑

k=1

cikvik (7)

εi = Xi − Xip =
LF∑

k=p+1

cikvik (8)

The orthonormal vectors vik are determined by mini-
mizing the expected vector of the error vector �i with
respect to vik in the LMS sense. Eventually, these vectors
which are represented by vik are the eigenvectors of the
autocorrelation matrix Ri of the Xi segment. The auto-
correlation matrix Ri can be calculated as follows

Ri =

⎡
⎢⎢⎢⎢⎢⎣

ri (1) ri (2) ri (3) · · · ri (LF)

ri (2) ri (1) ri (2) · · · ri (LF − 1)

ri (3) ri (2) ri (1) · · · ri (LF − 2)
...

...
...

. . .
...

ri (LF) ri (LF − 1) ri (LF − 2) · · · ri(1)

⎤
⎥⎥⎥⎥⎥⎦ (9)

The entries of the matrix Ri are computed by

ri (d + 1) =
1
LF

iLF−1−d∑
j=[i−1]LF+1

xj+1xj+1+d (10)

The above mentioned LMS process results in the
eigenvalue problem. Hence, the eigenvectors vik of the
autocorrelation matrix Ri and the corresponding eigen-
values lik are found by solving

Rivik = λikvik, k = 1, 2, . . . , LF (11)

Since the autocorrelation matrix Ri is a positive semi-
definite, real-symmetrical and toeplitz matrix, the eigen-
values lik are real and non-negative and the eigenvectors
vik are all orthonormal.
The eigenvectors vik can be arranged according to the

descending order of the magnitude of their correspond-
ing eigenvalues lik.

λi1 ≥ λi2 ≥ · · · ≥ λiLF (12)

In this case, the eigenvectors vi1 that have the highest
energy associated with the highest magnitude of the
eigenvalue represents the direction of the greatest varia-
tion of the signal and they are also called signature vec-
tors. The signature vector may approximate each
segment that belongs to the original ECG. Therefore,
each segment Xi is represented as follows

Xi ∼= ci1vi1 (13)

Once the approximation (13) is obtained, it can be
converted into the equality by means of an envelope
diagonal matrix Ai for each segment. Thus, Xi is calcu-
lated by

Xi = ci1Aivi1 (14)

In (14), the diagonal components air of the matrix Ai

are computed in terms of the components vi1r of the
signature vector vi1 and the component xir of the seg-
ment vector Xi by following simple division.

air =
xir

ci1vi1r
(15)

In this research work, many ECG signals were exam-
ined and thousands of segments which contain either 16
or 64 samples were analyzed. After the generation of all
of the signature and the envelope vectors employing the
procedure given above, these vectors were plotted. It
has been observed that there were a lot of signature vec-
tors similar to each other. This type of repetitive simi-
larity properties have also observed among the envelope
vectors. The vectors in the signature and envelope side
were clustered by using an effective k-means clustering
algorithm [1] and the centroid vectors of each cluster
were determined for these two vector types. These cen-
troid vectors are called as classified signature vectors
and classified envelope vectors. The block diagram that
explains this procedure is given in Figure 1.
After determination of the centroid vectors for each

cluster of the signature and envelope vectors, two types
of sets were constructed by using these centroid vectors.
The centroid vectors obtained from the signature vec-
tors and the envelope vectors are renamed as classified
signature vectors (CSV) and classified envelope vectors
(CEV), respectively. The CSVs are collected under either
the classified signature set-16 (CSS16) or the Classified
Signature Set-64 (CSS64) according to their segment
length. The CSVs are represented by ΨNS(n); NS = 1, 2,
..., R, ..., NS. The integer n represents total number of
samples in the each CSV while the integer NS designates
the total number of the CSVs in the CCS16 and CCS64,
individually. In the same way, the CEVs are collected
under either the CES16 or the CES64 according to their
segment length. The CEVs are represented by FNE(n);
NE = 1, 2, ..., K, ..., NE. The integer n represents total
number of samples in the each CEV while the integer
NE denotes the number of the CEVs in the CES16 and
CES64, individually. Afterwards, CSS16, CES16, CSS64,
and CES64 are collected in the VL-CSEVS. Details of the
reconstruction process of measured ECG signals by
means of VL-CSEVS are given step by step in the fol-
lowing subsection.

2.3 Reconstruction process of ECG signals by using VL-
CSEVS
The reconstruction process of the proposed method
consists of two operations: encoding and decoding. The
block diagrams of the encoders and decoders are given
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in Figures 2 and 3, respectively, which are explained step
by step in next subsections.
2.3.1 Encoder
Step 1: The original ECG signal is first normalized, and
then it is segmented in the pre-processing stage. If the
segment length is 16 the switch-codebook bit bSWCB is
assigned as 1. Otherwise, bSWCB is equal to 0.
Step 2a: An appropriate CSV from either CSS16 or

CSS64 according to the value of bSWCB is pulled out

such as the error which is given below is minimized for
all R̃ = 1, 2, . . . , R, . . . , Ns .

δR = min
{∥∥Vi1 − ΨR̃

∥∥2
}

= ‖Vi1 − ΨR‖2 (16)

Step 2b: The index number R that refers to CSV is
stored.
Step 3a: An appropriate CEV from either CES16 or

CES64 according to the value of bSWCB is pulled out

Figure 1 The block diagram of the construction of the VL-CSEVS.

Figure 2 The block diagram of the encoder part of the proposed algorithm.
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such as the error shown below is minimized for all

K̃ = 1, 2, . . . , K, . . . , NE .
Step 3b: The index number K that refers to CEV is

stored.

δK = min
{∥∥Xi − CRΦK̃ΨR

∥∥2
}

= ‖Xi − CRΦKΨR‖2 (17)

Step 4: A new gain coefficient factor Ci is replaced by
CR by computing as follows,

Ci =
(ΦKΨR)T Xi

(ΦKΨR)T (ΦKΨR)
(18)

so that the global error given in (19) is minimized.

δGLOBAL = ‖Xi − CRΦKΨR‖2 (19)

Step 5: At this step, the segment XAi is approximated
by

XAi = CiΦKΨR (20)

Step 6: The above steps is repeated to determine the
model parameters R, K, and Ci for each segment of
ECG signal and X̂rec is reconstructed.

X̂rec =
[
XA1 XA2 XA3 . . . XANF

]
(21)

Step 7: Residual error is figured out by subtracting

X̂rec from the original ECG signal.

err = X − X̂rec (22)

Step 8: The residual error is down-sampled by two
using cubic spline interpolation technique and three-level
discrete wavelet transform using Biorthogonal wavelet
(Bior 4.4) is applied to the down-sampled residual signal.
Step 9: The modified two-role encoder [22] is

employed for coding the obtained wavelet coefficient,
and thus, the encoded residual bit stream is obtained.
Step 10: Encoded bit stream of the index number of R

is obtained by using Huffman coding.
Step 11: Encoded bit stream of the index number of K

is obtained by using Huffman coding.
Step12: The new gain coefficients Ci are coded by

using 6 bits.
2.3.2 Decoder
Step 1: The encoded bit stream of the index number of
R and K are decoded by using Huffman decoder.

Figure 3 The block diagram of the decoder part of the proposed algorithm.
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Step 2: For each segment, the index number of R and K
are used to pull out the appropriate CSV and CEV from the
VL-CSEVS according to the switch-codebook bit bSWCB.
Step 3: The each segment XAi is approximated by the

following mathematical formula

XAi = CiΦKΨR (23)

Step 4: The reconstructed ECG signal X̂rec is pro-
duced by

X̂rec =
[
XA1XA2XA3 . . . XANF

]
(24)

Step 5: The encoded bit stream of the residual signal
is decoded by using the modified two-role decoder [22].
Step 6: The reconstructed residual signal errrec is pro-

duced by applying the inverse WT and up-sampling
process by a factor of two, respectively.
Step 7: In the final step, the reconstruction process of

the ECG signal is accomplished by adding the recon-
structed residual signal to the reconstructed ECG signal
as follows.

Xrec = X̂rec + errrec (25)

In the following section, the simulation results for the
proposed compression algorithm are presented.

3 Simulation results
3.1 Evaluation metrics to measure the performance of the
proposed compression algorithm
The performance of the proposed ECG compression
algorithm and those given in [21,22,25] are evaluated by
using two criteria which are the CR and distortion
error. The CR is defined as the ratio between the num-
ber of the bits required to represent the original and
reconstructed signals [30]. This ratio is given by

CR =
borg

brec
(26)

where borg and brec represent the number of the bits
required for the original and recon-structed signals,
respectively.
However, the exact compression performance of the

proposed method can only be analyzed when the CR is
combined with the distortion error [30]. The distortion
error is usually considered to be the percentage root-
mean-square differences (PRD) defined by

PRD = 100 ×

√√√√√√√√
N∑

n=1
(xorg(n) − xrec(n))2

N∑
n=1

(xorg(n))2

(27)

where xorg(n) refers to the original signal, xrec(n)
denotes the reconstructed signal and N represents the
length of the frame.
Since the distortion error basically depends on the

mean value of the original signal, it can be masked the
real performance of a compression algorithm. Therefore,
the MPRD, which is totally independent of the mean
value of the original signal, is suggested to be used to
test the real performance of a compression algorithm.
The MPRD is defined by

MPRD = 100 ×

√√√√√√√√
N∑

n=1
(xorg(n) − xrec(n))2

N∑
n=1

(xorg(n) − x̃)2

(28)

where x̃ denotes the mean value of the original signal
[30].
It is well known in the literature that the PRD error

measures the global quality of the reconstructed signal.
In order to assess the real performance of the compres-
sion algorithm, not only the global error but also the
local distortion must be examined. The local distortion
indicates the distribution of the error along with the
reconstructed signal and can be determined by using
the MAXERR definition which is defined by

MAXERR = 100 × max
(|xorg (n) − xrec (n) |)

max
(
xorg (n)

) − min
(
xorg (n)

) (29)

All of the evaluation criteria explained above are
employed in our experiments. We will compare the
results of our algorithm with the results of the algo-
rithms given [21,22,25] as far as the above mentioned
evaluation criteria are concerned.

3.2 Mean opinion score test
In order to evaluate the performance of the proposed
algorithm from clinical point of view, we use the test
method of Mean Opinion Score (MOS) whose test para-
meters are given in Table 1, which is similar to test pre-
sented in [31]. In Table 1, in section A, the cardiologist
is asked to give a score value ranging from 1 to 5 in
order to determine the similarity between the original
and reconstructed signals. In section B, the cardiologist
is asked to determine whether one can make a different
diagnosis using the reconstructed version of the original
signal without seeing the original signal. The process of
section A is repeated for the important segment QRS
and two critical waves P and T of the original and
reconstructed version of the signals in section C.
The results of the MOS test are analyzed by using the

two different distortion measures: MOSERROR and
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Segmentation based MOS (SMOS). The MOSERROR

which is defined for a single reconstructed signal in [31]
is expressed as follows:

MOSERROR =
1
2

×
[(

5 − a
5

)
× 100 + (1 − b) × 100

]
(30)

where a, an integer ranging from 1 to 5, is the mea-
sure of the similarity between the original and recon-
structed signals. b is the answer to section B related to
the diagnosis. If the answer is YES, b is equal to 0,
otherwise, b is equal to 1 [31].
The SMOS defined as the second distortion measure

shows the similarity between the important segment and
waves of the original and reconstructed ECG signals
specifically QRS segment, P and T waves. In this test,
SMOS is determined for QRS segment, P and T waves,
separately. The results obtained for each segment of the
signal are represented by SMOSQRS, SMOSP, and
SMOST , respectively. We should point out here that
the lower values of the MOSERROR represent the better
signal quality while the higher values of SMOS indicate
the better signal quality.

3.3 Experimental results and comparisons
The compression algorithm explained in the previous
section was first run in Matlab 7.0.1 platform, and then
it was tested with ECG recordings on an Intel Core2
Quad 2.66 GHz processor. In order to evaluate the per-
formance of the proposed compression algorithm, MIT-
BIH Arrhythmia Database [32] and MIT-BIH Compres-
sion Test Database [15] were used in this research work.
The MIT-BIH Arrhythmia Database consists of 48 ECG
recordings which are sampled at 360 Hz and quantized
at 11-bit resolution [32]. On the other hand, the MIT-
BIH Compression Test Database consists of 168 ECG

recordings. Each data in this database is sampled at 250
Hz and quantized at 12-bit resolution [15]. Each record
in both database was first resampled at 500 Hz by using
a cubic spline interpolation technique, and then the
amplitudes of these records were normalized between 0
and 1.
The selection of the appropriate database is very

important in order to construct the VL-CSEVS. The
MIT-BIH arrhythmia database was selected as the train-
ing set because it contains a large set of ECG beats and
many different examples of cardiac pathologies. Then,
VL-CSEVS having the unique patterns were generated
by analyzing a huge number of the ECG segments
obtained from this database.
In the construction of the VL-CSEVS, 4-fold cross-

validation method was employed in order to remove
the biasing effect. After the preprocessing stage, four
different segments with a length of 6.4 s were
extracted from each ECG recording in the MIT-BIH
Arrhythmia Database. The group of the first segments
were collected in the Subset-1. Similarly, Subsets-2, 3,
and 4 were formed by the group of the second seg-
ments, the group of the third segments, and the group
of the fourth segments, respectively. Thus, the four
subsets S1, S2, S3, and S4 of the equal sizes were con-
stituted. In other words, one subset was used as the
test set and the remaining subsets were employed as
the training sets for each round. Thus, each subset was
used exactly once as the test set. In the first round,
while Subset-1 was used as the test set, Subsets-2, 3,
and 4 were employed as the training sets; in the sec-
ond round, Subset-2 was the test set while Subsets-1,
3, and 4 were the training sets; and so on. After all
these training, VL-CSEVS given in Table 2 were con-
structed for each round.

Table 1 The MOS test

ECG Signal Name:####

A. The measure of similarity between the original ECG signal and reconstructed ECG signal.

MOS score

Completely different Bad Acceptable Good Very good

1 2 3 4 5

□ □ □ □ □

B. Would you give a different diagnosis with reconstructed signal if you had not seen the original signal.

Yes No

□ □
C. The measure of segment based similarity between the original ECG signal and reconstructed ECG signal.

MOS score

1 2 3 4 5

QRS segment

P wave

T wave
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In this table, bSWCB refers to the switch-codebook bit
that controls the length of an incoming segment. bCi,
bR, bK are the minimum numbers of the bits required to
represent the gain coefficient Ci, and the integers NS

and NE, respectively.
The performance of the proposed compression algo-

rithm with respect to PRD, MAXERR, and CR was eval-
uated for each round and shown in Figure 4. The
variation of PRD and MAXERR with CR at each round
for the proposed compression algorithm was illustrated
in Figures 4a, b, respectively. Besides, the mean perfor-
mance of the results given in Figure 4 was presented in
Table 3.
The proposed compression algorithm achieves the

average CRs from 4:1 to 20:1 with average PRDa varies
between 1.2 and 5.6%. Since the acceptable values of
PRD were reported to be less than 9% in the literature
[31], it can be emphasized that the results obtained in
the proposed compression algorithm provide high CR
with very low PRD levels. Furthermore, the average
encoding and decoding times of the proposed compres-
sion algorithm are 0.687 and 0.318 s, respectively.
In this experimental research work, the proposed algo-

rithm was compared with three well-known successful
ECG compression methods SPIHT [21], Blanco-Valesco
et al. [25], and Benzid et al. [22] in terms of average
PRD, average MPRD, and average CR. In order to carry
out a precise comparison among the proposed algorithm
and other ECG compression methods given in
[21,22,25], the same test dataset has been used for all

these methods. This dataset contains 11 recorded ECG
signals received from the MIT-BIH arrhythmia database
(records: 100, 101, 102, 103, 107, 109, 111, 115, 117,
118, and 119). The comparison between our proposed
method and the SPIHT [21] in terms of the average
PRD and CR is illustrated in Figure 5. The comparison
between our proposed algorithm and the Blanco-Valesco
et al. [25] is given in Figures 6 and 7. Figure 6 depicts
the variation of the average PRD with respect to the
average CR and Figure 7 shows the variation of the
average MPRD with respect to the average CR. Finally, a
comparison between our results and those obtained by
Benzid et al. [22] is given in Figure 8 which compare
the average PRD and average CR obtained by both
methods. When analyzing the results illustrated in Fig-
ures 5, 6, 7 and 8, it can be clearly seen from these fig-
ures that the proposed compression algorithm
outperforms the compared methods especially at low bit
rates.
In order to evaluate the worst case performance of the

unique VL-CSEVS formed by using the MIT-BIH
Arrhythmia Database, the proposed algorithm was also
tested on the ECG signals received from the MIT-BIH
Compression Test Database which is called the worst
case test database by its developers [15]. It should be
noted that the sampling frequency, resolution, mean
value, and amplitude value of the ECG signals in this
database are completely different from those of the ECG
signals in the MIT-BIH Arrhythmia Database which is
used to construct the unique VL-CSEVS. The mean
values of the results obtained at each round in the worst
case analysis are presented in Table 4. The comparative
results between the proposed algorithm, our previous
method [27] and Hilton [15] are depicted in Figure 9.
As it can be seen from Table 4, the proposed algo-

rithm achieves the average CRs from 4:1 to 20:1 with an
average MPRD in the range of 1.627-8.631%. Moreover,

Table 2 The number of CSV, CEV, and the required total
bit in the VL-CSEVS

LF NS NE bTotal = bSWCB + bCi + bR + bK

16 8 64 1+6+3+6 = 16

64 8 128 1+6+3+7 = 17
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Figure 4 The performance of the proposed algorithm by means of CR, PRD, and MAXERR: (a) The variation of the average PRD with
respect to the CR; (b) The variation of the average MAXERR with respect to the CR.
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the MAXERR, representing the local distortion, varies
between 1.015 and 4.209%. Furthermore, the average
encoding and decoding times of the proposed algorithm
are 0.619 and 0.279 s, respectively. Figure 9 shows that
the compression performance of our previous method
mentioned in [27] is significantly improved by employ-
ing the VL-CSEVS in this research work. Also, it is
clearly seen from Figure 9 that the compression perfor-
mance of the proposed algorithm is significantly better
than the results given in Hilton [15] in the light of the
MPRD.
It is important to note that in Hilton [15], the PRD

was used as the distortion measure. Although the PRD
results are always smaller than the MPRD results due to
the mean value of the signal, MPRD results obtained in
the proposed algorithm are smaller than the PRD results
obtained in Hilton [15].
In addition to the results of the objective evaluation

methods given in Tables 3 and 4, several original ECG
signals randomly chosen from test database and their

reconstructed versions are displayed in Figures 10, 11,
12, 13 and 14 to reveal the visual quality of the ECG
signals which are reconstructed by using the proposed
compression algorithm. In Figures 10 and 11, the ECG
records 118 and 117 which are randomly selected from
the MIT-BIH Arrhythmia Database and their recon-
structed versions along with the information of the CR,
PRD, and MAXERRR are presented, respectively. Simi-
larly, two different original ECG signals which are ran-
domly selected from the MIT-BIH Compression Test
Database and their reconstructed versions along with
the information of the CR, MPRD, and MAXERRR are
presented in Figures 12 and 13, respectively. As it can
be clearly seen from these figures, both the morphologi-
cal features of ECG signals are well preserved.

3.4 Clinical evaluation and discussion
In the clinical evaluation of our results, we have used 11
original ECG signals from the MIT-BIH Arrhythmia
Dataset and 11 original ECG signals from the MIT-BIH

Table 3 The performance of the proposed algorithm tested on the MIT-BIH Arrhythmia Database with respect to
average CR, PRD, MAXERR, encoding end decoding time

Average CR Average PRD Average MAXERR Encoding time (s) Decoding time (s)

4 1.246 1.702 0.71 0.32

6 1.613 1.672 0.69 0.31

8 2.097 1.945 0.68 0.32

10 2.620 2.299 0.69 0.32

12 3.155 2.795 0.69 0.32

14 3.689 3.414 0.68 0.32

16 4.233 4.171 0.70 0.33

18 4.849 4.957 0.68 0.31

20 5.639 6.798 0.67 0.32
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Figure 5 Comparison of the proposed algorithm with SPIHT in terms of average PRD and CR.
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Compression Test Database. These 22 original ECG sig-
nals were reconstructed at 4:1, 6:1, 8:1, 10:1, 12:1, 14:1,
16:1, 18:1, and 20:1 CRs by using our proposed method.
As a result, these 22 original and 198 reconstructed
ECG signals were evaluated by the cardiologists in order
to validate the performance of the proposed algorithm
from clinical point of view.
In the first step of the clinical evaluation, the cardiolo-

gistb expressed his opinions by examining these original
and reconstructed ECG signals without applying any
test. He explained that, the onset, off set and duration
of the segments (or intervals) of the ECG signals such
as PR, QRS, ST are correctly determined in the recon-
structed or compressed ECG signals obtained by the
proposed algorithm also at 20:1 CR. He pointed out that

the proposed algorithm provides the nearly perfect
reconstruction of the QRS segments at 20:1 CR.
Although the p-wave and t-wave of the reconstructed
ECG signals have more reconstruction error than the
QRS segments of the reconstructed ECG signals, these
distortions are not critically important in terms of diag-
nosis. He also explained that the quality of the recon-
structed ECG signals is also acceptable at low bit rates.
On the other hand, he also emphasized that, it is very

difficult to obtain high CRs with low reconstruction
errors in the compression of the Holter ECG’s or Stress
ECG’s which are recorded during movement or exercise,
since these types of ECG records contain more variation
or artifacts compared with ECG signals recorded in the
resting mode. Therefore, the CR has to be selected by
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Figure 6 Comparison of the proposed algorithm with Blanco-Valesco in terms of average PRD and CR.
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Figure 7 Comparison of the proposed algorithm with Blanco-Valesco in terms of average MPRD and CR.

Gurkan EURASIP Journal on Advances in Signal Processing 2012, 2012:119
http://asp.eurasipjournals.com/content/2012/1/119

Page 11 of 17



the cardiologists to ensure the clinical information
depending on the ECG signal being compressed. In this
context, it is an important advantage that the CR of the
proposed algorithm can be adjusted easily according to
the desired CR starting at 1 to 20 or higher.
Furthermore, an average opinion score is requested

from the cardiologist in order to determine the clinical
quality of the reconstructed ECG signals and he rated
the clinical quality of the proposed compression algo-
rithm at 20:1 CR as 4 over 5. As a result, the clinical
operational range of the proposed compression algo-
rithm is up to 20:1 CR.
In the second step of the clinical evaluation of the

results obtained by our proposed method, the MOS test
given in Table 1 has been applied to the original and
reconstructed ECG signals by the cardiologist.c Then,
the results of the MOS test were analyzed by means of
MOS, SMOSQRS, SMOST , SMOSP and MOSERROR

which are shown in Table 5. The variations of the MOS,
SMOSQRS, SMOST , and SMOSP with respect to the CR
are also given in Figure 14.

When analyzing the values of MOS given in Table 5,
it is clearly seen that the quality of all reconstructed
ECG signals is acceptable also at the CR of 20:1.
Furthermore, the results of SMOSQRS show that the
proposed compression algorithm provides nearly perfect
reconstruction of the QRS segments of the recon-
structed ECG signals also at the CR of 20:1. In the light
of the results of the MOS and SMOSQRS, the cardiolo-
gist pointed out that the proposed compression algo-
rithm provides the useful CRs ranging from 4:1 to 20:1.
On the other hand, the results of the SMOST and
SMOSP are lower in comparison with the results of
SMOSQRS as shown in Figure 14. This is an expected
result since the proposed compression algorithm further
compresses the ECG segments with low energy in com-
parison with the ECG segments with high energy.
In order to analyze the values of both MOS and

SMOS given in Table 5 in terms of diagnostic accuracy,
we have employed the MOSERROR. It was reported in
[31] that the reconstructed signal quality can be classi-
fied into four different quality groups by using the
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Figure 8 Comparison of the proposed algorithm with Benzid in terms of average PRD and CR.

Table 4 The performance of the proposed algorithm tested on the MIT-BIH Compression Test Database with respect
to average CR, MPRD, MAXERR, encoding and decoding times

Average CR Average MPRD Average MAXERR Encoding time (s) Decoding time (s)

4 1.627 1.015 0.634 0.282

6 2.202 1.208 0.624 0.281

8 3.175 1.616 0.620 0.279

10 4.264 1.965 0.618 0.279

12 5.283 2.351 0.618 0.278

14 6.211 2.788 0.614 0.279

16 7.056 3.286 0.613 0.278

18 7.849 3.692 0.615 0.279

20 8.631 4.209 0.615 0.279
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MOSERROR. The reconstructed signal quality is classified
to be very good for the values of MOSERROR between 0
and 15%. If the value of MOSERROR is between 15 and
35%, the reconstructed signal quality is determined to
be good. The reconstructed signal quality is assigned
not good if the value of MOSERROR is between 35 and
50%. When the value of MOSERROR is greater than 50%,
the reconstructed signal quality is assumed to be bad.
The variation of average MOSERROR given in Table 5
with respect to the CR and PRD was illustrated in Fig-
ures 15a, b, respectively. When analyzing the results of

the MOSERROR, we have observed that 71.85% of the all
reconstructed ECG signals is in the very good quality
group while 21.05% of the all reconstructed ECG signals
is in the good quality group. On the other hand, the
rest of the reconstructed ECG signals has the values of
MOSERROR which are greater than 35%.
As seen from Table 6, the clinical test proved that the

proposed compression algorithm achieves to compress
16 of 22 original ECG signals, used in the clinical eva-
luation, at 20:1 CR by preserving the diagnostic informa-
tion. The three of these signals are compressed at 16:1
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Figure 9 Comparison of the proposed algorithm with our previous method and Hilton in terms of average MPRD and CR.
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Figure 10 The original and reconstructed ECG signals of the record 118 taken from the MIT-BIH arrhythmia Database (PRD = 0.97846,
CR = 6.0027, MAXERR = 1.5142).

Gurkan EURASIP Journal on Advances in Signal Processing 2012, 2012:119
http://asp.eurasipjournals.com/content/2012/1/119

Page 13 of 17



CR without losing any diagnostic information. The other
three are compressed at 18:1, 14:1, and 12:1, respec-
tively, without losing any diagnostic information.
In conclusion, the ranges of the utility of the proposed

compression algorithm are from 4:1 to 20:1 CRs
depending on the ECG signal to be compressed.

4 Conclusion
We have introduced an efficient compression algorithm
for ECG signals. The proposed algorithm is based on

modeling ECG signals via VL-CSEVS and using residual
error coding by wavelet transform to ensure the recon-
struction quality. The main advantage of the proposed
compression algorithm is to provide low level recon-
struction errors at high CRs while preserving diagnostic
information in the reconstructed ECG signals, which has
been supported by the clinical tests that we have carried
out. Especially at the CR of 20:1, the proposed compres-
sion algorithm achieves almost 13% lower PRD values in
the reconstructed ECG signals in comparison with the
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Figure 11 The original and reconstructed ECG signals of the record 117 taken from the MIT-BIH arrhythmia Database (PRD = 2.4652,
CR = 17.9226, MAXERR = 4.3534).
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Figure 12 The original and reconstructed ECG signals of the record 12981-02 taken from the MIT-BIH Compression Test Database
(MPRD = 1.5022, CR = 5.9748, MAX-ERR = 0.95759).
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other ECG compression methods given in [21,22,25]. In
this work, the VL-CSEVS which have unique patterns
are specifically designed for ECG signals by using the
relationship between energy variation and clinical
information.
In this research work, ECG signals are segmented by

using energy based segmentation so that ECG frames
which have the high energy are represented by the short
segments while the other frames with low energy are
represented by the long segments. Therefore, both the
size of VL-CSEVS and the computational complexity of
the searching and matching process are reduced signifi-
cantly in comparison with the predefined signature and

envelope vector sets proposed in our previous works
[26,27].
In conclusion, the CR of the proposed algorithm is

significantly improved in comparison with the results of
our previous method [27]. Besides the good perfor-
mance in the average CR, the low reconstruction error
is ensured by applying the residual error coding.
The performance of the proposed algorithm is evalu-

ated and compared with the three well-known ECG
compression methods given in [21,22,25]. The results of
the performance evaluations show that the proposed
algorithm provides the better results than the other
methods in terms of the average CR, the average PRD,
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Figure 13 The original and reconstructed ECG signals of the record 08730-02 taken from the MIT-BIH Compression Test Database
(MPRD = 7.4252, CR = 19.9377, MAX-ERR = 3.3334).

5 10 15 20
1

1.5

2

2.5

3

3.5

4

4.5

5

Average CR

A
ve

ra
ge

 M
O

S

Average MOS
Average SMOS

QRS
Average SMOS

P
Average SMOS

T

Figure 14 The variation of the average MOS, SMOSQRS, SMOST , and SMOSP with respect to the CR.

Gurkan EURASIP Journal on Advances in Signal Processing 2012, 2012:119
http://asp.eurasipjournals.com/content/2012/1/119

Page 15 of 17



the average MPRD, and the MAXERR which are well-
known objective evaluation criteria. Moreover, the com-
putational complexity of the proposed algorithm is also
very low so that the average encoding and decoding
times are almost 0.7 and 0.3 s, respectively.
In the experiments, the 4-fold cross-validation is

employed to expose the relationship between the CR
and PRD at different levels. The results obtained at each
round show that there is almost no change in the PRD
levels which correspond the same CR values. Further-
more, the performance of the VL-CSEVS is also tested
on the ECG signals from a different database which is
called as MIT-BIH compression test database. During
the experiments, we observed some small differences in
the PRD levels at the same CR values in the worst-case
condition employing the MIT-BIH compression test
database. These experimental results show that the pro-
posed algorithm does not need any adaption process to
reconstruct any ECG signals which have different char-
acteristics. That is to say, the proposed VL-CSEVS do
not require to re-created specifically for an ECG data-
base so that the VL-CSEVS are constructed from the

unique patterns extracted by examining many of thou-
sands ECG segments and they are fixed.
We finally point out that the generation of the VL-

CSEVS is carried out off-line and the unique VL-CSEVS
are fixed and located at the receiver side of the system.
In other words, the unique VL-CSEVS do not required
to be redesigned in order to compress and reconstruct
any ECG signal. On the other hand, the encoding and
decoding parts of the proposed method are on-line pro-
cedures. When the average encoding and decoding
times are analyzed it can be said that the proposed
method is appropriate for real-time applications.

Endnotes
aEach signal in the MIT-BIH Arrhythmia Database
included a baseline of 1024 added for storage purposes.
Consequently, the PRD which is given in (27) is worked
out by subtracting 1024 from each data sample. bThe

Table 5 The average results of the clinical test of the
proposed compression algorithm with respect to the CR,
MOS, SMOSQRS, SMOST, SMOSP, and MOSERROR
CR MOS SMOSQRS SMOST SMOSP MOSERROR

4 4.79 4.71 4.43 4.27 2.14

6 4.50 4.50 4.07 3.64 5.00

8 4.07 4.14 3.93 3.45 9.29

10 3.93 4.07 3.86 3.09 10.71

12 3.79 4.00 3.64 3.00 12.14

14 3.64 4.00 3.50 2.82 17.14

16 3.57 3.86 3.14 2.64 21.43

18 3.21 3.71 2.93 2.09 35.71

20 3.21 3.57 2.79 2.00 39.29
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Figure 15 The clinical evaluation of the proposed compression algorithm by means of MOSERROR, CR, and PRD: (a) The variation of the
average MOSERROR with respect to the CR; (b) The variation of the average MOSERROR with respect to the PRD.

Table 6 The diagnostic performance of the proposed
compression algorithm for the original ECG signals used
in the clinical test

CR The number of original ECG signals

16 1 3 1 1

20:1 Preserved Not
preserved

Not
preserved

Not
preserved

Not
preserved

18:1 Preserved Preserved Not
preserved

Not
preserved

Not
preserved

16:1 Preserved Preserved Preserved Not
preserved

Not
preserved

14:1 Preserved Preserved Preserved Preserved Not
preserved

12:1 Preserved Preserved Preserved Preserved Preserved

10:1 Preserved Preserved Preserved Preserved Preserved

8:1 Preserved Preserved Preserved Preserved Preserved

6:1 Preserved Preserved Preserved Preserved Preserved

4:1 Preserved Preserved Preserved Preserved Preserved
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clinical evaluation was carried out by Prof. Osman
Akdemir who is a cardiologist in the Department of
Cardiology at the T.C. Maltepe University, Istanbul Tur-
key. cThe clinical test was carried out by Dr. Ruken
Bengi Bakal who is a cardiologist in the Department of
Cardiology at the Kartal Kosuyolu Yuksek Ihtisas Educa-
tion and Research Hospital, Istanbul, Turkey.
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