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‘DEL’ RELATION AND PARALLELISM IN FUZZY LATTICES

M. WASADIKAR1, P. KHUBCHANDANI2, §

Abstract. The notions of ‘del’ relation, a neutral element and parallelism from lattice
theory are introduced in a fuzzy lattice and their properties are obtained.
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1. Introduction

Ore [10] introduced the concept of a distributive element in a lattice. A generalization
of this concept, namely, a ‘neutral element’ in a lattice was introduced by Birkhoff [3].
Several researchers have developed many equivalent conditions for an element of a lattice
to be neutral. Maeda and Maeda [4] have studied modular pairs in lattices.

Fuzzy sets and fuzzy relations were introduced by Zadeh [11]. The concept of a fuzzy
binary relation and a fuzzy partial order relation are due to Zadeh [12]. Fuzzy lattices
were defined by Ajmal and Thomas [1] and Chon [2]. Mezzomo et. al. [6] defined a
new notion of a fuzzy ideal and a fuzzy filter in a fuzzy lattice. Recently, Wasadikar and
Khubchandani [8] have defined a fuzzy modular pair in a fuzzy lattice. As a continuation of
the study of fuzzy modular pairs in [8], in this paper, we consider fuzzy distributive triples
in a fuzzy lattice. In section 3, we define a neutral element in a fuzzy lattice L = (X, A).
We prove that the set of all neutral elements of a fuzzy lattice is a distributive sublattice
of L = (X, A). In section 4, we define the concept of parallelism in a fuzzy lattice, while
in section 5, we define the notion of atom free parallelism and prove some properties and
relations among them in a fuzzy lattice.

2. Preliminaries

Throughout this paper, (X,A) denotes a fuzzy lattice, where A is a fuzzy partial order
relation on a nonempty set X.
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For the definitions of a fuzzy partial order relation, fuzzy equivalence relation, fuzzy supre-
mum, fuzzy infimum, fuzzy lattice etc. we refer to Chon [2].

We use the notations a ∨F b and a ∧F b to denote the fuzzy supremum and the fuzzy
infimum of a, b ∈ X to distinguish the supremum and infimum of a, b in the lattice sense,
if these exist in X.

Definition 2.1. [7, Definition 3.4] A fuzzy lattice (X,A) is said to be bounded if there
exist elements ⊥ and > in X, such that A(⊥, a) > 0 and A(a,>) > 0, for every a ∈ X.
In this case, ⊥ and > are respectively called bottom and top elements of X.

We illustrate these concepts in the following example.

Example 2.1. Let X = {⊥, a, b, c, d, e,>} and let A : X ×X −→ [0, 1] be a fuzzy relation
defined as follows:
A(⊥,⊥) = A(a, a) = A(b, b) = A(c, c) = A(d, d) = A(e, e) = A(>,>) = 1,
A(⊥, a) = 0.07, A(⊥, b) = 0.16, A(⊥, c) = 0.34, A(⊥, d) = 0.51, A(⊥, e) = 0.62,
A(⊥,>) = 0.82,
A(a,⊥) = 0, A(a, b) = 0, A(a, c) = 0.19, A(a, d) = 0.36, A(a, e) = 0, A(a,>) = 0.67,
A(b,⊥) = 0, A(b, a) = 0, A(b, c) = 0.09, A(b, d) = 0, A(b, e) = 0.38, A(b,>) = 0.55,
A(c,⊥) = 0, A(c, a) = 0, A(c, b) = 0, A(c, d) = 0, A(c, e) = 0, A(c,>) = 0.39,
A(d,⊥) = 0, A(d, a) = 0, A(d, b) = 0, A(d, c) = 0, A(d, e) = 0, A(d,>) = 0.20,
A(e,⊥) = 0, A(e, a) = 0, A(e, b) = 0, A(e, c) = 0, A(e, d) = 0, A(e,>) = 0.10,
A(>,⊥) = 0, A(>, a) = 0, A(>, b) = 0, A(>, c) = 0, A(>, d) = 0, A(>, e) = 0.
Then A is a fuzzy partial order relation.

The fuzzy join and fuzzy meet tables are as follows:

∨F ⊥ a b c d e >
⊥ ⊥ a b c d e >
a a a c c d > >
b b c b c > e >
c c c c c > > >
d d d > > d > >
e e > e > > e >
> > > > > > > >

∧F ⊥ a b c d e >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a ⊥ a a ⊥ a
b ⊥ ⊥ b b ⊥ b b
c ⊥ a b c a b ⊥
d ⊥ a ⊥ a d ⊥ d
e ⊥ ⊥ b b ⊥ e e
> > a b c d e >

We note that (X,A) is a fuzzy lattice.
We recall some known results which we shall use in this paper.

Proposition 2.1. [2, Proposition 3.3] and [6, Proposition 2.4] Let (X,A) be a fuzzy lattice.
For a, b, c ∈ X, the following statements hold:
(i) A(a, b) > 0 iff a ∧F b = a iff a ∨F b = b.
(ii) If A(b, c) > 0, then A(a ∧F b, a ∧F c) > 0 and A(a ∨F b, a ∨F c) > 0.

For the definitions of a fuzzy distributive and fuzzy modular lattice, we refere to [2].
We note that from the distributive inequalities and fuzzy antisymmetry property, (X,A)
is distributive iff A(a ∧F (b ∨F c), (a ∧F b) ∨F (a ∧F c)) > 0 and
A((a ∨F b) ∧F (a ∨F c), a ∨F (b ∧F c)) > 0.

Definition 2.2. [8, Definition 3.1] Let X be a nonempty set and L = (X,A) be a fuzzy
lattice with ⊥. Let a, b ∈ X. We say that (a, b) is a fuzzy meet-modular pair and we write
(a, b)FMm, if whenever A(c, b) > 0, then (c ∨F a) ∧F b = c ∨F (a ∧F b).

We say that (a, b) is a fuzzy join-modular pair and we write (a, b)FMj, if whenever
A(b, c) > 0, then (c ∧F a) ∨F b = c ∧F (a ∨F b).
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Remark 2.1. [8, Remark 3.1] If a ∈ X, then (⊥, a)FMm, (a,⊥)FMm, (a, a)FMm,
(>, a)FMm, (a,>)FMm and (⊥,>)FMm hold if ⊥ and > exist.

Definition 2.3. [8, Definition 4.1] A fuzzy lattice L = (X, A) with ⊥ is called fuzzy
weakly modular when in L = (X, A), a ∧F b 6= ⊥ implies (a, b)FMm.

Definition 2.4. [8, Definition 4.4] Let L = (X, A) be a fuzzy lattice. Let a, b ∈ X, then
b ≺F a (a “fuzzy covers” b) if 0 < A(b, a) < 1 and A(b, x) > 0 and A(x, a) > 0 imply
x = a or x = b.

Definition 2.5. [8, Definition 3.3] Let P denote the set of all a ∈ X such that ⊥ ≺F a.
The elements of P are called fuzzy atoms.

Lemma 2.1. [9, Lemma 5.3] If b ≺F a ∨F b, then (a, b)FMj.

Definition 2.6. [9, Definition 5.3] Let L = (X, A) be a fuzzy lattice with ⊥. If p is a
fuzzy atom and a ∧F p = ⊥, then a ≺F a ∨F p is called the fuzzy covering property.

Definition 2.7. [5, Definition 3.1] Let L = (X, A) be a fuzzy lattice and Y ⊆ X. Y is
an ideal of L if it satisfies the following conditions:
(i) If x ∈ X, y ∈ Y and A(x, y) > 0, then x ∈ Y .
(ii) If x, y ∈ Y , then x ∨F y ∈ Y .

Definition 2.8. [9, Definition 5.1] A fuzzy poset L = (X, A) with a least element ⊥
is called fuzzy atomic if for every nonzero b ∈ X there is some fuzzy atom a such that
A(a, b) > 0.

3. ‘Del’ relation in fuzzy lattices

Definition 3.1. Let L = (X,A) be a fuzzy lattice. Let a, b, c ∈ X. We write (a, b, c)FD
if (a ∨F b) ∧F c = (a ∧F c) ∨F (b ∧F c) (I)
and we write (a, b, c)FD

∗ if (a ∧F b) ∨F c = (a ∨F c) ∧F (b ∨F c). (II)
If (I) and (II) hold for all permutations of a, b and c, then we say that {a, b, c} is a fuzzy
distributive triplet and we write (a, b, c)FT .

L = (X,A) is called fuzzy distributive when (a, b, c)FD and (a, b, c)FD
∗ hold for all

elements a, b, c ∈ X.

Example 3.1. In Example 2.1, both (a, e, b)FD and (a, e, b)FD
∗ hold.

Definition 3.2. A fuzzy lattice L = (X,A) is called a FMj-symmetric fuzzy lattice if
(a, b)FMj implies (b, a)FMj.

Example 3.2. Consider the fuzzy lattice in Example 2.1.
For A(b, e) > 0, (b, c)FMj holds as (e∧F c)∨F b = b∨F b = b and e∧F (c∨F b) = e∧F c = b.
For A(c,>) > 0, (c, b)FMj holds as (>∧F b)∨F c = b∨F c = c and >∧F (b∨F c) = >∧F c = c.

Definition 3.3. Let L = (X,A) be a fuzzy lattice with ⊥. Let a, b ∈ X. We write aOF b
if (x ∨F a) ∧F b = x ∧F b for every x ∈ X. (∗)

Let Y ⊆ X. We write Y OF = {a ∈ X| aOF b, for all b ∈ Y }.

Remark 3.1. If aOF b, then a ∧F b = ⊥ and (a, b)FMm hold.
If we put x = ⊥ in (∗), then we get a ∧F b = ⊥.
To show that (a, b)FMm holds. Let c ∈ X be such that A(c, b) > 0. Since aOF b holds we
have (c ∨F a) ∧F b = c ∧F b = c = c ∨F ⊥ = c ∨F (a ∧F b).

Remark 3.2. aOF b is equivalent to a ∧F b = ⊥ and (x, a, b)FD for every x ∈ X.
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Proof. Suppose that aOF b holds. Then by Remark 3.1 we have a∧F b = ⊥ and (a, b)FMm.
Hence for every x ∈ X satisfying A(x, b) > 0 we have

(x ∨F a) ∧F b = x ∨F (a ∧F b) = (x ∧F b) ∨F (a ∧F b) as A(x, b) > 0.

So, (x, a, b)FD holds.
Conversely, suppose that a ∧F b = ⊥ and (x, a, b)FD hold.

Then we have,

(x ∨F a) ∧F b = (x ∧F b) ∨F (a ∧F b), as (x, a, b)FD

= (x ∧F b) ∨F ⊥,
= x ∧F b.

Thus aOF b holds. �

Lemma 3.1. Let L = (X,A) be a fuzzy lattice with ⊥. Then the following statements
hold for a, b, a1, b1 ∈ X.
(i) If aOF b holds and a1, b1 are such that A(a1, a) > 0 and A(b1, b) > 0, then a1OF b1
holds.
(ii) If a1OF b and a2OF b hold, then (a1 ∨F a2)OF b holds.
(iii) Y OF is an ideal of L for every subset Y of X.

Proof. Let L = (X,A) be a fuzzy lattice with ⊥.
(i): Suppose that aOF b hold and a1, b1 are such that A(a1, a) > 0 and A(b1, b) > 0.
To show that a1OF b1 holds, i.e., to show for any x ∈ X, A((x ∨F a1) ∧F b1, x ∧F b1) > 0.
We note that A((x ∨F a1) ∧F b1, (x ∨F a1) ∧F b1) = 1 > 0.
Hence A((x ∨F a1) ∧F b1, (x ∨F a1) ∧F b1 ∧F b) > 0, as A(b1, b) > 0 implies b1 ∧F b = b1.
We have A((x ∨F a1) ∧F b1, (a1 ∨F x) ∧F (a ∨F x) ∧F b ∧F b1) > 0, since A(a1, a) > 0.
Hence A((x ∨F a1) ∧F b1, (a1 ∨F x) ∧F x ∧F b ∧F b1) > 0, since aOF b.
Thus, A((x ∨F a1) ∧F b1, x ∧F b ∧F b1) > 0, by absorption identity.
Hence A((x∨F a1)∧F b1, x∧F b1) > 0. Since A(x∧F b1, (x∨F a1)∧F b1) > 0 always holds,
by fuzzy antisymmetry of A we get (x ∨F a1) ∧F b1 = x ∧F b1.
Hence a1OF b1 holds.

(ii): If a1OF b and a2OF b, then for any x ∈ X we have
A((x ∨F a1 ∨F a2) ∧F b, (x ∨F a1 ∨F a2) ∧F b) = 1 > 0,
i.e., A((x ∨F a1 ∨F a2) ∧F b, ((x ∨F a1) ∨F a2) ∧F b) > 0,
i.e., A((x ∨F a1 ∨F a2) ∧F b, (x ∨F a1) ∧F b) > 0, using a2OF b and Remark 3.2.
i.e., A((x ∨F a1 ∨F a2) ∧F b, (x ∧F b) > 0, by a1OF b and Remark 3.2.
As A((x∧F b, (x∨F a1∨F a2)∧F b) > 0 always holds, by fuzzy antisymmetry of A we have
(x ∨F a1 ∨F a2) ∧F b = (x ∧F b).
Hence (a1 ∨F a2)OF b holds.

(iii): To show that Y OF is an ideal of L for every subset Y of X.
(a): Let a ∈ Y OF and A(c, a) > 0, so we get cOF b for all b ∈ Y . Hence c ∈ Y OF holds.
(b): It follows from (ii) that if a1, a2 ∈ Y OF , then a1 ∨F a2 ∈ Y OF . �

Definition 3.4. Let L = (X,A) be a fuzzy lattice with ⊥. Let Y1, Y2, · · · , Yn be subsets of
X. Suppose that each Yi contains ⊥. We say that X is the direct sum of Y1, Y2, · · · , Yn
and we write X = Y1 ⊕ Y2 ⊕ · · · ,⊕Yn, if every element a ∈ X can be written as a =
a1 ∨F a2 ∨F · · · ∨F an , ai ∈ Yi (for i = 1, 2, · · · , n) and Yi ⊂ Y OF

j for i 6= j.

Lemma 3.2. Let L = (X,A) be a fuzzy lattice with ⊥ is a direct sum of Y1, Y2, · · · , Yn,
then every element a ∈ X can be expressed in the form a = a1 ∨F · · · ∨F an, ai ∈ Yi
(for i = 1, 2, · · · , n) uniquely and the sets Y1, · · · , Yn are ideals of L.
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Proof. Let L = (X,A) be a fuzzy lattice with ⊥.
(i): Let a = a1 ∨F a2 ∨F · · · ∨F an = b1 ∨F b2 ∨F · · · ∨F bn where ai ∈ Yi and bi ∈ Yi (for
i = 1, 2, · · · , n). Then by (iii) of Lemma 3.1 and by Definition 3.4, we have b2∨F · · ·∨F bn ∈
Y OF
1 . Hence (b2 ∨F · · · ∨F bn)Oa1. As a = a1 ∨F a2 ∨F · · · ∨F an we have A(a1, a) > 0.

Hence

a1 = a ∧F a1,

= (b1 ∨F (b2 ∨F · · · ∨F bn)) ∧F a1,

= b1 ∧F a1 as (b2 ∨F · · · ∨F bn)Oa1 holds

So, we get A(a1, b1) > 0. (I)
Since a2 ∨F · · · ∨F an ∈ Y OF

1 , (a2 ∨F · · · ∨F an)OF b1 holds. This implies that
(a2 ∨F · · · ∨F an) ∧F b1 = ⊥. We have

b1 = a ∧F b1,

= (a1 ∨F (a2 ∨F · · · ∨F an)) ∧F b1, as a = a1 ∨F a2 ∨F · · · ∨F an

= a1 ∧F b1 as (a2 ∨F · · · ∨F an)OF b1.

So, we get A(b1, a1) > 0. (II)
Therefore, from (I) and (II) by fuzzy antisymmetry of A we get a1 = b1.
More generally, we have ai = bi for every i.

(ii): To show that Y1, · · · , Yn are ideals of L. We shall show that Y1 is an ideal of X.
(a): Let a ∈ Y1 and A(b, a) > 0. Suppose that b = b1 ∨F · · · ∨F bn, bi ∈ Yi.
Let i 6= 1. Since A(bi, b) > 0, A(b, a) > 0, by fuzzy transitivity of A we get A(bi, a) > 0;
i.e., bi = a ∧F bi.
If a ∈ Y OF

i , then a ∧F bi = ⊥ for all bi. This implies bi = ⊥. Hence b = b1 ∈ Y1.
(b): If a, b ∈ Y1, a ∨F b is expressed in the form a ∨F b = c1 ∨F · · · ∨F cn, ci ∈ Yi.
If i 6= 1, then since a, b ∈ Y1 ⊂ Y OF

i , we have ci = (a ∨F b) ∧F ci = a ∧F ci = ⊥.
Hence a ∨F b = c1 ∈ Y1.
Therefore, Y1 is an ideal. In general Yi is an ideal for every i. �

Definition 3.5. An element z of a fuzzy lattice L = (X,A) is called a fuzzy neutral
element when (z, a, b)FT for all a, b ∈ X.

Lemma 3.3. The set of all fuzzy neutral elements of a fuzzy lattice L = (X,A) is a fuzzy
distributive sublattice of L.

Proof. Let z1 and z2 be fuzzy neutral elements. We shall show that z1∨F z2 is fuzzy neutral
element. Let a, b ∈ X. We note that A((z1 ∨F z2 ∨F a)∧F b, (z1 ∨F z2 ∨F a)∧F b) = 1 > 0,
i.e., A((z1 ∨F z2 ∨F a) ∧F b, (z1 ∨F (z2 ∨F a)) ∧F b) > 0,
i.e., A((z1 ∨F z2 ∨F a) ∧F b, (z1 ∧F b) ∨F ((z2 ∨F a) ∧F b)) > 0,
i.e., A((z1 ∨F z2 ∨F a) ∧F b, (z1 ∧F b) ∨F ((z2 ∧F b) ∨F (a ∧F b))) > 0,
i.e., A((z1 ∨F z2 ∨F a) ∧F b, ((z1 ∨F z2) ∧F b) ∨F (a ∧F b)) > 0.
Therefore, A((z1 ∨F z2 ∨F a) ∧F b, ((z1 ∨F z2) ∧F b) ∨F (a ∧F b)) > 0.
As A(((z1 ∨F z2) ∧F b) ∨F (a ∧F b), (z1 ∨F z2 ∨F a) ∧F b) > 0 always holds.
By fuzzy antisymmetry of A we get (z1 ∨F z2 ∨F a) ∧F b = ((z1 ∨F z2) ∧F b) ∨F (a ∧F b).
Hence (z1 ∨F z2, a, b)FD holds.
We note that A((a ∨F b) ∧F (z1 ∨F z2), (a ∨F b) ∧F (z1 ∨F z2)) = 1 > 0,
i.e., A((a ∨F b) ∧F (z1 ∨F z2), ((a ∨F b) ∧F z1) ∨F ((a ∨F b) ∧F z2)) > 0,
i.e., A((a ∨F b) ∧F (z1 ∨F z2), (a ∧F z1) ∨F (b ∧F z1) ∨F (a ∧F z2) ∨F (b ∧F z2)) > 0,
i.e., A((a ∨F b) ∧F (z1 ∨F z2), (a ∧F (z1 ∨F z2)) ∨F (b ∧F (z1 ∨F z2))) > 0.
As A((a ∧F (z1 ∨F z2)) ∨F (b ∧F (z1 ∨F z2)), (a ∨F b) ∧F (z1 ∨F z2)) > 0 always holds.
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By fuzzy antisymmetry of A we get
(a ∨F b) ∧F (z1 ∨F z2) = (a ∧F (z1 ∨F z2)) ∨F (b ∧F (z1 ∨F z2)).
Hence (a, b, z1 ∨F z2)FD holds.
We note that A(((z1 ∨F z2) ∧F a) ∨F b, ((z1 ∨F z2) ∧F a) ∨F b) = 1 > 0,
i.e., A(((z1 ∨F z2) ∧F a) ∨F b, (z1 ∧F a) ∨F (z2 ∧F a) ∨F b) > 0,
i.e., A(((z1 ∨F z2) ∧F a) ∨F b, (z1 ∧F a) ∨F (z1 ∧F b) ∨F (z2 ∧F a) ∨F b) > 0,

by putting b = (z1 ∧F b) ∨F b
i.e., A(((z1 ∨F z2) ∧F a) ∨F b, (z1 ∧F (a ∨F b)) ∨F ((z2 ∧F a) ∨F b)) > 0,
i.e., A(((z1 ∨F z2) ∧F a) ∨F b, (z1 ∧F (a ∨F b)) ∨F ((z2 ∨F b) ∧F (a ∨F b))) > 0,
i.e., A(((z1 ∨F z2) ∧F a) ∨F b, (z1 ∨F z2 ∨F b) ∧F (a ∨F b)) > 0.
As A((z1 ∨F z2 ∨F b) ∧F (a ∨F b), ((z1 ∨F z2) ∧F a) ∨F b) > 0 always holds.
By fuzzy antisymmetry of A we get ((z1 ∨F z2) ∧F a) ∨F b = (z1 ∨F z2 ∨F b) ∧F (a ∨F b).
Hence (z1 ∨F z2, a, b)FD

∗ holds.
We note that A((a ∧F b) ∨F (z1 ∨F z2), (a ∧F b) ∨F (z1 ∨F z2)) = 1 > 0,
i.e., A((a ∧F b) ∨F (z1 ∨F z2), ((a ∧F b) ∨F z1) ∨F z2)) > 0,
i.e., A((a ∧F b) ∨F (z1 ∨F z2), ((a ∨F z1) ∧F (b ∨F z1)) ∨F z2) > 0,
i.e., A((a ∧F b) ∨F (z1 ∨F z2), (a ∨F z1 ∨F z2) ∧F (b ∨F z1 ∨F z2)) > 0.
As A((a ∨F z1 ∨F z2) ∧F (b ∨F z1 ∨F z2), (a ∧F b) ∨F (z1 ∨F z2)) > 0 always holds.
By fuzzy antisymmetry of A we get (a∧F b)∨F (z1∨F z2) = (a∨F z1∨F z2)∧F (b∨F z1∨F z2).
Hence (a, b, z1 ∨F z2)FD

∗ holds. Thus z1 ∨F z2 is fuzzy neutral element.
Similarly, we can show that z1 ∧F z2 is fuzzy neutral element.
Therefore, the set of fuzzy neutral elements forms a sublattice which is obviously fuzzy
distributive. �

4. Fuzzy parallelism in a fuzzy lattice

The notion of fuzzy parallelism is well-known in lattices, see [4]. In this section, we
introduce this notion in a fuzzy lattice and prove some properties.

Definition 4.1. Let L = (X,A) be a fuzzy lattice with ⊥. Let a, b ∈ X − {⊥}.
We write a <|F b when a∧F b = ⊥ and b ≺F a∨F b. If a <|F b and b <|F a hold, then we
say that a and b are fuzzy parallel and we write a ||F b.

Example 4.1. In Example 2.1 a∧F b = ⊥ and b ≺F a∨F b = c also a ≺F a∨F b = c. As
a <|F b and b <|F a hold we say a and b are parallel.

Remark 4.1. Let L = (X,A) be a fuzzy lattice with the fuzzy covering property. If p is a
fuzzy atom and if p ∧F a = ⊥, then by the fuzzy covering property we have a ≺F a ∨F p.
Hence p <|F a. In particular, if p and q are different fuzzy atoms of X, then putting
a = q, we get p <|F q. Interchanging the roles of p and q we get q <|F p. Hence p ||F q.

Definition 4.2. L = (X,A) is called a fuzzy atomistic lattice, in short FAC if
L = (X,A) is an fuzzy atomistic lattice with the fuzzy covering property.

Lemma 4.1. In a fuzzy lattice L = (X,A) with ⊥. If a <|F b, then a1 ∨F b = a ∨F b for
any a1 ∈ X satisfying a1 6= ⊥ and A(a1, a) > 0.

Proof. Suppose that a <|F b holds. Then b ≺F a ∨F b holds and a ∧F b = ⊥.
As A(a1, a) > 0, by (ii) of Proposition 2.1, we have A(a1 ∧F b, a ∧F b) > 0,
i.e., A(a1 ∧F b,⊥) > 0. Since A(⊥, a1 ∧F b) > 0 always holds, by fuzzy antisymmetry of A
we have a1 ∧F b = ⊥.
As A(a1, a) > 0 so by (ii) of Proposition 2.1, we have A(a1 ∨F b, a ∨F b) > 0 and
A(b, a1 ∨F b) > 0.
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As b ≺F a ∨F b holds we have either b = a1 ∨F b or a1 ∨F b = a ∨F b.
If b = a1 ∨F b, then A(a1, b) > 0, a contradiction to a1 ∧F b = ⊥.
Therefore, we get a1 ∨F b = a ∨F b. �

Lemma 4.2. Let L = (X,A) be a fuzzy lattice with ⊥. Suppose that a <|F b holds.
(i) If a1 6= ⊥ is not a fuzzy atom such that A(a1, a) > 0, then (b, a1)FMm does not hold;
(ii) If A(a1, a) > 0, then (a1, b)FMj holds;
(iii) If a1 6= ⊥ and A(a1, a) > 0, then (b, a1)FMj does not hold.

Proof. Suppose that a <|F b holds. Then b ≺F a ∨F b holds and a ∧F b = ⊥.
(i): Suppose that a1 6= ⊥ and a1 is not a fuzzy atom and A(a1, a) > 0. Then there exists
c ∈ X such that c 6= ⊥ and A(c, a1) > 0. Clearly, A(c, a) > 0
Also, given A(a1, a) > 0, then by Lemma 4.1, we have c∨F b = a∨F b and a1∨F b = a∨F b.
From A(a1, a) > 0 and (ii) of Proposition 2.1, we have A(a1 ∧F b, a ∧F b) > 0. Since
a ∧F b = ⊥, we get A(a1 ∧F b,⊥) > 0.
As A(⊥, a1 ∧F b) > 0 always holds, by fuzzy antisymmetry of A we get a1 ∧F b = ⊥.
Hence (c ∨F b) ∧F a1 = (a1 ∨F b) ∧F a1 = a1 and c ∨F (b ∧F a1) = c ∨F ⊥ = c 6= a1.
Thus, (b, a1)FMm cannot hold.

(ii): If a1 = ⊥, then by Remark 2.1, we have (a1, b)FMj . Suppose that a1 6= ⊥ and
A(a1, a) > 0 hold. As a <|F b holds we have b ≺F a ∨F b. By Lemma 4.1 we have
a ∨F b = a1 ∨F b. Hence by Lemma 2.1, we have (a1, b)FMj .

(iii): If a1 6= ⊥ and A(a1, a) > 0, then by Lemma 4.1, we have a1 ∨F b = a ∨F b.
We have a ∧F (b ∨F a1) = a ∧F (b ∨F a) = a and (a ∧F b) ∨F a1 = a1 6= a.
Hence (b, a1)FMj does not hold. �

Lemma 4.3. Let L = (X,A) is a fuzzy lattice with ⊥. Suppose that L is a FMj-symmetric
fuzzy lattice. If a <|F b, then a is a fuzzy atom in X.

Proof. If a <|F b holds, then b ≺F a∨F b holds and a∧F b = ⊥. Hence by Lemma 2.1, we
have (a, b)FMj . By (ii) of Lemma 4.2, (a1, b)FMj holds for every A(a1, a) > 0.
As L = (X,A) is a FMj-symmetric fuzzy lattice, we have (b, a1)FMj .
By (iii) of Lemma 4.2, a is a fuzzy atom in X. �

Lemma 4.4. Let a, b ∈ X − {⊥} be elements of a fuzzy atomic lattice L = (X,A) with
the fuzzy covering property.
(i) a <|F b if and only if a∧F b = ⊥ and there exists a fuzzy atom p such that A(p, a) > 0
and p ∨F b = a ∨F b;
(ii) a ||F b if and only if a ∧F b = ⊥ and there exist fuzzy atoms p, q ∈ X such that
A(p, a) > 0, A(q, b) > 0 and a ∨F q = b ∨F p.

Proof. Let a, b ∈ X − {⊥}.
(i): Let a <|F b hold. Since L = (X,A) is fuzzy atomic there exists a fuzzy atom p with
A(p, a) > 0. By Lemma 4.1, we have p ∨F b = a ∨F b.

Conversely, suppose that a ∧F b = ⊥ and p is a fuzzy atom satisfying p ∨F b = a ∨F b
and A(p, a) > 0. By (ii) of Proposition 2.1, we have A(p ∧F b, a ∧F b) > 0.
Since a ∧F b = ⊥, we get A(p ∧F b,⊥) > 0. But A(⊥, p ∧F b) > 0 always holds. Hence by
fuzzy antisymmetry of A we get p ∧F b = ⊥. As p is a fuzzy atom and p ∧F b = ⊥ by the
fuzzy covering property we have b ≺F p ∨F b, that is, b ≺F a ∨F b. Hence a <|F b holds.

(ii): a ||F b means a <|F b and b <|F a hold. Then by (i) there exist fuzzy atoms p, q ∈ X
such that A(p, a) > 0, A(q, b) > 0 and p ∨F b = q ∨F a = a ∨F b.

Conversely, suppose that a ∧F b = ⊥, A(p, a) > 0, A(q, b) > 0 and a ∨F q = b ∨F p hold
We have A(b, a ∨F q) > 0 and A(p, a ∨F q) > 0 by (ii) of Proposition 2.1, we have
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A(a ∨F b, a ∨F q) > 0. As A(p, a) > 0 by (ii) of Proposition 2.1, we have
A(p ∨F b, a ∨F b) > 0. (I)
As a ∨F q = b ∨F p so, we have A(a, b ∨F p) > 0 and A(q, b ∨F p) > 0.
by (ii) of Proposition 2.1, we get A(a ∨F b, b ∨F p) > 0. (II)
From (I) and (II) by fuzzy antisymmetry of A we get a ∨F b = p ∨F b.
Similarly, a ∨F q = a ∨F b.
Therefore, we get a <|F b and b <|F a by (i). Thus, a ||F b holds. �

Lemma 4.5. Let L = (X,A) be a fuzzy weakly modular lattice with the fuzzy covering
property. If a <|F b and if q is a fuzzy atom with A(q, b) > 0, then a ||F (a ∨F q) ∧F b.

Proof. Suppose that a <|F b holds. Then b ≺F a ∨F b holds and a ∧F b = ⊥.
Put b1 = (a ∨F q) ∧F b. (I)
As A(b1, b) > 0 then by (ii) of Proposition 2.1, we have A(a ∧F b1, a ∧F b) > 0.
Since a∧F b = ⊥ we have A(a∧F b1,⊥) > 0. As A(⊥, a∧F b1) > 0 always holds, by fuzzy
antisymmetry of A we have a ∧F b1 = ⊥. Also, by (I) we have A(b1, a ∨F q) > 0 by (ii) of
Proposition 2.1, we have A(a ∨F b1, a ∨F q) > 0. (II)
As A(q, a ∨F q) > 0 always holds, by (ii) of Proposition 2.1, we get
A(q ∧F b, (a ∨F q) ∧F b) > 0. As A(q, b) > 0 we have A(q, (a ∨F q) ∧F b) > 0 which gives
A(q, b1) > 0 by (I).
By (ii) of Proposition 2.1, we have A(a ∨F q, a ∨F b1) > 0. (III)
From (II) and (III) by fuzzy antisymmetry of A we have a ∨F q = a ∨F b1.
To prove that a ||F b1 holds, it is sufficient to show that b1 ≺F a ∨F q and a ≺F a ∨F q.
Since, A(q, b) > 0 by (ii) of Proposition 2.1, we get A(a ∧F q, a ∧F b) > 0. This implies
A(a∧F q,⊥) > 0 as a∧F b = ⊥. Since A(⊥, a∧F q) > 0 always holds by fuzzy antisymmetry
of A we have a ∧F q = ⊥. Hence by fuzzy covering property we get a ≺F a ∨F q.
Let c ∈ X be such that A(b1, c) > 0, A(c, a ∨F q) > 0.
Case (1): Let A(c, b) > 0. We have A(c, a ∨F q) > 0. Then by (ii) of Proposition 2.1,
we have A(c ∧F b, b ∧F (a ∨F q)) > 0. This implies that A(c, b1) > 0 by (I). By fuzzy
antisymmetry of A we have b1 = c.
Case (2): Let A(c, b) = 0, 0 < A(b, b ∨F c) < 1 and A(c, a ∨F q) > 0 by (ii) of Proposition
2.1, we have A(b ∨F c, b ∨F (a ∨F q)) > 0. Thus A(b ∨F c, a ∨F b) > 0 as A(q, b) > 0. So,
we have 0 < A(b, b ∨F c) < 1, A(b ∨F c, a ∨F b) > 0.
Then b = b ∨F c and b ∨F c = a ∨F b. (IV)
As b ≺F a∨F b holds and A(q, b) > 0 by (ii) of Proposition 2.1 we have A(a∨F q, a∨F b) > 0.
By (IV) we have A(a ∨F q, b ∨F c) > 0.
Since L = (X,A) is fuzzy weakly modular fuzzy lattice, using 0 < A(⊥, q) < 1 and
A(q, (a ∨F q) ∧F b) > 0 we have (b, a ∨F q)FMm.
Hence

c = c ∨F b1,

= c ∨F {b ∧F (a ∨F q)}, as b1 = (a ∨F q) ∧F b

= (c ∨F b) ∧F (a ∨F q), because (b, a ∨F q)FMm

Hence c = a ∨F q. Therefore, b1 ≺F a ∨F q holds. Hence a ||F (a ∨F q) ∧F b holds. �

5. Fuzzy atom-free parallelism in a fuzzy lattice

In this section, we define a fuzzy modular element in a fuzzy lattice L = (X,A) and
introduce fuzzy atom-free parallelism in a fuzzy lattice.

Definition 5.1. An element a in a fuzzy lattice L = (X,A) is called a fuzzy modular
element if (x, a)FMm for every x ∈ X.
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The elements ⊥, > and every fuzzy atom, if they exist, are fuzzy modular elements.

Definition 5.2. Let L = (X,A) be a fuzzy lattice with ⊥ and let a, b ∈ X − {⊥}. If
a ∧F b = ⊥ and there exists a fuzzy modular element m ∈ X such that m ∨F b = a ∨F b
and A(m, a) > 0, then we write a < |(m)b.

We have 0 < A(⊥,m) < 1 and 0 < A(m,>) < 1.
(i) If m = ⊥, then b = a ∨F b. Hence a ∧F b = a = ⊥;
(ii) If m = >, then > ∨F b = a ∨F b, which gives > = a ∨F b.
Hence we have A(a,>) > 0; (I)
Since A(m, a) > 0 we get A(>, a) > 0. (II)
From (I) and (II) we have a = >. This gives a ∧F b = > ∧F b = b = ⊥.

If a < |(m)b and b < |(n)a hold, then we say that a and b are parallel with axes m and n
and we write a ||(m,n) b. Since fuzzy modular elements m and n are not necessarily fuzzy
atoms, we may say that this parallelism is fuzzy atom-free.

Example 5.1. Consider the fuzzy lattice in Example 2.1. Here d ∧F e = ⊥. As a, b ∈ X
are modular elements such that a∨F e = d∨F e, b∨F d = e∨F d, A(a, d) > 0 and A(b, e) > 0
hold. Hence d < |(a)e and e < |(b)d hold.
Thus, d||(a,b)e holds.

Lemma 5.1. Let a < |(m)b hold in a fuzzy lattice with ⊥.
(i) If 0 < A(m, a1) < 1 and A(a1, a) > 0, then (b, a1)FMm does not hold;
(ii) If A(m, a1) > 0, 0 < A(a1, a) < 1, then (b, a1)FMj does not hold;
(iii) If L = (X,A) is a FM -symmetric fuzzy lattice and if A(m, a1) > 0, A(a1, a) > 0,
then (a1, b)FMj holds.

Proof. Let a < |(m)b hold in a fuzzy lattice L = (X,A) with ⊥.
Since a < |(m)b we have a ∧F b = ⊥ and m ∨F b = a ∨F b. (I)
(i): Suppose that 0 < A(m, a1) < 1 holds. Hence by (ii) of Proposition 2.1, we have
A(m ∨F b, a1 ∨F b) > 0.
By (I) we get A(a ∨F b, a1 ∨F b) > 0. (II)
As A(a1, a) > 0 so by (ii) of Proposition 2.1, we have A(a1 ∨F b, a ∨F b) > 0. (III)
From (II) and (III) by fuzzy antisymmetry of A we have a1 ∨F b = a ∨F b. (IV)
By (I) and (IV) we have a1 ∨F b = a ∨F b = m ∨F b.
As A(a1, a) > 0 by (ii) of Proposition 2.1, we have A(a1 ∧F b, a ∧F b) > 0.
So, we have A(a1 ∧F b,⊥) > 0 as a ∧F b = ⊥ and A(⊥, a1 ∧F b) > 0 always holds.
Therefore, by fuzzy antisymmetry of A we get a1 ∧F b = ⊥.

(m ∨F b) ∧F a1 = (a1 ∨F b) ∧F a1 = a1 and m ∨F (b ∧F a1) = m ∨F ⊥ = m 6= a1.

Hence (b, a1)FMm does not hold.

(ii): Suppose that A(m, a1) > 0 and 0 < A(a1, a) < 1 hold.
As 0 < A(a1, a) < 1 so by (ii) of Proposition 2.1, we have A(a1 ∨F b, a ∨F b) > 0. (I)
As A(m, a1) > 0 by (ii) of Proposition 2.1, we get A(m ∨F b, a1 ∨F b) > 0.
But m ∨F b = a ∨F b. So, we have A(a ∨F b, a1 ∨F b) > 0. (II)
From (I) and (II) by fuzzy antisymmetry of A we have a1 ∨F b = a ∨F b.
We have

(a ∧F b) ∨F a1 = ⊥ ∨F a1 = a1 and a ∧F (b ∨F a1) = a ∧F (b ∨F a) = a 6= a1.

Hence (b, a1)FMj does not hold.

(iii): Assume that L = (X,A) is a FM -symmetric fuzzy lattice and let A(m, a1) > 0,
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A(a1, a) > 0 by (ii) of Proposition 2.1, we have A(m ∨F b, a1 ∨F b) > 0, (I)
and A(a1 ∨F b, a ∨F b) > 0.
As a < |(m)b we have a∧F b = ⊥. There exists a fuzzy modular element m ∈ X such that
A(m, a) > 0 and m ∨F b = a ∨F b. So, (I) reduces to A(a ∨F b, a1 ∨F b) > 0.
Therefore, we have A(a ∨F b, a1 ∨F b) > 0 and A(a1 ∨F b, a ∨F b) > 0.
By fuzzy antisymmetry of A we get a ∨F b = a1 ∨F b.
So, we have a ∨F b = a1 ∨F b = m ∨F b.
Let A(b, c) > 0 since m is a fuzzy modular element we have (c,m)FMm.
But L = (X,A) is a FM -symmetric fuzzy lattice so, we have (m, c)FMm.
Consider a1 ∨F b = m ∨F b.
We have

c ∧F (a1 ∨F b) = c ∧F (m ∨F b),

= b ∨F (m ∧F c), because (m, c)FMm.

Therefore, c ∧F (a1 ∨F b) = b ∨F (m ∧F c). (II)
We have A(m, a1) > 0.
By applying (ii) of Proposition 2.1, repeatedly we have
A(m ∧F c, a1 ∧F c) > 0 and A(b ∨F (m ∧F c), b ∨F (a1 ∧F c)) > 0.
From (II) we have A(c ∧F (a1 ∨F b), (c ∧F a1) ∨F b) > 0.
Therefore, (a1, b)FMj holds. �

Lemma 5.2. Let L = (X,A) be a fuzzy lattice with ⊥. Let a, b ∈ X − {⊥}. Then
a ‖(m,n) b if and only if a∧F b = ⊥ and there exist fuzzy modular elements m,n ∈ X such
that A(m, a) > 0, A(n, b) > 0 and a ∨F n = b ∨F m.

Proof. If a ‖(m,n) b, then we have a <|(m) b and b <|(n) a. Hence we have

a ∧F b = ⊥, A(m, a) > 0, A(n, b) > 0 andb ∨F m = a ∨F b = n ∨F a.

Conversely, suppose that a ∧F b = ⊥ and there exist fuzzy modular elements m,n ∈ X
such that A(m, a) > 0, A(n, b) > 0 and a ∨F n = b ∨F m so, we have A(a, b ∨F m) > 0.
By (ii) of Proposition 2.1, we have A(a ∨F b, b ∨F m) > 0. (I)
Also, we have A(m, a) > 0 so, by (ii) of Proposition 2.1,we have
A(m ∨F b, a ∨F b) > 0. (II)
From (I) and (II) by fuzzy antisymmetry of A we have m ∨F b = a ∨F b.
Hence we get a <|(m) b. Similarly, we have b <|(n) a.
Thus a ‖(m,n) b holds. �

Lemma 5.3. In a fuzzy lattice L = (X,A) with ⊥, if a <|(m) b, A(m, a1) > 0 and
0 < A(a1, a) < 1, then a1 <|(m) b.

Proof. Suppose that a <|(m) b holds. Then we have a ∧F b = ⊥ and there exists a fuzzy
modular element m ∈ X such that m ∨F b = a ∨F b and A(m, a) > 0.
Given 0 < A(a1, a) < 1 so by (ii) of Proposition 2.1, we have A(a1 ∧F b, a ∧F b) > 0, that
is, A(a1 ∧F b,⊥) > 0.
Since A(⊥, a1 ∧F b) > 0 always holds, by fuzzy antisymmetry of A we get a1 ∧F b = ⊥.
Also, given that A(m, a) > 0 and m ∨F b = a ∨F b. (I)
To show that m ∨F b = a1 ∨F b holds.
As A(m, a1) > 0 and A(a1, a) > 0 so, by (ii) of Proposition 2.1, we have
A(m ∨F b, a1 ∨F b) > 0 and A(a1 ∨F b, a ∨F b) > 0.
By (I) we have A(a ∨F b, a1 ∨F b) > 0 and A(a1 ∨F b, a ∨F b) > 0.
So, by fuzzy antisymmetry of A we have a1 ∨F b = a ∨F b. (II)
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Therefore, from (I) and (II) we get a1 ∨F b = m ∨F b.
Hence we have a1 ∧F b = ⊥, a1 ∨F b = m ∨F b and A(m, a1) > 0.
Thus, a1 <|(m) b holds. �

Lemma 5.4. Let L = (X,A) be a fuzzy lattice with ⊥ and a, b, b1 ∈ X. Suppose that
a <|(m) b holds and b 6= ⊥ is such that A(b, b1) > 0.
(i) If a ∧F b1 = ⊥, then a <|(m) b1;
(ii) If m 6= ⊥ and A(m, b1) > 0, then 0 < A(a, b1) < 1.

Proof. As a <|(m) b holds we have a ∧F b = ⊥ and m be a fuzzy modular element such
that m ∨F b = a ∨F b and A(m, a) > 0.
(i): Suppose that a ∧F b1 = ⊥. To show that a <|(m) b1 holds.
We have

m ∨F b1 = m ∨F b ∨F b1, because A(b, b1) > 0

= a ∨F b ∨F b1,

= a ∨F b1, because A(b, b1) > 0.

Therefore, we get m ∨F b1 = a ∨F b1. (I)
Hence if a ∧F b1 = ⊥ holds, then a <|(m) b1.
(ii): Suppose that m 6= ⊥ and A(m, b1) > 0. To show that A(a, b1) > 0.
From (I) we have a∨F b1 = m∨F b1 = b1. Therefore, a∨F b1 = b1, that is, A(a, b1) > 0. �

6. Conclusion

In this paper, we have introduced the notion of ‘del’ relation in a fuzzy lattice and
have presented a novel approach to parallelism and atom free parallelism in fuzzy lattices.
Also, we have studied some properties. We have proposed a new notion and notation of
distributive and neutral elements in fuzzy lattices.
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