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A NOVEL THIRD KIND CHEBYSHEV WAVELET COLLOCATION
METHOD FOR THE NUMERICAL SOLUTION OF STOCHASTIC
FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

S. C. SHIRALASHETTI!, L. LAMANTI', §

ABSTRACT. In the formulation of natural processes like emissions, population devel-
opment, financial markets, and the mechanical systems, in which the past affect both
the present and the future, Volterra integro-differential equations appear. Moreover, as
many phenomena in the real world suffer from disturbances or random noise, it is normal
and healthy for them to go from probabilistic models to stochastic models. This arti-
cle introduces a new approach to solve stochastic fractional Volterra integro-differential
equations based on the operational matrix method of Chebyshev wavelets of third kind
and stochastic operational matrix of Chebyshev wavelets of third kind. Also, we have
given the convergence and error analysis of the proposed method. A variety of numerical
experiments are carried out to demonstrate our theoretical findings.

Keywords: Stochastic Volterra integro-differential equations, Chebyshev wavelets of third
kind, Brownian motion, stochastic operational matrix of Chebyshev wavelets of third
kind.
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1. INTRODUCTION

In mathematical modeling of many physical phenomena, including mechanic, economic,
dynamic reactor, etc., stochastic Volterra integral equations arise. Such systems also ap-
pear in the study of the growth model for biological populations, and the study of behavior
in physics and technological dynamism in more realistic systems [1, 2, 3, 4]. Most specifi-
cally those systems additive noise under certain probability rules, such as Gaussian white
noise. Thus, it is normal, in the most complex situations, to use stochastic Volterra integral
equations [5, 6]. The analysis of stochastic differential equations, therefore, constitutes an
relevant area of study. These differential equations are very unusual in straightforward
solutions and computational methods need to be used to overcome these issues. Recently,
computational techniques have outcome as a very efficient and powerful computational
methodology for simulating complex or smooth physical phenomena [7, 8, 9]. Such meth-
ods have been most recently employed for the solution of time partial diffusion systems
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in [10, 11, 12, 13, 14, 15, 16], while M. Asgari employed block pulse function to obtain
the numerical solution of stochastic fractional Volterra integro-differential equations (SF-
VIDE) [17]. This pilot study aims to develop the collocation technique for the numerical
solution of SFVIDE. Let us consider the following SFVIDE [17] for this reason,

Dy(a) = f@)+ [ knlatiOde + [ kol (v o), 1)
0 0
with initial conditions,
y(i)(O) =y;,1=0,1,2,...,n—1, n—1<a<n, n€N,

where, W (x) is a Brownian motion and y(z) is the unknown stochastic process, and
solution of (1), it is adapted to {F}, t > 0}.

Wavelets are mathematical functions that divide data into frequency components and
analyze individual components in their respective resolution. As a statistical tool, wavelets
can be used to obtain data from the variety of data types like seismic waves, earthquakes,
signal processing, nuclear engineering, acoustics, and astronomy. Many researchers have
paid great attention to it and it has been applied in a various technical fields. These
wavelets which are obtained from orthogonal polynomials, in particular, are regularly
used in the quest for the approximate solution of various types of integral, differential, and
integro-differential equations. some of them are found in [18, 19, 20, 21]. The fractional
order operational matrices of integration of Haar wavelet, Bernoulli wavelet, Chebyshev
wavelet, and the Legendre wavelet have been used in the last decade to solve differential
equations of fractional order [22, 23, 24, 25, 26]. Similarly, stochastic operational matrices
of fractional order integration of Chebyshev wavelets have been used to solve stochastic
differential equations of fractional order [27, 28].

Encouraged by most of these work, we approximate equation (1) using Chebyshev
wavelets of third kind [29]. There are four types of Chebyshev polynomials and they
are well known [30]. There is indeed a great focus on Chebyshev polynomials of the first
and second kinds and their various implementations in the literature, for instance, see
[31, 32]. There are, however, few studies focusing on third and fourth type Chebyshev
wavelets. Here, we stretch the importance of Chebyshev wavelets of third kind to form a
stochastic operational matrix of integration (SOMI) of Chebyshev wavelets of third kind.
This SOMI of Chebyshev wavelets of third kind is used to acquire the approximate solution
of equation (1).

The remaining paper is structured as follows. Section 2 provides some basic definitions
and characteristics of stochastic calculus, wavelets, Chebyshev wavelets of third kind, and
fractional calculus. Also, in this section, SOMI of Chebyshev wavelets of third kind are
obtained. The proposed method of solution is given to estimate the solution of fractional
integro-differential equations in section 3. Computational experiments are presented to
show the efficiency and reliability of the proposed method in section 5. Convergence and
Error analysis of the proposed method is studied in 4. Finally, in Section 6 the conclusion
of the article is given.

2. PROPERTIES OF STOCHASTIC CALCULUS, FRACTIONAL CALCULUS, WAVELETS, AND
THIRD KIND CHEBYSHEV WAVELETS

2.1. Brownian Motion. For definitions of Brownian motion see [33].

2.2. It6 Integrals. If we consider the following ordinary differential equation (ODE):

‘@d(;) = 9(x,y), dy(z) = g(z,y)dw, (2)
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satisfying the initial conditions y(0) = yo can be written in integral form as follows:

y(z) = o + /0 " g(s, u(s))ds, (3)

where y(x) = y(z,yo, o) is the solution satisfying the initial conditions y(xg) = yo. For
example:

dy(x
) afey(e), 0l0) = wo ()
T
If we take the ODE (4) and consider that a(x) is not deterministic but instead a stochastic
parameter, we get a stochastic differential equation (SDE). The parameter a(z) is given
as:

a(z) = g(z) + h(z)¢(), (5)
where £(x) denotes a white noise process. and therefore, we get:
D) g@)¥ (@) + @)Y (@)6(x). ©)

dzx

If we let dW (z) = £(z)dzr and use equation (6) in the differential form, dW (z) represents
the Brownian motion’s differential form and we get:

dY (z) = g(x)Y (z)dx + h(t)Y (z)dW (x). (7)

In order to explain stochastic integral equations, let us consider the following example:

T
g(z,w) = W(:E,w)/o W(x,w)dW (z,w)

N
= lim Y Wi(wi1,w) (W(z,w) — W(zi1,w))

N—o0 4
i=1

1 1
_ Jim [2 SO (i, w) ~ W2 — Lw) — o S (W (i w) — Wiair, )

N—oo . -
=1 =1
1 al 1
= —— lim (W (xg,w) — Wz 1, w)) + = W(T,w). (8)
2 N—oo P 2
Therefore,
N N
; . _ . 21 15 . _ . 2
E[ngnoo;(w(xu w) = W(zi—1,w))"] = lim 2 E[(W (zi, w) = W(zi-1,w))7]
N
= i 2 (o = i)
=1T.
N N
var[ lim_ Z(W(:z:l, w) = W(zig,w))?] = lim ;Var[(W(:nl, w) — W(zi_1, w))?]
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By reducing the partition, the variance becomes zero,

N N
1 _r 1)< )1 g
Ngnoozg(xz Ly l) = mzax(mz £y l) E)Ilmz;(xz Ly l)
K3 K3
= (a:z — :L’Z'_l)T
=0, (9)
since w;_1 — x; — 0. Since the expected value of Zl ((; — x;_1)% is T and the variance
becomes zero, we get
N
S (W (i, w) = Wi, w))? = T. (10)
i=1

The stochastic integral has the solution:
T 1, 1
W(x,w)dW(:L‘,w) = §W (T, w) — §T. (11)

This is contradictory to our normal calculus intuition. For deterministic integral fo t)dt =
$22(t), but the the Ito integral varies by the term —i7. This illustration 1llustrates that
differentiation rules and integration rules in the stochastlc calculus (especially the chain
rule), must be reformulated.

Properties of It6 Integrals:

e var [f(;f (z, w)dW (x,w) ] fo )]dt.

There are two important properties in calculatlng the variance of the It6 integrals:

[(fo xdexw) ] fo (6% (z,w)] dt.
° fO [ ] )| dt < 0.
The second property is the condition of existence for It integrals.

2.3. Fractional calculus. For detailed study of fractional calculus see [34].

2.4. Third kind Chebyshev wavelets. Third kind Chebyshev wavelets with four ar-
guments [36] k, n, m, and x are defined as follows:

ﬂJnm _{22[0 $—2n‘|‘1)a 2k1<95<2k T) (12)

Otherwise,

where, k >0, n =1,2,...,2F"1 2 denotes the time and m denotes the degree of third kind
Chebyshev polynomials. In equation (12), C,,(x) are Chebyshev polynomials of third kind
whose degree is m with weight function w(z) = \/%“‘j on [—1, 1] and satisfy the recursive
formula:
Co(z) =1, Ci(z) =2z — 1,
Cmt1(z) = 22Ch(x) — Cp—1(z), m=1,2,3, ...

For instance, for k = 2 and M = 2, we get

Yro(x) =
<z<-=

1
1 (z) = =2 (835—3)}0 2’

gl
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Yro(z) = 7= 1
v <<l
Yra(@) = % (B —7)f 2
When concerned with Chebyshev wavelets of third kind, the weight function w(z) = i‘—ﬁ

must be dilated and truncated as w(z) = w(2Fz — 2n + 1).

2.5. Function approximation. Let us expand f(z) € L?[0, 1) with respect to the Cheby-
shev wavelets of third kind as,

flz) = Z Z Un,m¥n,m () (13)

n=1m=0

If we truncate the infinite series given above, we get

2k=1 pr—1

f(x) = Z Z Un,m¢n,m(x) - VTw(x) - fm(&?), (14)

n=1 m=0
where, the 1 x 1 (1 = 271 M) matrices V and v(z) are given as follows:
V= ’ 15
= [?}1’0, V1,15 -5 V1, M—1,V205 -5 U2 M—15 -+ Uzk—l,o, veey U2k—17M—1] 5 ( )
and

Y(x) = [Y10(x), Y1,1(2), ..y Y1 0—1(2), Y2,0(2), .oy Y2, p—1 (),

16
...,’(ﬁQk—l’O(a?),...,1/J2k—1’M,1(:L‘)] T. ( )

2.6. Operational matrix of integration (OMI) and SOMI of Chebyshev wavelets
of third kind. OMI P of Chebyshev wavelets of third kind are derived in [36] as,

xX
| vttt = Pota), a7
0
where
L F F F 7
0 L F F
1
P: 27 0 5
Do : . F
Lo 0 --- 0 L |
where the M x M matrices L and F' are given by
- 3 1 -
5 5 0 0 0 0
-2 —% i1 0 0 0
5 1 1
6 —1 "1z % 0 0
7 1 1
L = T 12 0 6 24 0 0
M-2__ 2M-3 1 1
(=1) M—1)(M-2) 0 0 T 2(M—=2)(M-1) 2(M—1)
( 1)M—1 2M—1 0 0 0 _ 1 o 1
M(M—1) 2(M—1) 2M(M-1) |
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If M is even,

aq
aq
a2

F=|

o O OO
o O OO
o O OO

e}
e}

QM
2

amv 0 0
2

where o; = 525, i =1,2,..., &, and if M is odd,

aq
aq
a2
a2

OO OO
oS O O
OO OO

a%_l 0 0

a%fl 00 --- 0

Q. M+1 00 --- 0
2

where a; = %, 1 =1,2,..., % And the fractional OMI P, Chebyshev wavelets of
third kind are derived in [36] as,

[Pa]QkflMx%*lM - [w]2’@*1M><2k'*1M [FOC]Q’“*MXQ’“*M [wil]zkflMXZkflM’

where,
(1 G G G o Gae1 ]
01 G ¢ - Guo
- 1 1 00 1 G - Gus
“ T ml(a+2) T : ’
00 - . 1 4
Lo 0 0 --- 0 1

where, ¢; = (i + 1)t — 20+ 4 (5 — 1)o@+l i =1,2 ... ;7 — 1. And therefore,

I°f(z) ~ FT Py ().
For instance, if kK =2 and M = 2, we get

1
1 52 °) ; 8
— | 1
P=1l 0 o 3 3 ’
0 0 -2 —3],,
and for o = 0.5,

0.6877 0.1558 0.3669 —0.0738
Py, = —0.6232 0.0645 —0.3281 0.0388
x4 0 0 0.6877  0.1558

0 0 —0.6232  0.0645 |, ,
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Now, we derive the SOMI of Chebyshev wavelets of third kind as follows:
The stochastic integral of ¥)(x) can be obtained as follows:

/O " (BAW (1) = Pub(a). (18)

where the matrix Ps (of order m x m) is the SOMI of Chebyshev wavelets of third kind.
For M = 2 and k = 2, we have

N ZW(), 0<z<1/2
VT
/0 Y1o(t)dW (t) = {\%W (3, 12<z<1

W (i) bro(x) + W (;) 0(2), (19)

/0 (W (1) =

Z ((8z—3)W(z) - [y W(t)dt), 0<a<1/2
%r (W (%) - 01/2 W(t)dt> , 1/2<z<1

_ /01/4 W(t)dt> Y1o(z) + W (i) P11 ()

1/2
+ <W (;) -/ W(t)dt) o(x), (20)
@ 0, 0<z<1/2
, Vo)W (D) = {\/2; (W) -w (%), 1/2<z<1
. (W (i) —w (;)) $a0(a), (21)

0, 0§ﬂ?<1/2
Y1 (t)dW (t) = {2 (W (L) - f01/2W(t)dt) L 1/2<2<1

~ (_ /01/4 W(t)dt) Yoo(z) + W (z) a1 (x). (22)

Using equations (19) to (22), we get

e
¢ P by (t t
, OO = aw )
Oa: 1[)2’1 (t)dW(t)
Therefore,
W () 0 W (3) 0
: —Jrwwar) wE) (W) - Pwmd) o
/Ow(t)dW(t): ( 0 0 ) 04 ((V;(i)—ow(;))) . W (z)
0 0 (-t wwar) w3
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We have derived the SOMI of Chebyshev wavelets of third kind k = 2 and M = 2 (1h = 4).
In the same way for the different values of k and M we can derive the SOMI of Chebyshev
wavelets of third kind.

3. THIRD KIND CHEBYSHEV WAVELET STOCHASTIC OPERATIONAL MATRIX METHOD

In this section, an efficient direct method to solve SFVIDE is provided using results in
the previous section. We can rewrite equation (1) in an integral form using definitions of
fractional differentiation and integral:

y(@) = fol@) + I°(f(x)) + I° ( / ' k1<x,t>y<t>dt) e ( / ' k2<x,t>y<t>dW<t>) . (23)

Wherev fO( ) ZZ é Zkly k)(0+) Approximating fo(ﬂf), y(l‘)u f(x)v and kl(xvt)a i = ]-52
with respect to Chebyshev wavelets of third kind as follows:

y(x) = V() = Vo' (z), (24)
where V is given in equation (15) and is the unknown vector to be determined.
folz) = Fg ¢(z) = Fop" (@), (25)
fla) = FTy(z) = Fy'(2), (26)
k(a,t) ~ 97 (2) K19p(t) = o7 () K] ¢ (=), (27)
ko, t) = T () Kapp(t) = 97 (1) K3 (), (28)

where V', Fy and F' are third kind Chebyshev wavelet coefficient vectors and K, Ko are
third kind Chebyshev wavelet matrices. Using equations (27), (28) and remark given in
[33], an integral part of (23) is approximated as,

([ et = 12 (s oo ova)
=I* <wT(m)K1 /0 ’ Vz/z(t)dt)

~ 1 (47 (@) K0 V P ()

= I1* (Bl ¢(x))
= B Py(x). (29)

Similarly, for Ito integral, we get

I (/Ox kQ(m,t)y(t)dW(t)>

W (2) K / Bty wT (VAW (¢ >)

(e
= <<¢T(a:)K2 /0 W(t)dW(t))

(x)KQVPS”Lﬂ(QT))
=1 (B3 ()
= B} Pat)(z), (30)



S. C. SHIRALASHETTI, L. LAMANI: A NOVEL THIRD KIND CHEBYSHEV WAVELET... 903

where Vis a r-vector given in the remark [33] for the vector V defined in equation (15).
B and By are m-vectors containing diagonal elements of matrices K1V P and K5V Pg
respectively. Substituting equations (24), (25), (26), (29), and (30), we get

VI(x) = Fg (@) + FT Patp(w) + Bl Pato(2) + By Path(x), (31)

that is
V- PI(B+By)=F, (32)
where F' = PI'F + Fy. Equation (32) is a linear system of equations. V is the unknown

vector obtained by solving the linear system of equations (32). The solution of SFVIDE
(23) is obtained by substituting the vector V' in equation (24).

4. CONVERGENCE AND ERROR ANALYSIS

Theorem 4.1. Let y(z) and y*(x) be the exact and approzimate solutions of (1)-(12),
respectively. Let us assume that

(1) [l y(z) [I< oo,

2Oé
@) || ki ||< ki, ks €R, || K |2+ || B |2 752,
then, || y(x) — y*(x) ||— 0, where

ly() [IP=E[ly[*].
Proof. See [37]. O

5. COMPUTATIONAL EXPERIMENTS
Test problem 5.1. We consider the SFVIDE [37]

(2 xl—a $3 T T

D%(x) = F((Q)a) 3 +/0 ty(t)dt —i—/o y(t)dW (t), (33)
satisfying the initial condition y(0) = 0. SFVIDE (5.1) does not have an exact solution.
To obtain the numerical solution of this SEVIDE, the third kind Chebyshev wavelet method
described in section 3 is applied. Table 1 shows the approximate solution obtained by the
third kind Chebyshev wavelet method for various values of o for m = 8 and figure 1 shows
the approximate solution obtained by the third kind Chebyshev wavelet method for various
values of o for m = 8 of test problem 5.1.

6. CONCLUSION

In the formulation of natural processes, for instance, population growth, pollution,
financial markets, and mechanical structures, SFVIE arise in which the past affect both
the present and the future. Therefore, considering that several phenomena in the natural
world suffer from disturbances or random noise, switching from the probabilistic models
to stochastic models is common and safe for them. There are usually no exact solutions
of these models. And so in this article, we opt for approximate solution of these equations
using Chebyshev wavelets of third kind. A new SOMI of Chebyshev wavelets of third
kind is obtained. With the help of existing fractional OMI Chebyshev wavelets of third
kind and the obtained SOMI of Chebyshev wavelets of third kind, we obtain the solution
of SFVIDE. The computational experiments show the method presented is efficient and
accurate.
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TABLE 1. Approximate solution obtained by the method described for dif-
ferent values of x, a for m = 8 of test problem 5.1.

T a=020 a=05 a=0.75
0.0625 0.5999  0.5885  0.5877
0.1875 0.7261 0.7115  0.7106
0.3125 0.8147  0.8049  0.8043
0.4375 0.8944  0.8847  0.8750
0.5625 0.9764  0.9661 0.9569
0.6875 1.0864 1.0767  1.0662
0.8125 1.1997  1.1805 1.1752
0.9375 1.2993 1.2809 1.2713

13

12+

05 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

FIGURE 1. An approximate solution obtained by the third kind Chebyshev
wavelet method for certain values of a and m = 8 of test problem 5.1.

Test problem 5.2. Let us consider the SFVIDE [37]

D(z) = Tt 08, 207 - o - /x(aﬂ—t) (t)dt + /xt (t)dW (t), (34)

= 76" TTB—a) TTC—a) Y 0 Y ’
with the initial condition y(0) = 0. This SFVIDE does not have an exact solution. To
obtain the numerical solution of this SFVIDE, the third kind Chebyshev wavelet method
described in section 8 is applied. Table 2 shows the approximate solution obtained by the
third kind Chebyshev wavelet method for different values of a for m = 8 and figure 2 shows
the approzimate solution obtained by the third kind Chebyshev wavelet method for different
values of o for m = 8 of test problem 5.2.




S. C. SHIRALASHETTI, L. LAMANI: A NOVEL THIRD KIND CHEBYSHEV WAVELET... 905

TABLE 2. Approximate solution obtained by the method described for dif-
ferent values of x, a for m = 8 of test problem 5.2.

T a=025 a=05 a=0.75
0.0625 0.0400 0.0324  0.0256
0.1875 0.1600  0.1444  0.1296
0.3125 0.3600 0.3364  0.3136
0.4375 0.6400 0.6084  0.5776
0.5625 1.0000  0.9604  0.9216
0.6875  1.4400 1.3924 1.3456
0.8125  1.9600 1.9044 1.8496
0.9375 2.5600  2.4964  2.4336

«=0.25
a=05
251 1
2 i
15} 1
=
1r i
0.5 B
0

FIGURE 2. An approximate solution obtained by the third kind Chebyshev
wavelet method for certain values of a and m = 8 of test problem 5.2.
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