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THE MEAN REVERTING ORNSTEIN-UHLENBECK PROCESSES

WITH NONLINEAR AUTOREGRESSIVE DRIFT TERM

INNOVATIONS

P. NABATI1, §

Abstract. The main purpose of this paper is to present a new approach for energy
markets governed by a two-factor Ornstein-Uhlenbeck process with a stochastic nonlin-
ear autoregressive drift term innovation and an unknown diffusion coefficient. This model
has interesting characteristics: since the drift is stochastic, it allows for price to fluctuate
around a level that is not fixed. A semiparametric method is proposed to estimate the
nonlinear regression function based on the conditional least square method for paramet-
ric estimation and the nonparametric kernel approach for the AR adjustment estimation.
For estimating the diffusion coefficient of the Ornstein-Uhlenbeck process from discretely
observed data a semiparametric approach based on the least-squares estimator is carried
out. Finally, numerical simulations are performed using Matlab programming to show
efficiency and the accuracy of the present work.
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1. Introduction

The diffusion process has played an important role in modeling and dynamic financial
variables, such as pricing derivative securities that formulated in continuous time as solu-
tions to stochastic differential equations (SDE’s). SDEs have been used to model option
prices, interest rates, and exchange rates. Some applications of SDEs are described in
Nabati et al. [16]. For modeling first, we have to specify the drift and diffusion coefficients
of an SDE, µ(.) and σ(.) as given below:

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dBt, (1)

where Bt is a standard Brownian motion defined on the probability space (Ω,F , P ) and
F is a sigma-algebra. Mean reverting price processes of the diffusion type relevant to
energy prices are considered in this paper. In general one to three factor models exists
that motivating the idea behind the notion of mean reversion. A one-factor mean reverting
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Ornstein-Uhlenbech (OU) process is proposed for the spot price of energy commodity by
Pilipovic as follows [17]:

dPt = β(ν − Pt)dt+ σdBt, (2)

where β, ν and σ are constants. It is easy to show that as t → ∞, P̄t → ν. In other
words, the mean P̄t revert in the long run to ν. Generalization of it to the case where ν
is made time-dependent to capture seasonality is discussed in Tifenbach [20].

Two-factor models are achieved by either allowing the long-run mean ν or the volatility
σ governed by an SDE. The first model assumes the stochastics long-run mean as:{

dPt = β(νt − Pt)dt+ σdBt
dνt = µνtdt+ ξνtdWt

(3)

where µ and ξ are constants and dBt and dWt are uncorrelated Brownian motions. Some
numerical implementation of this model can be found in Tifenbach, Lari-Lavasani et al.
and Hernandez et al., [20, 15, 12]. The second generalization is the two-factor model where
volatility is allowed to be stochastic that is discussed in Lari-Lavasani et al. as follows
[15]: {

dPt = β(ν−Pt)dt+
√
σtdBt

dσt = µ(σ0 − σt)dt+ ξσtdWt
(4)

Our innovation in this paper is to assume a two factor OU process with a nonlinear
autoregressive drift term. Identification, estimation and hence the investigation of the
coefficients of this process have proved to be quite difficult. The nonlinear autoregressive
model is studied by many researchers in a few last years. Zhuoxi et al. introduced a
semiparametric estimation for regression function in autoregressive models [21]. Farnoosh
and Mortazavi extend the Zhuoxi method for the autoregressive models with a dependent
error [7]. Hajrajabi and Mortazavi proposed the semiparametric estimation for nonlinear
autoregressive models with skew normal error terms [10]. Hajrajabi and Maleki investigate
the autoregressive model with finite mixtures od scale mixtures of skew normal error term.
They use the expectation maximization algorithm to perform the maximum likelihood
inference of unknown parameters of the model [9]. Finally, Hajrajabi et al. proposed the
nonlinear autoregressive models with stochastic volatility. They used the optimal filtering
technique based on a sequential Monte Carlo perspective for estimation of the hidden log-
volatility in the model [11]. The nonparametric approach for these models is considered in
[3, 8]. The parameter estimation of SDE’s has been considered in the literature for many
years. For instance, the nonparametric drift and diffusion function estimators have been
proposed by Fan and Yao, Jacod and Fan and Zhang, [5, 13, 6]. These studies basically an
unknown function by a polynomial. This localization is done by using some kernel function
so that the method is also called the kernel regression. The performance of this method
depends on the choice of a kernel function and its bandwidth, the details can be seen in
Fan and Gijbles, [4]. Bandi and Philips investigate a functional estimation procedure for
homogeneous SDE based on a discrete sample of observation. They show how to identify
the drift and diffusion function in situations when one or the other function is considered
a nuisance parameter [1]. Reno introduces nonparametric estimators of the drift and
diffusion coefficient of stochastic volatility models that exploit techniques for estimating
integrated volatility with high-frequency data [18]. Bonsoo and linton propose a class of
locally stationary diffusion processes. Their model is semiparametric because they allow
the functions to be unknown and the innovation process is parametrically specified indeed
completely known [2]. Shoji provides a semiparametric model to estimate the diffusion
coefficient of an SDE from discretely observed data without assuming any functional form
of the diffusion coefficient [19]. Kanaya and Kristensen present a two-step estimation model
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of SDE. Their strategy applies to both parametric and nonparametric stochastic volatility
models and can handle both jumps and market microstructure noise [14]. The outline of
this paper is as follows. In section 2, the mathematical modeling for the OU process with
autoregressive drift term innovation is presented. A least square estimation is proposed to
estimate the parameter vector of the regression function and a semiparametric regression
estimator is presented with the local L2 fitting criteria. The parameter estimation for
both the drift and diffusion terms of the OU process are discussed in section 3. Section
4 provides computational examples and numerical simulations illustrating the use of the
method. In the last section, we give the concluding remarks.

2. OU process with nonlinear autoregressive drift term

The modeling of commodity prices has been attractive over the past few years, owing
to many factors including the dominant volatility and the deregulation of markets for
some commodities (e.g. electricity). Historically, mean reversion has been viewed as a key
component of commodities prices [12]. Now consider the system of stochastic differential
equations in a two factor model for energy and commodity spot price processes as:{

dPt = β(νt − Pt)dt+ σ(Pt)dBt
νt = f(νt−1) + ξt

(5)

where β > 0, σ(Pt) is an unknown function of Pt that should be estimated. f(.) is the
unknown nonlinear autoregressive function and ξt is a sequence of i.i.d random variables
with mean zero and variance σ2

ξ . The model has interesting characteristics: since the drift
is stochastic, it allows for price to fluctuate around a level that is not fixed. Traditionally,
the parametric or nonparametric approach can be adapted to estimate the autoregressive
function f(.). A semiparametric approach based on the work of Zhouxi et al. and Farnoosh
and Mortazavi is used in this paper [21, 7]. Suppose that f(.) has a parametric framework,
a parametric model ,

f(x) ∈ {h(x, θ), θ ∈ Θ} (6)

is presented as a prior selection where Θ ∈ Rp is the parameter space. In this case the
estimator of the regression functions is replaced by the estimator of the unknown parameter
vector Θ, then the regression function f(.) is estimated by f̂(x) = h(x, θ̂) where θ̂ is an
estimator of θ. The estimator θ is obtanied via conditional nonlinear least square errors
method as follows:

θ̂ = argminθ∈Θ
∑n

t=1

(
νt − E(νt|νt−1)

)2
= argminθ∈Θ

∑n
t=1

(
νt − h(νt − 1, θ)

)2 (7)

Zhouxi et al. earn the strong consistency of θ̂ under a variaty of conditions [21]. h(x, θ)
is a crude guess of f(x), then for adjusting the initial approximation, the semiparametric
form h(x, θ)η(x) is used where η(x) is the adjustment factor. For determining η(x) the
local L2-fitting criterion is defined as:

q(x, η) =
1

bn

n∑
t=1

K(
vt−1 − x

bn
){f(νt−1)− h(νt−1, θ̂).η(x)}2, (8)

where K and bn are the kernel and bandwidth respectivly. The estimator η̂(x) is ob-
tained by minimizing the criterion in equation (8) with respect to η(x). The estimator is
calculated as,

η̂(x) =

∑n
t=1 f(νt−1)K(νt−1−x

bn
)h(νt−1, θ̂)∑n

t=1K(νt−1−x
bn

)h2(νt−1, θ̂)
(9)
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since the equation(9) containe the unknown function f(x), therefore using ξt = νt−f(νt−1)
and with considering the fact that E(ξt) = 0, we can write νt ' f(νt−1) then,

η̃(x) =

∑n
t=1 νtK(νt−1−x

bn
)h(νt−1, θ̂)∑n

t=1K(νt−1−x
bn

)h2(νt−1, θ̂)
(10)

Finally the autoregressive estimator is obtained by

f̃(x) = h(x, θ̂).η̃(x) (11)

The consistence of this estimator is studied in [21].

3. Estimation

consider the one dimentional diffusion process Pt that satisfies in the stochastic differ-
ential equation,

dPt = β(νt − Pt)dt+ σ(Pt)dBt, (12)

Assume that β is an unknown parameter and σ(Pt) is completely unknown function.
Suppose the process Pt is observed at discrete times 0 = t0, t1, ..., tn = T over the time
span [0, T ] with ∆t = T

n . Using the conditional expectation we have:

E(Pt+1|Pt) = Pt + β
(
E(νt)− Pt

)
∆t

= Pt + β
(
f(νt−1)− Pt

)
∆t

(13)

then the parameter β can be estimated by minimizing the local constant objective function,

Q =

n−1∑
t=0

(Pt+1 − E(Pt+1|Pt))2.K(
x− t

T

h
), (14)

with respect to β. This yeild the estimator,

β̂ =

∑n−1
t=0 (Pt+1 − Pt).(f(νt−1)− Pt).K(

x− t
T
h )(∑n−1

t=0 (νt − Pt)2.K(
x− t

T
h )

)
∆t

(15)

where K(.) is a real valued kernel function concentrated around the origin and h is the
bandwidth parameter.

3.1. Estimation of volatility process. From equation (12) we can write,

dPt.dPt = σ2(Pt).dt, (16)

hence σ2(ptk) =
(Ptk+1

− Ptk)2

∆t
. In order to estimate σ(Pt) as a function of Pt, suppose that

σ(.) has a parametric framework, namely a parametric model as σ(Pt) ∈ {g(Pt, γ), γ ∈ Γ},
then σ(.) can be estimated as σ̂(Pt) = g(Pt, γ̂) where γ̂ is an estimator of γ. The coefficient
γ is obtain by minimizing the objective function

Ψ =
n−1∑
k=1

(
Z∗tk − g(Ptk , γ)

)2
.Kh(Ptk − P0) (17)

Here Z∗tk =
(Ptk+1

−Ptk
)2

∆t and Kh(.) = K(./h)
h . K is a kernel function and h is a bandwidth.

We use the Epanechnikov kernel defined by K(u) = 3
4(1− u2)I(|u| ≤ 1) where I(.) is the

indicator function.
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Sample size hn a = 0.1 a = 0.3
0.04 0.003439 0.025912

n = 100 0.08 0.003343 0.026119
0.12 0.003549 0.026191
0.04 0.003752 0.02624

n = 1000 0.08 0.003516 0.02615
0.12 0.003688 0.02595

Table 1. MSE for estimating the model f1(x) = 5 exp(−x2) + a cosx

Sample size hn a = 0.1 a = 0.3
0.04 0.002938 0.003392

n = 100 0.08 0.002773 0.003611
0.12 0.003357 0.003234
0.04 0.002973 0.003458

n = 1000 0.08 0.003011 0.003249
0.12 0.002897 0.003371

Table 2. MSE for estimating the model f2(x) = exp(−3x) + a sinx

4. Simulation study

In this section, we present a simulation study corresponding to the two factors mean
reverting OU process (5) that is divided into two parts to illustrate the performance of our
proposed model. At first, by simulating from the nonlinear autoregressive drift term the
asymptotic properties of the estimator is studied in term of mean square error (MSE) of
the estimated parameters. Second, the diffusion coefficient is estimated using the proposed
model (17). The Bias and MSE are presented for this estimator.

4.1. Simulation study 1. We choice two different autoregressive drift term functions as
follows,

f1(x) = 5e−x
2

+ a cos(x), by assuming h1(x, θ) = θ11e
−x2

f2(x) = 2e−3x + a sin(x), by assuming h2(x, θ) = θ21e
θ22x

Tables 1 and 2 shows the mean square error (MSE) for semiparametric estimation with
1000 itaration. The sample size of simulation, bandwidth and values of a are chosen.
Figures 1 and 2 shows the curves of f(x) and f̃(x) for selected bandwidth respectively.
The solid line is the the function f(x) and the broken line is its estimator. The simulation
results show that the semiparametric estimator performs well.

4.2. Simulation study 2. This simulation study is performed according the model (12)

with 1000 sample path. we consider β = 3 and σ1(Pt) =
√
Pt, σ2(Pt) = P

3
4
t be two dif-

ferent functions for diffusion process. The Bias and MSE for two autoregressive functions
(f1(x), f2(x)) are presented in tables 3 and 4 respectively. As we see, the results show
the justification of the proposed estimator based on the MSE. The simulated functions for
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Figure 1. Exact and simulated functions for nonlinear autoregressive function f1(x).

Figure 2. Exact and simulated functions for nonlinear autoregressive function f2(x).

Exact diffusion Simulated diffusion Coefficients with 95% confidence interval Bias MSE√
Pt γ11P

γ12
t γ11 = 0.6487 (0.232,1.065) 0.04561 0.013927

γ12 = 0.4489 (-0.08249,0.9803)

P
3
4
t γ21P

γ22
t γ21 = 0.9484 (0.2919,1.605) 0.01171 0.02246

γ22 = 0.1467 (-0.439,0.7324)

Table 3. Bias and MSE of the drift and diffusion estimators for the OU process
with drift term f1(x)

different diffusion processes are presented in Figures 3 and 5. Figures 4 and 6 show the
residuals for these estimators.
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Exact diffusion Simulated diffusion Coefficients with 95% confidence interval Bias MSE√
Pt γ11P

γ12
t γ11 = 0.2779 (0.2257,0.3302) 0.040191 0.34661

γ12 = 1.201 (1.054,1.349)

P
3
4
t γ21P

γ22
t γ21 = 0.2444 (0.1884,0.3003) 0.01966 0.74798

γ22 = 1.321 (1.143,1.499)

Table 4. Bias and MSE of the drift and diffusion estimators for the OU process
with drift term f2(x)
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Figure 3. The estimated function with 95% confidence interval for OU process
with nonlinear autoregressive function f1(x), Left: for σ(Pt) =

√
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σ(Pt) = P
3
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Figure 4. The residuals for OU process with drift term f1(x), Left: for σ(Pt) =
√
Pt, Right: for σ(Pt) = P

3
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Figure 5. The estimated function with 95% confidence interval for OU process
with nonlinear autoregressive function f2(x), Left: for σ(Pt) =

√
Pt, Right: for

σ(Pt) = P
3
4
t .

5. Conclusion

The two factors mean reverting OU process with nonlinear autoregressive drift term
innovation and an unknown diffusion coefficient is investigated, to our knowledge for the
first time, in this paper. Since parametric methods are not very efficient to estimate
regression function, the semiparametric method is used. MSE criterion is also applied to
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Figure 6. The residuals for OU process with drift term f2(x), Left: for σ(Pt) =
√
Pt, Right: for σ(Pt) = P

3
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t .

verify the accuracy of the suggested model. For estimating the diffusion coefficient of a
stochastic differential equation a semiparametric approach is presented. The simulation
study demonstrates the efficiency of the present work. The asymptotic behavior of the
estimators and conditions for their consistency are investigated in future work.
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